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Abstract—In this paper, different approaches to solve the 
forward kinematics of a three DOF actuator redundant hydraulic 
parallel manipulator are presented. On the contrary to series 
manipulators, the forward kinematic map of parallel manipulators 
involves highly coupled nonlinear equations, which are almost 
impossible to solve analytically. The proposed methods are using 
neural networks identification with different structures to solve the 
problem. The accuracy of the results of each method is analyzed in 
detail and the advantages and the disadvantages of them in 
computing the forward kinematic map of the given mechanism is 
discussed in detail. It is concluded that ANFIS presents the best 
performance compared to MLP, RBF and PNN networks in this 
particular application. 
 

Keywords—Forward Kinematics, Neural Networks, Numerical 
Solution, Parallel Manipulators. 

I. INTRODUCTION 
VER the last two decades, parallel manipulators have been 
among the most considerable research topics in the field 

of robotics. These robots are now applied in real-life 
applications such as force sensing robots, fine positioning 
devices, and medical applications [1]-[2]. 

As in the case of conventional serial robots, kinematics 
analysis of parallel manipulators is also performed in two 
phases. In forward or direct kinematics the position and 
orientation of the mobile platform is determined given the leg 
lengths. This is done with respect to a base reference frame. In 
inverse kinematics we use position and orientation of the 
mobile platform to determine actuator lengths. It is known that 
unlike serial manipulators, inverse position kinematics for 
parallel robots is usually simple and straightforward. In most 
cases, joint variables (actuator displacements) may be 
computed independently using the given pose of the movable 
platform. The solution to this problem is in most cases 
uniquely determined. But forward kinematics of parallel 
manipulators is generally very complicated. Its solution usually 
involves systems of nonlinear equations which are highly 
coupled and in general have no closed form and unique 
solution. Different approaches are provided in literature to 
solve this problem either generally or in special cases. There 
are also numerous cases in which the solution to this problem 
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is provided for a special or novel architecture. In general, 
different solutions to this problem can be found using 
numerical approaches, analytical approaches, and closed form 
solution for special architectures [3]-[4]. 
In this paper, Four different types of neural networks; 
multilayer perceptron (MLP), Radial Basis Function neural 
network (RBF), polynomial neural networks (PNN) and 
adaptive-network-based fuzzy inference system (ANFIS) have 
been successfully used to solve the forward kinematics 
problem in a 3DOF actuator redundant hydraulic parallel 
manipulator, which generalizes the application of such 
networks to spatial parallel mechanisms. The performances of 
such networks are compared in detail for the above problem. 
The paper is organized as following. Section 2 contains the 
mechanism description. Kinematic modelling of the 
manipulator is discussed in section 3, where inverse and 
forward kinematics is studied and the need for appropriate 
method to solve the forward kinematics is justified. In section 
4, different methods to solve the forward kinematics problem 
are discussed; First, two different but mostly common neural 
networks, MLP and RBF, are used to estimate the forward 
kinematic map of the given mechanism. In the third method a 
polynomial neural network is provided to approximate the 
nonlinear map with required precision. Then in the forth 
experience ANFIS is applied for forward kinematics solution. 
In section 5, these methods are simulated and compared 
regarding the problem in hand in order to identify the benefits 
and drawbacks of each scheme. 

II. MECHANISM DESCRIPTION 

A three DOF actuator redundant hydraulic parallel 
manipulator is used as the basis of our study. The mechanism 
is designed by Hayward [5]-[7], borrowing design ideas from 
biological manipulators and specially the biological shoulder. 
The interesting features of the mechanism and its similarity to 
human shoulder have made it a unique design, which can 
serve as a basis for a good experimental setup for parallel 
robot research. A picture of the mechanism, which is currently 
under experimental studies in ARAS Robotics Lab, is shown 
in Fig. 1. The mobile platform is constrained to spherical 
motions. Four high performance hydraulic piston actuators are 
used to give three degrees of freedom in the mobile platform. 
Each actuator includes a position sensor of LVDT type and an 
embedded Hall Effect force sensor. Simple elements, like 
spherical and universal joints, are used in the structure.  
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Fig.1.The hydraulic shoulder manipulator in movement 

