Neighbors of Indefinite Binary Quadratic Forms

Ahmet Tekcan

and

Abstract—In this paper, we derive some algebraic identities on right and left neighbors R(F) and L(F) of an indefinite binary quadratic form $F = F(x, y) = ax^2 + bxy + cy^2$ of discriminant $\Delta = b^2 - 4ac$. We prove that the proper cycle of F can be given by using its consecutive left neighbors. Also we construct a connection between right and left neighbors of F.

Keywords—Quadratic form, indefinite form, cycle, proper cycle, right neighbor, left neighbor.

I. PRELIMINARIES.

A real binary quadratic form F is a polynomial in two variables x and y of the type

$$F = F(x, y) = ax^{2} + bxy + cy^{2}$$
 (1)

with real coefficients a, b, c. We denote it by F = (a, b, c). The discriminant of F is defined by the formula $b^2 - 4ac$ and is denoted by $\Delta = \Delta(F)$. F is an integral form if and only if $a, b, c \in Z$, and is called indefinite if and only if $\Delta(F) > 0$. An indefinite form F = (a, b, c) of discriminant Δ is said to be reduced if

$$\left|\sqrt{\Delta} - 2|a|\right| < b < \sqrt{\Delta}.\tag{2}$$

Most properties of quadratic forms can be giving by the aid of extended modular group $\overline{\Gamma}$ (see [5]). Gauss (1777-1855) defined the group action of $\overline{\Gamma}$ on the set of forms as follows:

$$gF(x,y) = (ar^{2} + brs + cs^{2}) x^{2} + (2art + bru + bts + 2csu) xy \quad (3) + (at^{2} + btu + cu^{2}) y^{2}$$

for $g = \begin{pmatrix} r & s \\ t & u \end{pmatrix} \in \overline{\Gamma}$. Hence two forms F and G are called equivalent if and only if there exists a $g \in \overline{\Gamma}$ such that gF = G. If det g = 1, then F and G are called properly equivalent, and if det g = -1, then F and G are called improperly equivalent. If a form F is improperly equivalent to itself, then it called ambiguous.

Let $\rho(F)$ denotes the normalization (it means that replacing F by its normalization) of (c, -b, a). To be more explicit, we set

$$\rho^{i}(F) = (c, -b + 2cr_{i}, cr_{i}^{2} - br_{i} + a),$$
(4)

where

$$r_{i} = r_{i}(F) = \begin{cases} sign(c) \left\lfloor \frac{b}{2|c|} \right\rfloor & for \ |c| \ge \sqrt{\Delta} \\ \\ sign(c) \left\lfloor \frac{b+\sqrt{\Delta}}{2|c|} \right\rfloor & for \ |c| < \sqrt{\Delta} \end{cases}$$
(5)

Ahmet Tekcan is with the Uludag University, Department of Mathematics, Faculty of Science, Bursa-TURKEY, email: tekcan@uludag.edu.tr, http://matematik.uludag.edu.tr/AhmetTekcan.htm. for $i \geq 0$. Then the number r_i is called the reducing number and the form $\rho^i(F)$ is called the reduction of F. Further, if Fis reduced, then so is $\rho^i(F)$ by (2). In fact, ρ^i is a permutation of the set of all reduced indefinite forms.

Now consider the following transformations

$$\chi(F) = \chi(a, b, c) = (-c, b, -a)$$

$$\tau(F) = \tau(a, b, c) = (-a, b, -c)$$

If $\chi(F) = F$, that is, F = (a, b, -a), then F is called symmetric. The cycle of F is the sequence $((\tau \rho)^i(G))$ for $i \in \mathbb{Z}$, where G = (A, B, C) is a reduced form with A > 0which is equivalent to F. The cycle and proper cycle of Fcan be given by the following theorem.

