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Neuron-Based Control Mechanisms for a Robotic
Arm and Hand
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Abstract—A robotic arm and hand controlled by simulated
neurons is presented. The robot makes use of a biological neuron
simulator using a point neural model. The neurons and synapses are
organised to create a finite state automaton including neural inputs
from sensors, and outputs to effectors. The robot performs a simple
pick-and-place task. This work is a proof of concept study for a
longer term approach. It is hoped that further work will lead to
more effective and flexible robots. As another benefit, it is hoped that
further work will also lead to a better understanding of human and
other animal neural processing, particularly for physical motion. This
is a multidisciplinary approach combining cognitive neuroscience,
robotics, and psychology.
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sensitive resistor.

I. INTRODUCTION

ROBOTS are becoming increasingly effective, but

they still cannot duplicate a range of human and

animal behaviours, such as dynamically responding to the

environment. One promising path towards duplicating that

behaviour is to duplicate human neural responses. Moreover,

building robots that are driven by neurons, may help the

scientific community discover how the human neural system

actually works.

This paper describes a robot that is driven by simulated

neurons. It is a Robotis Bioloid robot platform that performs a

pick-and-place task. A BeagleBone Black runs the simulation

of neurons on NEST. There is a force sensitive resistor (FSR)

mounted on the end effector of the robot hand to provide

feedback when the object is grasped and ready to be picked.

A Python and PyNN implementation of the simulated

neurons running on BeagleBone Black is presented in this

paper. A finite state automaton (FSA) has been implemented

in neurons to determine the state changes of the robot. The

neural model is a integrate-and-fire (IAF) point model [1].

The robot has Dynamixel-12A servos that are programmed in

Python and associate with the simulated neurons. The motor

is activated with the simulated set of neurons and the end

effectors grasp the object. Once the object is grasped, the FSR

sends a feedback and the second set of neurons fire. There is

a transition of state at this point, which signals the motors to

lift the object and place it back at the destined position.

This paper is organized as follows: some literature review is

provided in Section II; Section III describes the methodology

of the work followed by the results in Section IV. Section V
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provides a discussion of the results obtained and Section VI

concludes the paper.

II. LITERATURE REVIEW

Research efforts dealing with spiking neural networks

(SNNs) are attempting to gain a better understanding of the

brain and are making efforts to realize the brain’s electronic

replicas partially to imitate brain functionalities such as

learning and memory [2]-[6]. Motion is driven by neurons,

both cortically and subcortically. One fundamental question in

motor control is to establish to what extent the same neurons

can be reused to generate a variety of related motor patterns

[7].
At least in the cortex, many neurons do not function

in isolation but are organized in Cell Assemblies (CAs)

[8]. These are known to show asynchronous activity states.

Information processing in the brain is achieved through the

collective action of groups of neurons. These neurons are

constituents of various CAs, which in turn are a small set

of connected neurons that through neural firing can sustain

activation without stimulus from outside the CA [9], [10].

It has been shown that the generalized IAF models can

approximate the dynamics of classical Hodgkin-Huxley model

of squid giant axon with high accuracy [11], [12]. These

neuronal networks can exhibit potentially useful properties [9].
The robot, described in this paper, requires simulated

neurons, and thus simulation of neurons is a crucial step.

NEST is a neuron simulator that is used for simulation of large

networks of spiking model neurons [13]. It has a wide range of

neuron and synapse models and provides high-level commands

to create spatially structured networks. It works via a

Python-based interface and has support for parallel simulation.

NEST supports simulation of precisely timed spikes [14] by

combining the precision of event-driven simulators [15] with

the efficiency of grid-based simulation. A comparative study

of agents that have been implemented in simulated neurons

has advocated the development of a neurorobotics platform

capable of replacing virtual environments [16]. The neural

model that is used in the robot is the adaptive exponential

integrate-and-fire model [1].
Using physical robots abolishes the limitations of virtual

environment, but adds useful constraints for understanding

motor action. Implementation of brain-based studies into

robotics has been promising and these studies have taken a

big leap forward [17]. However, much still needs to be done

in the area of neurorobotics. To effectively program robots

with neurons requires a good understanding of the behaviour

of neurons and their psychophysiological effects.
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For humans and animals, a behaviour such as moving

an arm is a process that involves several stages including

perception, decision, action and monitoring the effects of

the performance. Cognitive neuroscience has studied these

different stages and related processes have been identified

using a range of neuroscientific techniques. For example,

by recording EEG from the scalp of the brain, movement

activity has been established. Approximately 1000 ms prior to

a movement onset, the readiness potential (RP) is observed.