A complete analysis of such a careful design will provide us 
with good results regarding the structure itself and its 
performance. From the structural point of view, the shoulder 
mechanism which, from now on, we call it "the Hydraulic 
Shoulder" falls into an important class of robotic mechanisms 
called parallel robots. In these robots, the end effector is 
connected to the base through several closed kinematic chains. 
The motivation behind using these types of robot manipulators 
was to compensate for the shortcomings of the conventional 
serial manipulators such as low precision, low stiffness, error 
accumulation and load carrying capability. However, they 
have their own disadvantages, which are mainly smaller 
workspace and many singular configurations. The hydraulic 
shoulder, being a parallel structure, has the general features of 
these structures. It can be thought of as a shoulder for a light 
weighed seven DOF robotic arm, which can carry loads 
several times its own weight. The workspace of such a 
mechanism can be considered as part of a sphere surface. The 
orientation angles are limited to vary between 6/π−  and 6/π . 

III. KINEMATIC MODELING 

The hydraulic shoulder is kinematically over constrained. The 
inverse kinematics problem is easily solved, given the 
orientation of the mobile plate, similar to general parallel 
robots. The inverse kinematics problem has a unique solution, 
in our case, meaning that the hydraulic shoulder cannot be 
optimized by choosing between the solutions. Fig. 2 depicts a 
geometric model for the mechanism which will be used for its 
kinematics derivation. The parameters used in kinematics can 
be defined as:  

ib CAl =     1p CCl =      
1y

i1d PCl =   
1z

i1k PCl =    

 :α The angle between 4CA  and 0y  
:C Center of the reference frame 
:C1 Center of the moving plate 
:iρ Actuator lengths i=1, 2, 3, 4 
:Pi Moving endpoints of the actuators   
:Ai Fixed endpoints of the actuators 

 

 Fig. 2. A geometric model for the hydraulic shoulder  

Two coordinate frames are defined. The base frame X0Y0Z0 is 
centered at C (rotation center) with its Z0-axis perpendicular to 
the plane defined by A1A2A3A4 and an X0 axis parallel to the 
bisector of angle ∠A1CA4. The second frame, namely X1Y1Z1 
is centered at C1 (center of the moving plate) with its Z1 axis 
perpendicular to the line defined by the actuators moving end 
points (P1P2) and horizontal Y axis along C1P2.  

A. Inverse Kinematics 
In modeling the inverse kinematics of the hydraulic shoulder 
we must determine actuator lengths ( ρ i ) as the joint space 
variables given the task space variables, namely θx, θy and θz as 
the orientation angles of the moving platform. First we note 
that the fixed end points of the actuators (Ai) can be written in 
the base frame as: 
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0
1 −= , 
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0
2 −−= ,   
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Also: 
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These must be transferred to the base frame using the rotation 
matrix R0
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0
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where: 
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The rotation matrix components are computed as following: 
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The final step is to translate the resulting vectors  P0
i  by lp  

along the Z axis. Having P0
i and 0

jA  in hand, the actuator 

lengths ji AP  can be easily computed as: 

2
zz
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are defined in (6) and (1) respectively. From (7) and (8), the 
actuator lengths ( ρ i ) are exactly computable by the 
orientation angles of the moving platform, θx, θy and θz, and 
hence the inverse kinematic map is analytically computed. It is 
clear that the manipulator doesn't have any kinematic 
redundancy, meaning that reaching a specific point in the task 
space can't be satisfied through different combinations of the 
actuator lengths. 

B. Forward Kinematics 
Equations (7)–(8) can also be used for the forward kinematics 
of the hydraulic shoulder but with the actuator lengths as the 
input and orientation angles θx, θy, θz as the unknown outputs. 
In fact, we have four nonlinear equations to solve for three 
unknowns. Obviously, solving such a system of nonlinear 
equations for a unique closed-form analytic solution to the 
forward kinematic problem is very complicated, although 
three equations of the four could be used. Several 
inconclusive attempts have been made in this direction which 
failed on solving the problem. Therefore, we propose using 
numerical schemes to solve the forward kinematic problem as 
a basic element in modeling and control of the manipulator. 
This is studied in detail in the next section.  

