
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:5, 2008

1342

Abstract—In this paper, different approaches to solve the
forward kinematics of a three DOF actuator redundant hydraulic
parallel manipulator are presented. On the contrary to series
manipulators, the forward kinematic map of parallel manipulators
involves highly coupled nonlinear equations, which are almost
impossible to solve analytically. The proposed methods are using
neural networks identification with different structures to solve the
problem. The accuracy of the results of each method is analyzed in
detail and the advantages and the disadvantages of them in
computing the forward kinematic map of the given mechanism is
discussed in detail. It is concluded that ANFIS presents the best
performance compared to MLP, RBF and PNN networks in this
particular application.

Keywords—Forward Kinematics, Neural Networks, Numerical
Solution, Parallel Manipulators.

I. INTRODUCTION
VER the last two decades, parallel manipulators have been
among the most considerable research topics in the field

of robotics. These robots are now applied in real-life
applications such as force sensing robots, fine positioning
devices, and medical applications [1]-[2].

As in the case of conventional serial robots, kinematics
analysis of parallel manipulators is also performed in two
phases. In forward or direct kinematics the position and
orientation of the mobile platform is determined given the leg
lengths. This is done with respect to a base reference frame. In
inverse kinematics we use position and orientation of the
mobile platform to determine actuator lengths. It is known that
unlike serial manipulators, inverse position kinematics for
parallel robots is usually simple and straightforward. In most
cases, joint variables (actuator displacements) may be
computed independently using the given pose of the movable
platform. The solution to this problem is in most cases
uniquely determined. But forward kinematics of parallel
manipulators is generally very complicated. Its solution usually
involves systems of nonlinear equations which are highly
coupled and in general have no closed form and unique
solution. Different approaches are provided in literature to
solve this problem either generally or in special cases. There
are also numerous cases in which the solution to this problem

 Manuscript received on March 18, 2005.
 Authors are with the K.N. Toosi University of Technology, Electrical
Engineering Department, Advanced Robotics and Automated System
(ARAS), P.O. Box 16315-1355, Tehran, IRAN. (phone: +98-21-846-8094;
fax: +98-21-846-2066; e-mail: sadjadian@alborz.kntu.ac.ir and
(Taghirad,Fatehi)@kntu.ac.ir).

is provided for a special or novel architecture. In general,
different solutions to this problem can be found using
numerical approaches, analytical approaches, and closed form
solution for special architectures [3]-[4].
In this paper, Four different types of neural networks;
multilayer perceptron (MLP), Radial Basis Function neural
network (RBF), polynomial neural networks (PNN) and
adaptive-network-based fuzzy inference system (ANFIS) have
been successfully used to solve the forward kinematics
problem in a 3DOF actuator redundant hydraulic parallel
manipulator, which generalizes the application of such
networks to spatial parallel mechanisms. The performances of
such networks are compared in detail for the above problem.
The paper is organized as following. Section 2 contains the
mechanism description. Kinematic modelling of the
manipulator is discussed in section 3, where inverse and
forward kinematics is studied and the need for appropriate
method to solve the forward kinematics is justified. In section
4, different methods to solve the forward kinematics problem
are discussed; First, two different but mostly common neural
networks, MLP and RBF, are used to estimate the forward
kinematic map of the given mechanism. In the third method a
polynomial neural network is provided to approximate the
nonlinear map with required precision. Then in the forth
experience ANFIS is applied for forward kinematics solution.
In section 5, these methods are simulated and compared
regarding the problem in hand in order to identify the benefits
and drawbacks of each scheme.

II. MECHANISM DESCRIPTION

A three DOF actuator redundant hydraulic parallel
manipulator is used as the basis of our study. The mechanism
is designed by Hayward [5]-[7], borrowing design ideas from
biological manipulators and specially the biological shoulder.
The interesting features of the mechanism and its similarity to
human shoulder have made it a unique design, which can
serve as a basis for a good experimental setup for parallel
robot research. A picture of the mechanism, which is currently
under experimental studies in ARAS Robotics Lab, is shown
in Fig. 1. The mobile platform is constrained to spherical
motions. Four high performance hydraulic piston actuators are
used to give three degrees of freedom in the mobile platform.
Each actuator includes a position sensor of LVDT type and an
embedded Hall Effect force sensor. Simple elements, like
spherical and universal joints, are used in the structure.