Theorem 1.1: Let F = (a, b, c) be a reduced indefinite quadratic form of discriminant Δ . Then the cycle of F is a sequence $F_0 \sim F_1 \sim F_2 \sim \cdots \sim F_{l-1}$ of length l, where $F_0 = F = (a_0, b_0, c_0)$,

$$s_i = |s(F_i)| = \left\lfloor \frac{b_i + \sqrt{\Delta}}{2|c_i|} \right\rfloor$$

$$F_{i+1} = (a_{i+1}, b_{i+1}, c_{i+1})$$

= $(|c_i|, -b_i + 2s_i|c_i|, -(a_i + b_i s_i + c_i s_i^2))$

for $1 \le i \le l - 2$. If l is odd, then the proper cycle of F is

$$F_0 \sim \tau(F_1) \sim F_2 \sim \tau(F_3) \sim \cdots \sim \tau(F_{l-2}) \sim F_{l-1} \sim \tau(F_0) \sim F_1 \sim \tau(F_2) \sim \cdots \sim F_{l-2} \sim \tau(F_{l-1})$$

of length 2l and if l is even, then the proper cycle of F is

$$F_0 \sim \tau(F_1) \sim F_2 \sim \tau(F_3) \sim \cdots \sim F_{l-2} \sim \tau(F_{l-1})$$

of length l. In this case the equivalence class of F is the disjoint union of the proper equivalence class of F and the proper equivalence class of $\tau(F)$. [1], [4]

The right neighbor of F = (a, b, c) is denoted by R(F) is the form (A, B, C) determined by $A = c, b+B \equiv 0 \pmod{2A}$, $\sqrt{\Delta} - 2|A| < B < \sqrt{\Delta}$ and $B^2 - 4AC = \Delta$. It is clear from definition that

$$R(F) = \begin{pmatrix} 0 & -1\\ 1 & -\delta \end{pmatrix} (a, b, c), \tag{6}$$

where $b + B = 2c\delta$. The left neighbor is hence

$$L(F) = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} R(c, b, a) = \chi \tau(R(c, b, a)).$$
(7)

So F is properly equivalent to its right and left neighbors (for further details on binary quadratic forms see [1], [2], [3], [4]).

II. NEIGHBORS OF INDEFINITE QUADRATIC FORMS.

In this section, we will derive some properties of neighbors of indefinite quadratic forms. In [6], we proved the following theorem.

Theorem 2.1: Let $F_0 \sim F_1 \sim \cdots \sim F_{l-1}$ be the cycle of F of length l and let $R^i(F_0)$ be the consecutive right neighbors of $F = F_0$ for $i \ge 0$.

1) If l is odd, then the proper cycle of F is

$$F_0 \sim R^1(F_0) \sim R^2(F_0) \sim \dots \sim R^{2l-2}(F_0) \sim R^{2l-1}(F_0)$$

of length 2l.

2) If l is even, then the proper cycle of F is

$$F_0 \sim R^1(F_0) \sim R^2(F_0) \sim \dots \sim R^{l-2}(F_0) \sim R^{l-1}(F_0)$$

of length l.

Also we proved that if l is odd, then $R^{\frac{l-1}{2}}(F_0)$ and $R^{\frac{3l-1}{2}}(F_0)$ are the symmetric right neighbors of F. Further we proved the following corollary and two theorems in [6].

Corollary 2.2: Let $F_0 \sim F_1 \sim \cdots \sim F_{l-1}$ be the cycle of F of length l.

1) If l is odd, then

$$R^{i}(F_{0}) = \begin{cases} F_{i} & i \text{ is even} \\ \tau(F_{i}) & i \text{ is odd} \end{cases}$$

for $1 \leq i \leq l-1$ and

$$R^{i}(F_{0}) = \begin{cases} F_{i-l} & i \text{ is even} \\ \tau(F_{i-l}) & i \text{ is odd} \end{cases}$$

for $l \le i \le 2l - 1$. 2) If l is even, then

$$R^{i}(F_{0}) = \begin{cases} F_{i} & i \text{ is even} \\ \tau(F_{i}) & i \text{ is odd} \end{cases}$$

for $1 \leq i \leq l-1$.

Theorem 2.3: If l is odd, then F has 2l-1 right neighbors and if l is even, then F has l-1 right neighbors.

Theorem 2.4: If l is odd, then 1) $R^{i}(F_{0}) = \chi \tau(R^{2l-1-i}(F_{0}))$ for $1 \leq i \leq 2l-2$ and $R^{2l-1}(F_{0}) = \chi \tau(F_{0})$. 2) $R^{i}(F_{0}) = \tau(R^{i+l}(F_{0})), R^{l}(F_{0}) = \tau(F_{0})$ for $l \leq i \leq l-1$ and $R^{i}(F_{0}) = \tau(R^{i-l}(F_{0}))$ for $l+1 \leq i \leq 2l-1$.