IV. FORWARD KINEMATICS SOLUTION 

A. Multilayer perceptron network 
A simple multilayer perceptron neural network (MLP) with 
back propagation learning was used in the first step. The input 
layer has as many nodes as the number of inputs to the map, 
namely four actuator lengths. Similarly the output layer will 
have three nodes which represent the orientation of the 
moving plate ( θ,θ,θ zyx ). The number of neurons in the 
hidden layer was used as a design parameter. Sigmoid and 
linear transfer functions were selected for all hidden and 
output layer nodes respectively. Supervised learning scheme 
was used in which the manipulator is treated as a black box 
and the network is taught to learn the map by observing the 
inputs and outputs. Such a learning scheme will result in 
offline training. For producing the training data, the target 
pattern, i.e. the three orientation angles, was randomly 
generated within the workspace of the robot and the input 
pattern, i.e. four actuator displacements, was found using the 
inverse kinematics model. The pair was then used to train the 
network in a back propagation process. Random initialization 

was used for the weights. Different configurations of the MLP 
network were tested by varying the number of neurons in the 
hidden layer between 5 and 35 and the performance of these 
networks was compared.  
Different performance indices could be used in this case, the 
best of which could be the sum of square output errors, though 
other indices such as mean square or mean absolute error may 
also be used. Networks with best performance as indicated 
would be selected, from which the network with fewer hidden 
layer nodes will be better choice since the number of weights 
and also the training time of the network increase with more 
neurons in the hidden layer. As another configuration, the 
same multilayer perceptron network was used with two hidden 
layers. The activation function of the second hidden layer was 
also sigmoid. Different networks from each configuration 
were trained: 
• About 30 multilayer feed forward networks with one hidden 

layer were trained by varying the number of neurons in the 
hidden layer from 5 to 35. 

• About 20 multilayer feed forward networks with two hidden 
layers were trained by varying the number of neurons from 
10 to 25 in the first hidden layer and from 5 to 15 in the 
second hidden layer. 

All these networks were trained over 1000 training epochs 
with Bayesian regularization training. Each network was 
evaluated by comparing the predictions to the true outputs, 
resulting in a prediction error for each orientation angle. The 
autocorrelation coefficients were also computed for the 
prediction error in each angle. 

TABLE I 
PERFORMANCE OF MULTILAYER FEED FORWARD NETWORKS 

Network 
Structure 

Multilayer Feed Forward 
One Hidden Layer 

No. of Hidden 
Layer Neurons

Training 
Time 
(sec) 

MSE SSE MAE 

S=27 7.3e3 2.8e-5 0.644 0.0037 

S=29 8.2e3 2.9e-5 0.66 0.0035 

S=30 8.6e3 1.9e-5 0.428 0.0028 

S=34 1e4 1.1e-5 0.242 0.0022 

Network 
Performance 

 

S=35 1.1e4 1.1e-5 0.26 0.0022 

Network 
Structure 

Multilayer Feed Forward 
Two Hidden Layers 

No. of Hidden 
Layer Neurons

Training 
Time 
(sec) 

MSE SSE MAE 

S1=10 
S2=15 9.5e3 6.8e-6 0.154 0.0018 

S1=12 
S2=15 2.9e4 2.8e-6 0.062 0.0011 

S1=17 
S2=15 6.1e4 8.1e-7 0.018 6e-4 

S1=17 
S2=9 1e4 5.6e-6 0.12 0.0016 

Network 
Performance 

 

S1=17 
S2=12 2.3e4 1.9e-6 0.044 9e-4 

Using the whole stated criteria, five networks with best 
performance were selected from each configuration. Table (1) 
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summarizes the performance of these networks. It can be seen 
that networks with two hidden layers have a better 
performance in general. It should be also noted that the mean 
square of error is approximately equal to the square of the 
maximum error, so a mean square error of 1e-5 will 
correspond to about 0.18 degree of accuracy for the forward 
kinematics solution. All the trainings and simulations of the 
neural networks were done on a Pentium4, 2 GHz using 
MATLAB® R14 software. 

B. Radial Basis Function neural network 
Radial basis function (RBF) neural network architecture was 
tested as another choice for computing the forward kinematics 
of the hydraulic shoulder. In general, RBF networks require 
more neurons but much less training time than MLP networks.  
Input and output patterns were generated in a same procedure 
as in the multilayer feed forward network. Supervised learning 
method was used in a way to reduce the estimated error of the 
network. Other specifications such as weight initialization, 
network evaluation and performance indices were just the 
same as the multilayer feed forward network. About ten 
different configurations with different spread parameters were 
trained and compared; from which two networks with best 
performance were selected. The performance of these 
networks is shown in Table (2). From the comparison of the 
selected structures in table (1) and (2) which are highlighted in 
gray, the multilayer feed forward with two hidden layers 
provides better approximation, with a training mean square 
error of 2.8e-6, and mean absolute error of 0.0011.  