 H. Sadjadian , H.D. Taghirad Member, IEEE and A. Fatehi

Neural Networks Approaches for Computing
the Forward Kinematics of a Redundant Parallel

Manipulator

O

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:5, 2008

1343

Fig.1.The hydraulic shoulder manipulator in movement

A complete analysis of such a careful design will provide us
with good results regarding the structure itself and its
performance. From the structural point of view, the shoulder
mechanism which, from now on, we call it "the Hydraulic
Shoulder" falls into an important class of robotic mechanisms
called parallel robots. In these robots, the end effector is
connected to the base through several closed kinematic chains.
The motivation behind using these types of robot manipulators
was to compensate for the shortcomings of the conventional
serial manipulators such as low precision, low stiffness, error
accumulation and load carrying capability. However, they
have their own disadvantages, which are mainly smaller
workspace and many singular configurations. The hydraulic
shoulder, being a parallel structure, has the general features of
these structures. It can be thought of as a shoulder for a light
weighed seven DOF robotic arm, which can carry loads
several times its own weight. The workspace of such a
mechanism can be considered as part of a sphere surface. The
orientation angles are limited to vary between 6/π− and 6/π .

III. KINEMATIC MODELING

The hydraulic shoulder is kinematically over constrained. The
inverse kinematics problem is easily solved, given the
orientation of the mobile plate, similar to general parallel
robots. The inverse kinematics problem has a unique solution,
in our case, meaning that the hydraulic shoulder cannot be
optimized by choosing between the solutions. Fig. 2 depicts a
geometric model for the mechanism which will be used for its
kinematics derivation. The parameters used in kinematics can
be defined as:

ib CAl = 1p CCl =
1y

i1d PCl =
1z

i1k PCl =

 :α The angle between 4CA and 0y
:C Center of the reference frame
:C1 Center of the moving plate
:iρ Actuator lengths i=1, 2, 3, 4
:Pi Moving endpoints of the actuators
:Ai Fixed endpoints of the actuators

 Fig. 2. A geometric model for the hydraulic shoulder

Two coordinate frames are defined. The base frame X0Y0Z0 is
centered at C (rotation center) with its Z0-axis perpendicular to
the plane defined by A1A2A3A4 and an X0 axis parallel to the
bisector of angle ∠A1CA4. The second frame, namely X1Y1Z1
is centered at C1 (center of the moving plate) with its Z1 axis
perpendicular to the line defined by the actuators moving end
points (P1P2) and horizontal Y axis along C1P2.

A. Inverse Kinematics
In modeling the inverse kinematics of the hydraulic shoulder
we must determine actuator lengths (ρ i) as the joint space
variables given the task space variables, namely θx, θy and θz as
the orientation angles of the moving platform. First we note
that the fixed end points of the actuators (Ai) can be written in
the base frame as:

()0cosαlsinαlA bb
0
1 −= ,

()0cosαlsinαlA bb
0
2 −−= ,

()0cosαlsinαlA bb
0
3 −= ,

()0
4 b b sinα cosα 0A l l= ,

(1)

Also:
()ll0P kd

1
1 −−= , ()ll0P kd

1
2 −= , (2)

These must be transferred to the base frame using the rotation
matrix R0

1 ;
PR P 1

i
0
1

0
i = , (3)

where:
)(θ)R(θ)R(θRRS xxyyzz

0
133 ==× (4)

The rotation matrix components are computed as following:
11 z y

21 z y

31 y

12 z y x z x

22 z y x z x

32 y x

13 z y x z x

23 z

S cos(θ)cos(θ)

S sin(θ)cos(θ)

S sin(θ)

S cos(θ)sin(θ)sin(θ) sin(θ)cos(θ)

S sin(θ)sin(θ)sin(θ) cos(θ)cos(θ)

S cos(θ)sin(θ)

S cos(θ)sin(θ)cos(θ) sin(θ)sin(θ)

S sin(θ)sin

=

=

= −

= −

= +

=

= +

= y x z x

33 y x

(θ)cos(θ) cos(θ)sin(θ)

S cos(θ)cos(θ)

−

=

 (5)