In [7], we also derived some algebraic identities on proper cycles and right neighbors of F. Now we can return our problem. Then we can give the following theorems.

Theorem 2.5: If l is odd, then in the proper cycle of F, we have

1)
$$R^{i}(F_{0}) = \tau(F_{i-l})$$
 for $l \leq i \leq 2l - 1$.
2) $\chi \tau(R^{i}(F_{0})) = R^{2l-1-i}(F_{0})$ for $0 \leq i \leq l-1$.

Proof: 1) Let $F_0 = F = (a_0, b_0, c_0)$. Then applying (6), we get

$$\begin{array}{rcl} F_{0} &=& (a_{0}, b_{0}, c_{0}) \\ R^{1}(F_{0}) &=& (a_{1}, b_{1}, c_{1}) \\ R^{2}(F_{0}) &=& (a_{2}, b_{2}, c_{2}) \\ & & \cdots \\ R^{\frac{l-3}{2}}(F_{0}) &=& \left(a_{\frac{l-3}{2}}, b_{\frac{l-3}{2}}, c_{\frac{l-3}{2}}\right) \\ R^{\frac{l-1}{2}}(F_{0}) &=& \left(a_{\frac{l-1}{2}}, b_{\frac{l-3}{2}}, c_{\frac{l-3}{2}}\right) \\ R^{\frac{l+1}{2}}(F_{0}) &=& \left(-c_{1,\frac{1}{2}}, b_{\frac{l-3}{2}}, -a_{\frac{l-3}{2}}\right) \\ & & \cdots \\ R^{l-3}(F_{0}) &=& (-c_{2}, b_{2}, -a_{2}) \\ R^{l-2}(F_{0}) &=& (-c_{1}, b_{1}, -a_{1}) \\ R^{l-1}(F_{0}) &=& (-a_{0}, b_{0}, -c_{0}) \\ R^{l}(F_{0}) &=& (-a_{1}, b_{1}, -c_{1}) \\ R^{l+2}(F_{0}) &=& \left(-a_{1,2}, b_{2,-c_{2}}\right) \\ & & \cdots \\ R^{\frac{3l-3}{2}}(F_{0}) &=& \left(-a_{\frac{l-1}{2}}, b_{\frac{l-3}{2}}, -c_{\frac{l-3}{2}}\right) \\ R^{\frac{3l-1}{2}}(F_{0}) &=& \left(c_{1,\frac{2}{3}}, b_{\frac{l-3}{2}}, a_{\frac{l-3}{2}}\right) \\ & & \cdots \\ R^{2l-3}(F_{0}) &=& (c_{2}, b_{2}, a_{2}) \\ R^{2l-2}(F_{0}) &=& (c_{1}, b_{1}, a_{1}) \\ R^{2l-1}(F_{0}) &=& (c_{0}, b_{0}, a_{0}). \end{array}$$

Hence it is clear that

$$\begin{aligned} R^{l}(F_{0}) &= \tau(F_{0}) \\ R^{l+1}(F_{0}) &= \tau(F_{1}) \\ R^{l+2}(F_{0}) &= \tau(F_{2}) \\ & \dots \\ R^{\frac{3l-3}{2}}(F_{0}) &= \tau(F_{\frac{l-3}{2}}) \\ R^{\frac{3l-1}{2}}(F_{0}) &= \tau(F_{\frac{l-1}{2}}) \\ R^{\frac{3l+1}{2}}(F_{0}) &= \tau(F_{\frac{l+1}{2}}) \\ & \dots \\ R^{2l-3}(F_{0}) &= \tau(F_{l-3}) \\ R^{2l-2}(F_{0}) &= \tau(F_{l-2}) \\ R^{2l-1}(F_{0}) &= \tau(F_{l-1}). \end{aligned}$$