TABLE II 
PERFORMANCE OF RBF NETWORKS  

Network 
Performance 

Training 
Time (sec) MSE SSE MAE 

RBF1 750 1.3e-5 0.1 0.0019 

RBF2 680 9.9e-6 0.074 0.0017 

C. Polynomial Neural Network Estimation 
The Group Method of Data Handling (GMDH) has been 

known as one of the first approaches in design of nonlinear 
relationships. It was developed in the late 60s by Ivakhnenko 
[14] as a tool for identifying nonlinear maps by generating an 
optimal structure of the model through successive generations 
of partial descriptions (PDs) of data being regarded as 
quadratic regression polynomials with two input variables. This 
method, having a limited generic structure (quadratic 
polynomial with two variables) tends to result in very complex 
models for highly nonlinear systems as in our case. Polynomial 
Neural Networks (PNN) has been introduced in literature based 
on the paradigm of GMDH algorithm and has shown to be a 
useful data analysis technique for the identification of 
nonlinear complex systems [15]. This is a multilayered network 
with a self-organizing structure in contrast to classical 
networks with a fixed structure. In this network each node 
(processing element forming a PD) can have a different 
number of input variables or a different order of the polynomial 
(linear, quadratic, cubic, etc.) which results in a high level of 
flexibility. Its final topology is synthesized during the learning 

phase where contributing nodes are retained based on their 
performance, so the network becomes fully optimized (both 
structurally and parametrically) during learning process. Figure 
(3) shows a general structure of such a network used to identify 
the forward kinematics of the hydraulic shoulder. 

 
Fig. 3. A general structure for a polynomial neural network 

As stated, the PNN algorithm uses a class of polynomials with 
different orders. The network is initiated with just one layer. 
Additional layers are generated until the best performance of 
the extended model is reached, which results in an optimal 
structure. The output is estimated by constructing a PD for 
each pair of input variables in the first layer.The parameters of 
each of the PDs are determined by the least square method 
using given training data and comparing their output to the 
desired network output. If none of the PDs reaches the 
performance criterion (which is generally the case for highly 
nonlinear functions) a new layer is added to the network. For 
this layer, new PDs are constructed using intermediate 
variables which are the outputs of the PDs in the previous 
layer. 

The optimal coefficients of each of the PDs in this new 
layer are computed by least squares method. The operation is 
repeated until the stopping criterion has been satisfied, that is, 
the output of one of the PDs in the last layer reaches the 
desired performance. Since the number of PDs can increase 
exponentially, in each layer only PDs with better performance 
are retained to construct the next layer and other PDs are 
removed. Once the final layer has been constructed, the node 
with the best performance is selected as the output node and all 
remaining nodes in that layer are ignored. Furthermore, all the 
nodes of previous layers that do not have influence on the 
estimated output are also removed by tracing the data flow path 
of each layer. The design procedure can be summarized in the 
following steps: 

1. Determine system’s input variables. 
2. Form train and test data. 
3. Choose the structure of the PNN by selecting the 

order of the polynomial forming a PD of data. 
4. Estimate the PD coefficients. 
5. Select PD with the best predictive performance. 
6. Check the stopping criterion. Stop if it is satisfied. 
7. Determine new inputs for the next layer. 
8. Repeat steps 4-8. 
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This design procedure is applied to identify the forward 
kinematic map of the hydraulic shoulder. The input variables 
are the four actuator lengths of the manipulator as before. 
Three separate networks are used for each output angle which 
causes different network structure for each output. This ends 
to smaller structure for each output since their solutions are 
not bound to each other. A generic type of polynomial neural 
network [15] as in figure (3) was used with the number of 
layers and the number of remaining PDs in each layer as 
design variables. About 15000 inputs were randomly 
generated in the workspace. The input data was divided into 
train and test data set. Different PNN structures were selected 
based on the number of the inputs and different orders of PDs 
in each layer. The number of layers (numl) and the remaining 
PDs in each layer (rempd) were increased up to 25 and 15 
respectively. Different possible network structures were 
trained and the trained network performances were compared 
using different criteria for the prediction errors along each 
orientation angle. Table (3) summarizes the performance of 
four selected PNNs with best performance, where the types of 
the polynomials are defined as: 
Bilinear= 0 1 1 2 2c c x c x+ +  

Biquadratic=Bilinear+ 2 2
3 1 4 2 5 1 2c x c x c x x+ +  

Bicubic= Biquadratic+ 3 3 2 2
6 1 7 2 8 1 2 9 1 2c x c x c x x c x x+ + +  

Also, “Biquadratic to Bicubic” stands for the network in 
which the PDs in the first layer are Biquadratic and for the 
former layers are Bicubic.  