So we have:

1ρ

2ρ
3ρ

4ρ

C

1C

1A

2A
3A

4A

1P 2P

dl

kl

0X

1X

α

0Y

1Y

0Z

1Z

bl

pl

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:5, 2008

1344

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
−−
−−

=

3332

2322

1312
0
1p

slsl
slsl
slsl

kd

kd

kd

,
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−

=

3332

2322

1312
0
2p

slsl
slsl
slsl

kd

kd

kd

 (6)

The final step is to translate the resulting vectors P0
i by lp

along the Z axis. Having P0
i and 0

jA in hand, the actuator

lengths ji AP can be easily computed as:

2
zz

2
yy

2
xxj)a(p)a(p)a(pρ −+−+−= , (7)

where:
],aaa[A ,]ppp[p zyx

0
j

T
zyx

0
i == (8)

are defined in (6) and (1) respectively. From (7) and (8), the
actuator lengths (ρ i) are exactly computable by the
orientation angles of the moving platform, θx, θy and θz, and
hence the inverse kinematic map is analytically computed. It is
clear that the manipulator doesn't have any kinematic
redundancy, meaning that reaching a specific point in the task
space can't be satisfied through different combinations of the
actuator lengths.

B. Forward Kinematics
Equations (7)–(8) can also be used for the forward kinematics
of the hydraulic shoulder but with the actuator lengths as the
input and orientation angles θx, θy, θz as the unknown outputs.
In fact, we have four nonlinear equations to solve for three
unknowns. Obviously, solving such a system of nonlinear
equations for a unique closed-form analytic solution to the
forward kinematic problem is very complicated, although
three equations of the four could be used. Several
inconclusive attempts have been made in this direction which
failed on solving the problem. Therefore, we propose using
numerical schemes to solve the forward kinematic problem as
a basic element in modeling and control of the manipulator.
This is studied in detail in the next section.

IV. FORWARD KINEMATICS SOLUTION

A. Multilayer perceptron network
A simple multilayer perceptron neural network (MLP) with
back propagation learning was used in the first step. The input
layer has as many nodes as the number of inputs to the map,
namely four actuator lengths. Similarly the output layer will
have three nodes which represent the orientation of the
moving plate (θ,θ,θ zyx). The number of neurons in the
hidden layer was used as a design parameter. Sigmoid and
linear transfer functions were selected for all hidden and
output layer nodes respectively. Supervised learning scheme
was used in which the manipulator is treated as a black box
and the network is taught to learn the map by observing the
inputs and outputs. Such a learning scheme will result in
offline training. For producing the training data, the target
pattern, i.e. the three orientation angles, was randomly
generated within the workspace of the robot and the input
pattern, i.e. four actuator displacements, was found using the
inverse kinematics model. The pair was then used to train the
network in a back propagation process. Random initialization

was used for the weights. Different configurations of the MLP
network were tested by varying the number of neurons in the
hidden layer between 5 and 35 and the performance of these
networks was compared.
Different performance indices could be used in this case, the
best of which could be the sum of square output errors, though
other indices such as mean square or mean absolute error may
also be used. Networks with best performance as indicated
would be selected, from which the network with fewer hidden
layer nodes will be better choice since the number of weights
and also the training time of the network increase with more
neurons in the hidden layer. As another configuration, the
same multilayer perceptron network was used with two hidden
layers. The activation function of the second hidden layer was
also sigmoid. Different networks from each configuration
were trained:
• About 30 multilayer feed forward networks with one hidden

layer were trained by varying the number of neurons in the
hidden layer from 5 to 35.

• About 20 multilayer feed forward networks with two hidden
layers were trained by varying the number of neurons from
10 to 25 in the first hidden layer and from 5 to 15 in the
second hidden layer.

All these networks were trained over 1000 training epochs
with Bayesian regularization training. Each network was
evaluated by comparing the predictions to the true outputs,
resulting in a prediction error for each orientation angle. The
autocorrelation coefficients were also computed for the
prediction error in each angle.