This gradually increasing ERP component was widely seen as

a direct indicator of the neural decision to move [18]. However,

later it was proved that the final decision to move now might

follow up very late in the time course of RP [19]. There is

a commitment associated with the production of a movement

with the neural decision to actually move. This is taken care

by the presence of a threshold crossing of the accumulator that

underlies the decision of such response [20], a lateralization

of the pre-movement potential [18], and an abrupt increase in

excitability in primary motor cortex nearly 100 milliseconds

before the onset of the muscle flexion [21].

The stages of performing an action include several other

distinct processes. After the decision to move has been made

and the action initiated, then there is typically an input from

the action effect. A simple action such as grasping will

generate somatosensory input, which has been measured using

ERPs [22]. An action is not an isolated bottom up process, but

is driven and affect by higher order cognitive processes, such

as attention [22].

The above mentioned facts and factors form an integral part

the idea behind simulation of neurons and the use of those

neurons in performance of a neurorobotic task. The spiking

behaviour of a set of neurons can be determined for simulation

with its neuro-cognitive aspect. Hence, it can be suggested

that biological cognitive behaviour cannot be overseen when

programming and simulating neurons. The work in this paper

features the application of simulated neurons as governing

entities in the movement and simple task performance of a

robot arm.

III. METHODOLOGY

The robot platform used in the experiments described in this

paper is a Robotis Bioloid Robot. Dynamixel-12A servos are

used as motors in the robot. These Dynamixel-12A actuators

are serially controlled servos and are considered among the

most advanced actuators that are a standard in the small

scale-robotics. Speed, temperature, shaft position, voltage and

load can be tracked, thus providing a wide range if scalability

with their programming. Every 12A actuator has the capability

of being governed individually by a control algorithm.

An FSR is used to determine if the robot is grasping

something. Processing is done on a BeagleBone Black; it

integrates input from the FSRs, and sends signals to the

actuators. The BeagleBone Black has Cortex A-8 processor.

Python 2.7 is used for controlling the Dynamixel-12A

servo-motors of robot. The neurons are programmed using

PyNN 0.8 middleware [23], which invokes the NEST simulator

for neural processing. All of this processing runs on the

Beaglebone Black.

The present work is an initial form of the idea of using

neurons in robots. As neurons are known to be the basis

of cognition, using them as for all processing in robots is

a promising idea and is an area that needs further exploration

and effort.

Fig. 1 Representation of the working prototype, where the robot performs a
pick-and-place task with the neurons

Fig. 2 The grasping action initiated with the start of the FSA: When the
FSR is activated it sends feedback, the FSA changes state and the

movement of the robot arm is initiated, and is completed by placing and
releasing of the object

Neurons and their synapses are slowly varying structures,

which in-turn perform cognition. There are a wide range of

biological neural models, which range from point models to

more complex compartmental models. Simulated versions of

these neurons can be programmed by setting up connections

between them (synapses) so that the neural firing propagates

and performs the necessary computation. Simulated neural

system are Turing complete given a sufficient number neurons

[24].
As described above and shown in Fig. 1, there are two

programming platforms; Python 2.7 controls the robot; PyNN

0.8 is used to program the neurons.
The processing in the running robot is entirely neural,

though there are non-neural steps to convert sensor values to
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spike trains, and to translate spike trains to motor actions, and

then signal those actions.

The processing itself is based on a finite state automaton

(FSA) that is implemented in simulated neurons. States are

represented by simple binary (on or off) CAs. In this case, the

CA consists of five neurons that are well connected. If they

all fire, they each send activity to the other neurons, and the

state persists indefinitely.

When the system starts, spikes are sent to the initial state

so that it fires persistently. The side effect of this firing neuron

is to grasp. That is, the spikes are interpreted to activate this

actuator. As long as they fire, the actuator will run. Similarly,

a second set of five neurons fires when the FSR passes a

threshold. When this happens, in collaboration with the initial

state, there is a transition to the second state. The synapses

from the first state in collaboration with connections from the

FSR neurons are sufficient to ignite the second state’s CA. This

in turn inhibits the first state, and its neurons stop firing. As

the first state has stopped, the robot stops grasping harder. The

firing of the second state causes the left motor to lift the object.

The neuron used here is adaptive exponential integrate-and-fire

model ’if-cond-exp’ from NEST). The code can be found at

[25].

The CA is activated, which fires its neurons with the FSA.

This signals back to the motors of the robot and movement of

the robot arm is initiated. The motors come into action and

move to grasp the object.

The appropriate motor is activated so as to lift the object and

place it back at another designated location. The end-effector

releases its grip and the task is completed [cf Fig. 2].

The Bioloid Robot completed the entire pick-and-place task

efficiently. There were two CAs in the FSA that coordinated

the movement of the various dynamixel motors of the robot

and made. This work establishes that a simple task such as

pick-and-place can be governed by the programmed neurons.