TABLE III 
PERFORMANCE OF POLYNOMIAL NETWORKS  

Network 
Structure Polynomial Neural Network 

Train MSE  
Type of PD 
Polynomial 

 

Training 
Time 
(sec) θx θ y θz 

BiLinear 32.828 2.7e-5 6.1e-4 1.8e-4 

Biquadratic 124.172 6.3e-8 8e-7 2.3e-7 

Bicubic 226.6 5.1e-9 2e-7 1.1e-7 

Network 
Performance 

with 
numl=10 

and 
rempd=14 

 

Biquadratic to 
Bicubic 227 2.9e-7 7.8e-7 7.3e-7 

The selected structure is again highlighted with the mean 
square error in the order of 10-7 which shows better training 
errors compared to classical neural networks. 

D. Adaptive-network-based fuzzy inference system 
Adaptive-network-based fuzzy inference system (ANFIS) is a 
feedforward adaptive neural network which implies a fuzzy 
inference system through its structure and neurons [19]. In 
adaptive network each node performs a particular function. 
The links in adaptive networks only indicate the flow 
directions of the signals between nodes, that is, no weights are 
associated with the links. The structure of the network and the 
function of each node vary in each layer and node; depending 
on the overall function which the network is to carry out. 
Feedforward adaptive network is a superset of all kinds of 

feedforward neural networks like MLP and RBF. Its nodes are 
divided to nodes which their parameters are adapted and those 
which are fixed. The adaptation rule is basically back 
propagation learning rule, although LMS is also used specially 
in the last layer.  
In this study, ANFIS is used to realize a Takagi-Sugeno (TS) 
type fuzzy inference system. If-then rules in TS fuzzy system 
are in the form: 

If x1 is A1 and … xn is An then y=a1x1+…+anxn+an+1. 
Fig. 4 shows the structure of an ANFIS for a TS fuzzy system 
with 2 input and 2 membership functions (MF) for each input. 
FIS consists of four possible rules. The first layer computes 
the membership degree of each input in its MFs. MF 
parameters in this layer may be trained using back propagation 
learning rule.  

 

Fig.4. ANFIS structure for a TS fuzzy system 

Neurons of the second layer combine their inputs by the t-
norm and represent the firing strength of the rules. In the third 
layer the normalized firing strengths are computed using the 
following relation: 

∑
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where wi is firing strength of rule i. The normalized output of 
each rule is computed in the forth layer using parameters 

njmiai
j ,...,1,,...1, ==  where m is the number of rules. i

ja ’s 
are also design parameters. Using these normalized outputs of 
each rule, inferred output of TS fuzzy system is the sum of 
them which is obtained in the last layer. 
Three separate ANFIS’s with similar structures are utilized to 
approximate the forward kinematics of the hydraulic shoulder. 
Each network has 4 inputs for the length of the legs. For each 
input, 3 bell shaped MFs are considered which are defined as: 
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where j
iAµ  is the jth MF of the ith input and a, b, c are its 

parameters. Multiplication t-norm is used in the second layer 
and the parameters of the last layer are trained using least 
squares estimation. Each network is trained by 1500 training 
data which are generated randomly in the space [-π/6, +π/6] 
radian of each outputs. The networks are trained for just 2 
epochs. Table (4) summarizes the simulation results of the 
training.  
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TABLE IV 
PERFORMANCE OF ANFIS NETWORKS  

Train MSE 
 Training Time 

(sec) θx θ y θz 

ANFIS 195 3.3e-6 5.1e-6 2.8e-6 

V. COMPARATIVE STUDIES 

A. Sample Trajectory Generation 
We consider a smooth motion specified in terms of a desired 
pose of the moving platform of the hydraulic shoulder. The 
sample trajectory is easily defined given the initial and final 
points and the time to reach the final point. Fig. 5 shows the 
sample trajectory for each orientation angle in the task space 
of the hydraulic shoulder. 
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Fig. 5. Sample Trajectory for Orientation Angles 