TABLE I
PERFORMANCE OF MULTILAYER FEED FORWARD NETWORKS

Network
Structure

Multilayer Feed Forward
One Hidden Layer

No. of Hidden
Layer Neurons

Training
Time
(sec)

MSE SSE MAE

S=27 7.3e3 2.8e-5 0.644 0.0037

S=29 8.2e3 2.9e-5 0.66 0.0035

S=30 8.6e3 1.9e-5 0.428 0.0028

S=34 1e4 1.1e-5 0.242 0.0022

Network
Performance

S=35 1.1e4 1.1e-5 0.26 0.0022

Network
Structure

Multilayer Feed Forward
Two Hidden Layers

No. of Hidden
Layer Neurons

Training
Time
(sec)

MSE SSE MAE

S1=10
S2=15 9.5e3 6.8e-6 0.154 0.0018

S1=12
S2=15 2.9e4 2.8e-6 0.062 0.0011

S1=17
S2=15 6.1e4 8.1e-7 0.018 6e-4

S1=17
S2=9 1e4 5.6e-6 0.12 0.0016

Network
Performance

S1=17
S2=12 2.3e4 1.9e-6 0.044 9e-4

Using the whole stated criteria, five networks with best
performance were selected from each configuration. Table (1)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:5, 2008

1345

summarizes the performance of these networks. It can be seen
that networks with two hidden layers have a better
performance in general. It should be also noted that the mean
square of error is approximately equal to the square of the
maximum error, so a mean square error of 1e-5 will
correspond to about 0.18 degree of accuracy for the forward
kinematics solution. All the trainings and simulations of the
neural networks were done on a Pentium4, 2 GHz using
MATLAB® R14 software.

B. Radial Basis Function neural network
Radial basis function (RBF) neural network architecture was
tested as another choice for computing the forward kinematics
of the hydraulic shoulder. In general, RBF networks require
more neurons but much less training time than MLP networks.
Input and output patterns were generated in a same procedure
as in the multilayer feed forward network. Supervised learning
method was used in a way to reduce the estimated error of the
network. Other specifications such as weight initialization,
network evaluation and performance indices were just the
same as the multilayer feed forward network. About ten
different configurations with different spread parameters were
trained and compared; from which two networks with best
performance were selected. The performance of these
networks is shown in Table (2). From the comparison of the
selected structures in table (1) and (2) which are highlighted in
gray, the multilayer feed forward with two hidden layers
provides better approximation, with a training mean square
error of 2.8e-6, and mean absolute error of 0.0011.

TABLE II
PERFORMANCE OF RBF NETWORKS

Network
Performance

Training
Time (sec) MSE SSE MAE

RBF1 750 1.3e-5 0.1 0.0019

RBF2 680 9.9e-6 0.074 0.0017

C. Polynomial Neural Network Estimation
The Group Method of Data Handling (GMDH) has been

known as one of the first approaches in design of nonlinear
relationships. It was developed in the late 60s by Ivakhnenko
[14] as a tool for identifying nonlinear maps by generating an
optimal structure of the model through successive generations
of partial descriptions (PDs) of data being regarded as
quadratic regression polynomials with two input variables. This
method, having a limited generic structure (quadratic
polynomial with two variables) tends to result in very complex
models for highly nonlinear systems as in our case. Polynomial
Neural Networks (PNN) has been introduced in literature based
on the paradigm of GMDH algorithm and has shown to be a
useful data analysis technique for the identification of
nonlinear complex systems [15]. This is a multilayered network
with a self-organizing structure in contrast to classical
networks with a fixed structure. In this network each node
(processing element forming a PD) can have a different
number of input variables or a different order of the polynomial
(linear, quadratic, cubic, etc.) which results in a high level of
flexibility. Its final topology is synthesized during the learning

phase where contributing nodes are retained based on their
performance, so the network becomes fully optimized (both
structurally and parametrically) during learning process. Figure
(3) shows a general structure of such a network used to identify
the forward kinematics of the hydraulic shoulder.

Fig. 3. A general structure for a polynomial neural network

As stated, the PNN algorithm uses a class of polynomials with
different orders. The network is initiated with just one layer.
Additional layers are generated until the best performance of
the extended model is reached, which results in an optimal
structure. The output is estimated by constructing a PD for
each pair of input variables in the first layer.The parameters of
each of the PDs are determined by the least square method
using given training data and comparing their output to the
desired network output. If none of the PDs reaches the
performance criterion (which is generally the case for highly
nonlinear functions) a new layer is added to the network. For
this layer, new PDs are constructed using intermediate
variables which are the outputs of the PDs in the previous
layer.