So $R^i(F_0) = \tau(F_{i-l})$ for $l \le i \le 2l - 1$. 2) Similarly we find that

$$\begin{split} \chi\tau(F_0) &= R^{2l-1}(F_0)\\ \chi\tau(R^1(F_0)) &= R^{2l-2}(F_0)\\ \chi\tau(R^2(F_0)) &= R^{2l-3}(F_0)\\ & \dots\\ \chi\tau(R^{\frac{l-3}{2}}(F_0)) &= R^{\frac{3l+1}{2}}(F_0) \end{split}$$

$$\begin{split} \chi\tau(R^{\frac{l-1}{2}}(F_0)) &= R^{\frac{3l-1}{2}}(F_0)\\ \chi\tau(R^{\frac{l+1}{2}}(F_0)) &= R^{\frac{3l-3}{2}}(F_0)\\ & \dots\\ \chi\tau(R^{l-3}(F_0)) &= R^{l+2}(F_0)\\ \chi\tau(R^{l-2}(F_0)) &= R^{l+1}(F_0)\\ \chi\tau(R^{l-1}(F_0)) &= R^l(F_0). \end{split}$$
 So $\chi\tau(R^i(F_0)) = R^{2l-1-i}(F_0)$ for $0 \le i \le l-1$.

Now we consider the left neighbors of F. Recall that the left neighbor of F is defined to be

$$L(F) = L(a, b, c) = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} R(c, b, a).$$

Then we can give the following theorem.

Theorem 2.6: Let $F_0 \sim F_1 \sim \cdots \sim F_{l-1}$ denote the cycle of F. If l is odd, then 1)

$$L^{i}(F_{0}) = \begin{cases} \tau(F_{l-i}) & i \text{ is odd} \\ F_{l-i} & i \text{ is even} \end{cases}$$

for $1 \leq i \leq l$ and

$$L^i(F_0) = \begin{cases} \tau(F_{2l-i}) & i \text{ is odd} \\ F_{2l-i} & i \text{ is even} \end{cases}$$
 for $l+1 \le i \le 2l$.

 $\tau(L^{i}(F_{0})) = \begin{cases} F_{l-i} & i \text{ is odd} \\ \tau(F_{l-i}) & i \text{ is even} \end{cases}$

for $1 \leq i \leq l$ and

2)

$$\tau(L^{i}(F_{0})) = \begin{cases} F_{2l-i} & i \text{ is odd} \\ \tau(F_{2l-i}) & i \text{ is even} \end{cases}$$

for $l+1 \le i \le 2l$. 3)

$$\chi(L^{i}(F_{0})) = \begin{cases} \tau(F_{i-1}) & i \text{ is odd} \\ F_{i-1} & i \text{ is even} \end{cases}$$

for $1 \leq i \leq l$ and

$$\chi(L^{i}(F_{0})) = \begin{cases} \tau(F_{i-l-1}) & i \text{ is odd} \\ F_{i-l-1} & i \text{ is even} \end{cases}$$

for $l+1 \leq i \leq 2l$.

Proof: 1) Applying (7), we get

$$\begin{array}{rcl} L^1(F_0) &=& (c_0,b_0,a_0)=\tau(F_{l-1})\\ L^2(F_0) &=& (-c_1,b_1,-a_1)=F_{l-2}\\ L^3(F_0) &=& (c_2,b_2,a_2)=\tau(F_{l-3})\\ && \cdots\\ L^l(F_0) &=& (-a_0,b_0,-c_0)=\tau(F_0)\\ L^{l+1}(F_0) &=& (-c_0,b_0,-a_0)=F_{l-2}\\ && \cdots\\ L^{2l-1}(F_0) &=& (-a_1,b_1,-c_1)=\tau(F_1)\\ L^{2l}(F_0) &=& (a_0,b_0,c_0)=F_0. \end{array}$$

So the result is clear. The others can be proved similarly. \blacksquare

Note that we proved in Theorem 2.1 that the proper cycle of F can be given by using its consecutive right neighbors. Similarly we can give the following theorem.

Theorem 2.7: Let $L^i(F)$ denote the consecutive left neighbors of F.

1) If l is odd, then the proper cycle of $F = F_0$ is

$$F_0 \sim L^{2l-1}(F_0) \sim \cdots \sim L^2(F_0) \sim L^1(F_0)$$

of length 2l.

2) If l is even, then the proper cycle of
$$F = F_0$$
 is

$$F_0 \sim L^{l-1}(F_0) \sim \cdots \sim L^2(F_0) \sim L^1(F_0)$$

of length l.