B. Simulations 
Figs. 6-7 show the simulation results using the trained neural 
networks of different structures. Best representatives from 
each structure of MLP and RBF selected from tables (1) and 
(2) were tested with the sample trajectory along each 
orientation angle. Figure 8 shows the simulation results for the 
best representative of polynomial neural network applied to 
follow the sample trajectory. Simulation results show that 
ANFIS represents the best approximation, Fig. 9. 
Table (5) summarizes the statistics of approximation errors, 
and the accuracies obtained by each method for the considered 
trajectory. As it is observed through this comparative study for 
the typical trajectory, the maximum approximation error 
reached by the suitable MLP and RBF structures are limited to 
0.03 radians (1.7 degrees) and 0.1 radians (5.7 degrees) error 
respectively. PNN performs better approximation, especially 
along x and y directions, by a maximum error of 0.014 radians 
(0.8 degrees). As it can be seen the performance of the ANFIS 
is clearly better than that of other neural networks, with a 
maximum error of 0.0025 radians (0.15 degrees). This is quite 
adequate for a moderate precision robot, although it may be 
yet behind required accuracy in a very precise robotic 
application.  
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Fig. 6. Tracking Performance for selected MLP 
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Fig. 7. Tracking Performance for selected RBF 
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Fig. 8. Tracking Performance for selected PNN 
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Fig. 9. Tracking Performance for ANFIS 

TABLE IV 
MEASURES OF TRACKING ERRORS (SI UNITS)  

                     Performance Index   
 
Solution Method                          

Emax SSE MSE MAE 

θx  0.054 0.124 6.1e-4 0.017 
θ y  0.045 0.056 2.8e-4 0.011 

3 Layer Feed- 
forward Neural 

Net (s=34) θz  0.03 .025 1.3e-4 0.007 

θx  0.028 0.032 1.6e-4 0.009 
θ y  0.03 0.069 3.4e-4 0.014 

4 layer FF 
Neural Net 

15s12,s 21 ==
 

θz  0.032 0.054 2.7e-4 0.012 

θx  0.018 0.019 9.9e-5 0.008 
θ y  0.017 0.016 8.3e-5 0.007 RBF Neural 

Network 
θz  0.1 0.53 0.002 0.033 

θx  0.009 0.008 4e-5 0.006 
θ y  0.001 0.021 1e-4 0.01 

PNN 
Biquadratic/Bicubic 

numl=10 
rempd=14 θz  0.014 0.017 8.6e-5 0.008 

θx  1.9e-3 2.7e-4 1.3e-6 9.3e-4
θ y  2.5e-3 5.7e-4 2.9e-6 1.6e-3ANFIS 

(3 MF for each input) 

θz  1.4e-3 6.1e-4 3.0e-6 1.3e-3

VI. CONCLUSION 
In this paper, 4 different neural networks were studied to solve 
the forward kinematics problem in a three DOF actuator 
redundant hydraulic parallel manipulator. First, Two classical 
neural networks of different structures (MLP and RBF) were 
introduced to solve the problem. Simulation results showed 
that multilayer perceptron neural networks with two hidden 
layers had a better performance compared to those with one 
hidden layer in this application. The training time for RBF 
networks was shown to be much less than MLP networks. 
Their tracking performance and estimation errors were also 
acceptable, but the weak point of such networks could be the 
big size leading to large number of neurons and weights. The 
main drawback of these classical neural networks would be 

the long training times and the big size of the networks 
resulting in much more number of weights. Alternatively, 
polynomial neural network, which were introduced based on 
the paradigm of Group Method of Data Handling, is applied to 
solve the forward kinematic problem of this spatial parallel 
manipulator. It is observed that the polynomial network has 
better performance with acceptable prediction errors for 
general robotic applications with  much less training time 
required compared to the above classical structures of neural 
networks. The best results are obtained by using ANFIS. 
ANFIS, which combines the specifications of fuzzy systems 
and neural networks, clearly outperforms the above neural 
networks. Its accuracy (around 0.15 degree) is in the range 
which is suitable for moderate precision robots. An interesting 
observation is that the speed of learning is with just 2 epochs 
for the above accuracy. 
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