The optimal coefficients of each of the PDs in this new
layer are computed by least squares method. The operation is
repeated until the stopping criterion has been satisfied, that is,
the output of one of the PDs in the last layer reaches the
desired performance. Since the number of PDs can increase
exponentially, in each layer only PDs with better performance
are retained to construct the next layer and other PDs are
removed. Once the final layer has been constructed, the node
with the best performance is selected as the output node and all
remaining nodes in that layer are ignored. Furthermore, all the
nodes of previous layers that do not have influence on the
estimated output are also removed by tracing the data flow path
of each layer. The design procedure can be summarized in the
following steps:

1. Determine system’s input variables.
2. Form train and test data.
3. Choose the structure of the PNN by selecting the

order of the polynomial forming a PD of data.
4. Estimate the PD coefficients.
5. Select PD with the best predictive performance.
6. Check the stopping criterion. Stop if it is satisfied.
7. Determine new inputs for the next layer.
8. Repeat steps 4-8.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:5, 2008

1346

This design procedure is applied to identify the forward
kinematic map of the hydraulic shoulder. The input variables
are the four actuator lengths of the manipulator as before.
Three separate networks are used for each output angle which
causes different network structure for each output. This ends
to smaller structure for each output since their solutions are
not bound to each other. A generic type of polynomial neural
network [15] as in figure (3) was used with the number of
layers and the number of remaining PDs in each layer as
design variables. About 15000 inputs were randomly
generated in the workspace. The input data was divided into
train and test data set. Different PNN structures were selected
based on the number of the inputs and different orders of PDs
in each layer. The number of layers (numl) and the remaining
PDs in each layer (rempd) were increased up to 25 and 15
respectively. Different possible network structures were
trained and the trained network performances were compared
using different criteria for the prediction errors along each
orientation angle. Table (3) summarizes the performance of
four selected PNNs with best performance, where the types of
the polynomials are defined as:
Bilinear= 0 1 1 2 2c c x c x+ +

Biquadratic=Bilinear+ 2 2
3 1 4 2 5 1 2c x c x c x x+ +

Bicubic= Biquadratic+ 3 3 2 2
6 1 7 2 8 1 2 9 1 2c x c x c x x c x x+ + +

Also, “Biquadratic to Bicubic” stands for the network in
which the PDs in the first layer are Biquadratic and for the
former layers are Bicubic.

TABLE III
PERFORMANCE OF POLYNOMIAL NETWORKS

Network
Structure Polynomial Neural Network

Train MSE
Type of PD
Polynomial

Training
Time
(sec) θx θ y θz

BiLinear 32.828 2.7e-5 6.1e-4 1.8e-4

Biquadratic 124.172 6.3e-8 8e-7 2.3e-7

Bicubic 226.6 5.1e-9 2e-7 1.1e-7

Network
Performance

with
numl=10

and
rempd=14

Biquadratic to
Bicubic 227 2.9e-7 7.8e-7 7.3e-7

The selected structure is again highlighted with the mean
square error in the order of 10-7 which shows better training
errors compared to classical neural networks.

D. Adaptive-network-based fuzzy inference system
Adaptive-network-based fuzzy inference system (ANFIS) is a
feedforward adaptive neural network which implies a fuzzy
inference system through its structure and neurons [19]. In
adaptive network each node performs a particular function.
The links in adaptive networks only indicate the flow
directions of the signals between nodes, that is, no weights are
associated with the links. The structure of the network and the
function of each node vary in each layer and node; depending
on the overall function which the network is to carry out.
Feedforward adaptive network is a superset of all kinds of

feedforward neural networks like MLP and RBF. Its nodes are
divided to nodes which their parameters are adapted and those
which are fixed. The adaptation rule is basically back
propagation learning rule, although LMS is also used specially
in the last layer.
In this study, ANFIS is used to realize a Takagi-Sugeno (TS)
type fuzzy inference system. If-then rules in TS fuzzy system
are in the form:

If x1 is A1 and … xn is An then y=a1x1+…+anxn+an+1.
Fig. 4 shows the structure of an ANFIS for a TS fuzzy system
with 2 input and 2 membership functions (MF) for each input.
FIS consists of four possible rules. The first layer computes
the membership degree of each input in its MFs. MF
parameters in this layer may be trained using back propagation
learning rule.