Proof: 1) Let l be odd. Then by Theorem 1.1 the proper cycle of F is

$$F_0 \sim \tau(F_1) \sim F_2 \sim \tau(F_3) \sim \cdots \sim \tau(F_{l-2}) \sim F_{l-1} \sim \tau(F_0) \sim F_1 \sim \tau(F_2) \sim \cdots \sim F_{l-2} \sim \tau(F_{l-1})$$

of length 2l. We also see Theorem 2.6 that

$$L^{i}(F_{0}) = \begin{cases} \tau(F_{l-i}) & i \text{ is odd} \\ F_{l-i} & i \text{ is even} \end{cases}$$

for $1 \leq i \leq l$ and

$$L^{i}(F_{0}) = \begin{cases} \tau(F_{2l-i}) & i \text{ is odd} \\ F_{2l-i} & i \text{ is even} \end{cases}$$

for $l+1 \leq i \leq 2l$. So the proper cycle of F is $F_0 \sim L^{2l-1}(F_0) \sim \cdots \sim L^2(F_0) \sim L^1(F_0)$.

Similarly it can be shown that if l is even, then the proper cycle of F is $F_0 \sim L^{l-1}(F_0) \sim \cdots \sim L^2(F_0) \sim L^1(F_0)$.

Example 2.1: 1) The cycle of F = (1, 5, -4) is $F_0 = (1, 5, -4) \sim F_1 = (4, 3, -2) \sim F_2 = (2, 5, -2) \sim F_3 = (2, 3, -4) \sim F_4 = (4, 5, -1)$ of length 5. So its proper cycle is hence

$$F_0 = (1, 5, -4) \sim F_1 = (-4, 3, 2) \sim F_2 = (2, 5, -2) \sim F_3 = (-2, 3, 4) \sim F_4 = (4, 5, -1) \sim F_5 = (-1, 5, 4) \sim F_6 = (4, 3, -2) \sim F_7 = (-2, 5, 2) \sim F_8 = (2, 3, -4) \sim F_9 = (-4, 5, 1)$$

of length 10. The consecutive left neighbors of F are

$$\begin{split} L^1(F) &= (-4,5,1), L^2(F) = (2,3,-4), \\ L^3(F) &= (-2,5,2), L^4(F) = (4,3,-2), \\ L^5(F) &= (-1,5,4), L^6(F) = (4,5,-1), \\ L^7(F) &= (-2,3,4), L^8(F) = (2,5,-2), \\ L^9(F) &= (-4,3,2), L^{10}(F) = F. \end{split}$$

So it is easily seen that the proper cycle of F is

$$\begin{split} F &\sim L^9(F) \sim L^8(F) \sim L^7(F) \sim L^6(F) \sim L^5(F) \sim \\ L^4(F) &\sim L^3(F) \sim L^2(F) \sim L^1(F). \end{split}$$

2) The cycle of F = (1, 8, -5) is $F_0 = (1, 8, -5) \sim F_1 = (5, 2, -4) \sim F_2 = (4, 6, -3) \sim F_3 = (3, 6, -4) \sim F_4 = (4, 2, -5) \sim F_5 = (5, 8, -1)$ of length 6. So its proper cycle is

$$F_0 = (1, 8, -5) \sim F_1 = (-5, 2, 4) \sim F_2 = (4, 6, -3) \sim F_3 = (-3, 6, 4) \sim F_4 = (4, 2, -5) \sim F_5 = (-5, 8, 1).$$

The left neighbors of F are

$$\begin{split} L^1(F) &= (-5, 8, 1), L^2(F) = (4, 2, -5), \\ L^3(F) &= (-3, 6, 4), L^4(F) = (4, 6, -3), \\ L^5(F) &= (-5, 2, 4), L^6(F) = F. \end{split}$$

So its proper cycle is $F \sim L^5(F) \sim L^4(F) \sim L^3(F) \sim L^2(F) \sim L^1(F).$

From above theorem, we can give the following result.

Theorem 2.8: If l is odd, then F has 2l - 1 left neighbors and if l is even it has l - 1 left neighbors.