It opens a window to further improve this area.

IV. RESULTS

Fig. 3 shows the firing of the neurons. The first set of five

neuron responds after 15 ms (milliseconds), which reflects the

combined membrane and the synaptic time-constants. These

spikes are driven by the forward inputs only and are quite

reliable.

Subsequent neurons fire in a similar fashion. At 50 ms,

there is a shift in the neuron population and this population

fires simultaneously till the end of the simulation time i.e. 200

ms. This shift is caused by the external (to the neural system)

activation of the middle five neurons, causing a state transition.

Note the regularity of the spiking. The model is such that it

spikes in regular 4 ms. intervals.

The neuron populations here attain a finite state of firing and

then trigger the motor of the robot for its movement. Similarly,

once the FSR returns passes the set threshold value of 0.04

Volts, the neurons that initiate the movement of the next motor

are triggered. This performs the task of picking up the defined

object and then the arm turns to the final position and the

grasped object is released. Videos of the complete movement

of robot can be viewed at the web link [25].

Fig. 3 Raster plot for the simulated neurons: Firing of five neurons occurs
after 15 ms and the next neuron population fires after 50 ms; the persistent

responses of two neuron populations are shown here

V. DISCUSSION

The robotic arm and hand, controlled by simulated neurons,

is quite simple. None the less, at a basic level, the simulated

neurons and synapses mimic the neurons and synapses in the

brain. Under a given set of conditions, a neuron overcomes its

threshold and creates a spike that is sent to the synaptically

connected neuron. All processing is done in the neurons, and

this organization is simple yet efficient.

The idea of programming a robot with simulated neurons is

based on an effort to understand and make use of a neural

network that is more effective than existing methods for

controlling robots. There is an incredible variability in the size,

shape and connectivity of neurons in the brain but this diversity

allows an individual human to do interesting things. These

neurons organize themselves, in response to the environment,

for the execution of a vast array of tasks.

There are studies of virtual robots have been driven by

simulated with neurons. Virtual neurorobotics (VNR) makes

use of cognitive control, which incorporates realistic neural

dynamics with the time constants that reflect synaptic and

neuronal activation along with established membrane and

circuit properties [26]. Such studies have certain advantages

including the ease of testing of the neurons and synapses.

As the environment is virtual, it can run at any speed

avoiding the difficulties of working on a particular hardware

structure. However, in real-time such advantages may also

pose a practical limitation. The robot architecture itself is

complex, and the neural system must respond to real time

demands. Unlike biological neurons, these simulated neural

systems can be relatively easily engineered. The approach

of engineering a robot controller in simulated neurons will

hopefully lead to better robotic systems by mimicking the

biological system. This approach may also help improve

the community’s understanding of how the human neural

system works. More and more, complex robots are functioning

in a range of domains. The state of the art in managing

complex multi-domain systems is the cognitive architecture.

For example, ACT-R [27] and Soar [28] are basic architectures

with particular programs written for performance of particular
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tasks. Different tasks can be readily supported in the same

architecture. Despite some effort in building neural cognitive

architectures (e.g. [29], [30]), these systems fall short of

symbolic cognitive architectures. Similarly, understanding of

how biological neurons generate motion is far from complete.

One way forward is to align the underlying neural behaviour

to known human neural behaviour. To this end, an experiment

where a robot, based on simulated neurons, could make a

timed decision could duplicate existing human ERP studies.

Simulated neurons can be programmed for the performance

of activities. Programming of neurons is achieved by setting up

connections between the synapses such that the neural firing

propagates and completes the required computation. Provided

there are sufficient neurons, such a system anything can be

programmed. Biological neural models can be programmed

and the intelligence emerges on the basis of the models

developed. Hence, a cognitive architecture developed from

biological neural models could viably perform a range of

real world tasks. Agents in virtual environments governed by

neurons have been targeted and made use of for some time

now. There is a need for work on actual physical robots to

both develop more effective robots, and to better understand

the biological neural processes. This paper reports an initial

work that has been done that will pave the way for further

research with physical robots and simulated neurons.

VI. CONCLUSION

This work has been carried out as a pilot study to realize

the working of a robot with simulated neurons. The movement

of a robot arm with simulated neurons takes the initial steps

required for further enhancement and improvement of the

idea. The robot arm makes the required movement for the

performance of pick-and-place task with the simulated neurons

and the feedback. This work provides a basis for further

research in this area and more complex biological neural

agents. It provides a platform for the exploration of simulated

neural systems driving physical robots.

Given a new and a higher level task the robot could

determine the demand for a higher level of cognitive neural

system. Continued development of neural robots would lead

to better robots in future with better understanding of a larger

scale of neural dynamics along with a better understanding of

the neural cognitive architectures.
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