Fig.4. ANFIS structure for a TS fuzzy system

Neurons of the second layer combine their inputs by the t-
norm and represent the firing strength of the rules. In the third
layer the normalized firing strengths are computed using the
following relation:

∑
=

j
j

i
i w

ww (9)

where wi is firing strength of rule i. The normalized output of
each rule is computed in the forth layer using parameters

njmiai
j ,...,1,,...1, == where m is the number of rules. i

ja ’s
are also design parameters. Using these normalized outputs of
each rule, inferred output of TS fuzzy system is the sum of
them which is obtained in the last layer.
Three separate ANFIS’s with similar structures are utilized to
approximate the forward kinematics of the hydraulic shoulder.
Each network has 4 inputs for the length of the legs. For each
input, 3 bell shaped MFs are considered which are defined as:

3,...1,,...,1,

1

1)(2 ==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+

= jni

b
a

cx
x

j
ij

i

j
ii

iA j
i

µ
(10)

where j
iAµ is the jth MF of the ith input and a, b, c are its

parameters. Multiplication t-norm is used in the second layer
and the parameters of the last layer are trained using least
squares estimation. Each network is trained by 1500 training
data which are generated randomly in the space [-π/6, +π/6]
radian of each outputs. The networks are trained for just 2
epochs. Table (4) summarizes the simulation results of the
training.

x

f

22 fw

11 fw

2w

1w

2w

1w

y

x y

A2

Layer 3

Π

Σ

Layer 1
Layer 2

x y

Layer 4

Layer 5 A1

B1

B2

N

NΠ

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:5, 2008

1347

TABLE IV
PERFORMANCE OF ANFIS NETWORKS

Train MSE
 Training Time

(sec) θx θ y θz

ANFIS 195 3.3e-6 5.1e-6 2.8e-6

V. COMPARATIVE STUDIES

A. Sample Trajectory Generation
We consider a smooth motion specified in terms of a desired
pose of the moving platform of the hydraulic shoulder. The
sample trajectory is easily defined given the initial and final
points and the time to reach the final point. Fig. 5 shows the
sample trajectory for each orientation angle in the task space
of the hydraulic shoulder.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

t(sec)

Th
et

a(
ra

d)

Desired Task Space Trajectories

Thetax
Thetay
Thetaz

Fig. 5. Sample Trajectory for Orientation Angles

B. Simulations
Figs. 6-7 show the simulation results using the trained neural
networks of different structures. Best representatives from
each structure of MLP and RBF selected from tables (1) and
(2) were tested with the sample trajectory along each
orientation angle. Figure 8 shows the simulation results for the
best representative of polynomial neural network applied to
follow the sample trajectory. Simulation results show that
ANFIS represents the best approximation, Fig. 9.
Table (5) summarizes the statistics of approximation errors,
and the accuracies obtained by each method for the considered
trajectory. As it is observed through this comparative study for
the typical trajectory, the maximum approximation error
reached by the suitable MLP and RBF structures are limited to
0.03 radians (1.7 degrees) and 0.1 radians (5.7 degrees) error
respectively. PNN performs better approximation, especially
along x and y directions, by a maximum error of 0.014 radians
(0.8 degrees). As it can be seen the performance of the ANFIS
is clearly better than that of other neural networks, with a
maximum error of 0.0025 radians (0.15 degrees). This is quite
adequate for a moderate precision robot, although it may be
yet behind required accuracy in a very precise robotic
application.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4
Sample Trajectory Tracking-4 Layer NN(Two Hidden Layers)- S1=17,S2=12

Desired
Estimated

Fig. 6. Tracking Performance for selected MLP

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4
Sample Trajectory Tracking-Radial Basis Function Network

Desired
Estimated

Fig. 7. Tracking Performance for selected RBF

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
Sample Trajectory Tracking - PNN - biquadraticto bicubic

Fig. 8. Tracking Performance for selected PNN

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:5, 2008

1348

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
Sample Trajectory Tracking for ANFIS

t

Tethax
Tethay
Tethaz

Fig. 9. Tracking Performance for ANFIS

TABLE IV
MEASURES OF TRACKING ERRORS (SI UNITS)

 Performance Index

Solution Method

Emax SSE MSE MAE

θx 0.054 0.124 6.1e-4 0.017
θ y 0.045 0.056 2.8e-4 0.011

3 Layer Feed-
forward Neural

Net (s=34) θz 0.03 .025 1.3e-4 0.007

θx 0.028 0.032 1.6e-4 0.009
θ y 0.03 0.069 3.4e-4 0.014

4 layer FF
Neural Net

15s12,s 21 ==

θz 0.032 0.054 2.7e-4 0.012

θx 0.018 0.019 9.9e-5 0.008
θ y 0.017 0.016 8.3e-5 0.007 RBF Neural

Network
θz 0.1 0.53 0.002 0.033

θx 0.009 0.008 4e-5 0.006
θ y 0.001 0.021 1e-4 0.01

PNN
Biquadratic/Bicubic

numl=10
rempd=14 θz 0.014 0.017 8.6e-5 0.008

θx 1.9e-3 2.7e-4 1.3e-6 9.3e-4
θ y 2.5e-3 5.7e-4 2.9e-6 1.6e-3ANFIS

(3 MF for each input)

θz 1.4e-3 6.1e-4 3.0e-6 1.3e-3

VI. CONCLUSION
In this paper, 4 different neural networks were studied to solve
the forward kinematics problem in a three DOF actuator
redundant hydraulic parallel manipulator. First, Two classical
neural networks of different structures (MLP and RBF) were
introduced to solve the problem. Simulation results showed
that multilayer perceptron neural networks with two hidden
layers had a better performance compared to those with one
hidden layer in this application. The training time for RBF
networks was shown to be much less than MLP networks.
Their tracking performance and estimation errors were also
acceptable, but the weak point of such networks could be the
big size leading to large number of neurons and weights. The
main drawback of these classical neural networks would be

the long training times and the big size of the networks
resulting in much more number of weights. Alternatively,
polynomial neural network, which were introduced based on
the paradigm of Group Method of Data Handling, is applied to
solve the forward kinematic problem of this spatial parallel
manipulator. It is observed that the polynomial network has
better performance with acceptable prediction errors for
general robotic applications with much less training time
required compared to the above classical structures of neural
networks. The best results are obtained by using ANFIS.
ANFIS, which combines the specifications of fuzzy systems
and neural networks, clearly outperforms the above neural
networks. Its accuracy (around 0.15 degree) is in the range
which is suitable for moderate precision robots. An interesting
observation is that the speed of learning is with just 2 epochs
for the above accuracy.

REFERENCES
[1] J.P. Merlet, Still a long way to go on the road for parallel

mechanisms, ASME 2002 DETC Conference, Montreal, Canada,
2002. Available: http://www-sop.inria.fr.

[2] J.P. Merlet, Parallel Robots: Open problems, In 9th Int'l. Symp. of
Robotics Research, Snowbird, 9-12 October 1999. Available:
http://www-sop.inria.fr.

[3] O.Didrit, M.Petitot and E.Walter, Guaranteed solution of direct
kinematic problems for general configurations of parallel
manipulators, IEEE Trans. On Robotics & Automation, April 1998,
259-266.

[4] B. Dasgupta, T.S. Mruthyunjaya, The Stewart platform manipulator:
a review, Elsevier Science, Mechanism & Machine theory,2000,15-
40.

[5] Hayward, V.: “Design of a hydraulic robot shoulder based on a
combinatorial mechanism” Experimental Robotics III: The 3rd Int'l
Symposium, Japan Oct. 1994. Lecture Notes in Control &
Information Sciences, Springer-Verlag, 297-310.

[6] Hayward, V.: “Borrowing some design ideas from biological
manipulators to design an artificial one” in Robots and Biological
System, NATO Series, Springer-Verlag, 1993, 135-148.

[7] Hayward, V. and Kurtz, R.: Modeling of a parallel wrist mechanism
with actuator redundancy, Int'l. J. Laboratory Robotics and
Automation, VCH Publishers, Vol. 4, No. 2.1992, 69-76.

[8] Z.Geng and L.Haynes, Neural network solution for the forward
kinematics problem of a Stewart platform, Proc. Of the 1991 IEEE
Int'l Conf. on Robotics & Automation, California, April 1991, 2650-
2655.

[9] C.S.Yee and Kah-bin Lim, Forward kinematics solution of Stewart
platform using neural networks, Elsevier Science, Neurocomputing
16, 1997, 333-349.

[10] Nguyen, L., Patel, R.V. and Khorasani, K.: Neural Network
Architectures for the forward kinematics problem in robotics. In
Proc. of the Joint IEEE International Conference on Neural
Networks, San Diego, 1990, 393-399.

[11] D.Wang and A.Zilouchian, Solutions of kinematics of robot
manipulators using a kohonen self organizing neural network, Proc.
Of the 1997 IEEE Int'l Symp. on intelligent control, Turkey, July
1997, 251-255.

[12] L.H.Sang and M.C.Han, The Estimation for forward kinematic
solution of Stewart platform using the neural network, Proc. Of the
1999 IEEE/RSJ Int'l Conf. on Intelligent Robots & Systems, 1999,
501-506.

[13] Lee, S. and Kil, R.M.: Robot kinematic control based on
bidirectional mapping neural network. ,” in Proc. IJCNN, San Diego,
CA, Vol. 3, 1990, 327–335.

[14] Ivakhnenko AG. Polynomial theory of complex systems. IEEE
Trans. Systems, Man, Cybernetics, 1971, SMC-1, 364-378.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:5, 2008

1349

[15] S.K. Oh, W. Pedrycz, B.J. Park, Polynomial neural networks
architecture: analysis & design, Information Sciences 141, 2002,
237-258.

[16] C.Y. Tsai, An iterative feature reduction algorithm for probabilistic
neural networks, the International Journal of Management Science,
Omega 28, 2000, 513-524.

[17] C.L. Philip chen and A.D. Mc Aulary, Robot kinematics Learning
computatons using polynomial neural networks, proceeding of the
1991 IEEE International conference on Robotics and Automation,
1991, 2638-2643.

[18] R. Boudreau, S. Darenfed, On the computation of the Direct
kinematics of parallel Maniputators using polynomial networks,
IEEE transactions on systems, man and cybernetics, Vol. 28, No. 2,
March 1998, 213-220.

[19] J.R. Jang, “ANFIS: Adaptive-network-based fuzzy inference
system,” IEEE Transaction on systems, man and cybernetics, Vol.
23, No. 3, May/June 1993, 665-685.

Hooman Sadjadian received his B.Sc. degree in
electrical engineering from Tehran University, Tehran,
Iran, in 1995, his M.Eng in electrical engineering in
1999, from Iran University of Science and
Technology, Tehran, Iran. He is currently a Ph.D.
student with the Electrical Engineering Department, at
K.N. Toosi University of Technology, Tehran, Iran.
His research interest are Dynamics and Control of
Parallel manipulators.

Hamid D. Taghirad received his B.Sc. degree in
mechanical engineering from Sharif University of
Technology, Tehran, Iran, in 1989, his M.Eng in
mechanical engineering in 1993, and his Ph.D. in
electrical engineering in 1997, both from McGill
University, Montreal, Canada. He is currently an
Assistant Professor with the Electrical Engineering
Department, and the Director of the control group and
the Advanced Robotics and Automated System, ARAS

research center at K.N. Toosi University of Technology, Tehran, Iran. He
becomes a member of IEEE in 1995. His publications include two books, and
more than 70 papers in international Journals and conference proceeding, and
his research interest are robust and nonlinear control applied on the robotic
systems.

Alireza Fatehi received the B.S. degree in Electronics
Engineering from the Isfahan University of
Technology, in 1990, the M.S. degree in Control
Engineering from Tehran University, Tehran, Iran, in
1995 and Ph.D. degree in Control Engineering from
Tohoku University, Sendai, Japan, in 2001. He is
currently an assistant professor of control engineering
in Control Department of K.N. Toosi University of
Technology and the head of Advance Automation

and Digital Control Lab. His research interests include process control,
intelligent control systems, industrial automation and multiple control
systems.