Proof: Let l be odd. Then we get

$$\begin{split} F_0 &= & (a_0, b_0, c_0) \\ F_1 &= & (a_1, b_1, c_1) \\ F_2 &= & (a_2, b_2, c_2) \\ F_3 &= & (a_3, b_3, c_3) \\ & & \cdots \\ F_{\frac{l-3}{2}} &= & \left(a_{\frac{l-3}{2}}, b_{\frac{l-3}{2}}, c_{\frac{l-3}{2}}\right) \\ F_{\frac{l-1}{2}} &= & \left(a_{\frac{l-1}{2}}, b_{\frac{l-3}{2}}, -a_{\frac{l-3}{2}}\right) \\ F_{\frac{l+1}{2}} &= & \left(-c_{\frac{l-3}{2}}, b_{\frac{l-3}{2}}, -a_{\frac{l-3}{2}}\right) \\ & & \cdots \\ F_{l-3} &= & (-c_2, b_2, -a_2) \\ F_{l-2} &= & (-c_1, b_1, -a_1) \\ F_{l-1} &= & (-c_0, b_0, -a_0). \end{split}$$

The first left neighbor of $F = F_0$ is

$$L^{1}(F_{0}) = (a_{1}, b_{1}, c_{1})$$

$$= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} R(c_{0}, b_{0}, a_{0})$$

$$= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} (a_{0}, -b_{0} + 2a_{0}\delta_{0}, c_{0} - \delta_{0}b_{0} + a_{0}\delta_{0}^{2})$$

$$= (c_{0} - \delta_{0}b_{0} + a_{0}\delta_{0}^{2}, -b_{0} + 2a_{0}\delta_{0}, a_{0})$$

$$= (c_{0}, b_{0}, a_{0}).$$

Similarly we obtain

$$\begin{array}{rcl} L^2(F_0) &=& (-c_1,b_1,-a_1)\\ L^3(F_0) &=& (c_2,b_2,a_2)\\ L^4(F_0) &=& (-c_3,b_3,-a_3)\\ && \\ && \\ L^l(F_0) &=& (-a_0,b_0,-c_0)\\ L^{l+1}(F_0) &=& (-c_0,b_0,-a_0) \end{array}$$

$$L^{2l-1}(F_0) = (-a_1, b_1, -c_1) L^{2l}(F_0) = (a_0, b_0, c_0) = F_0.$$

So F has 2l - 1 left neighbors. Similarly it can be shown that F has l - 1 left neighbors if l is even.

Theorem 2.9: Let $F_0 \sim F_1 \sim \cdots \sim F_{l-1}$ be the cycle of F of length l. If l is odd, then 1) $L(F_i) = \tau(F_{i-1})$ for $1 \leq i \leq l-1$ and $L(F_0) = \tau(F_{l-1})$. 2) $L(F_i) = \chi \tau(F_{l-i})$ for $1 \leq i \leq l-1$ and $L(F_0) = \chi \tau(F_0)$.

Proof: 1) Let $F = F_0 = (a_0, b_0, c_0)$. Then

$$F_{1} = (a_{1}, b_{1}, c_{1})$$

= $(|c_{0}|, -b_{0} + 2s_{0}|c_{0}|, -(a_{0} + b_{0}s_{0} + c_{0}s_{0}^{2}))$
= $(-c_{0}, -b_{0} - 2s_{0}c_{0}, -a_{0} - b_{0}s_{0} - c_{0}s_{0}^{2}).$ (8)

Now we try to determine the first left neighbor of F_1 . Applying its definition, we get

$$L(F_1) = L\left(-c_0, -b_0 - 2s_0c_0, -a_0 - b_0s_0 - c_0s_0^2\right)$$
$$= \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} R\left(-a_0 - b_0s_0 - c_0s_0^2, -b_0 - 2s_0c_0, -c_0\right).$$
(9)

So we have to find out the right neighbor of $(-a_0 - b_0 s_0 - c_0 s_0^2, -b_0 - 2s_0 c_0, -c_0)$. To get this we make the change of variables $x \to y$ and $y \to -x - \delta_0 y$. Then we get

$$R\left(-a_{0} - b_{0}s_{0} - c_{0}s_{0}^{2}, -b_{0} - 2s_{0}c_{0}, -c_{0}\right)$$

$$= \left(-a_{0} - b_{0}s_{0} - c_{0}s_{0}^{2}\right)y^{2} + \left(-b_{0} - 2s_{0}c_{0}\right)y\left(-x - \delta_{0}y\right)$$

$$+ \left(-c_{0}\right)\left(-x - \delta_{0}y\right)^{2}$$

$$= -c_{0}x^{2} + \left(b_{0} + 2c_{0}s_{0} - 2c_{0}\delta_{0}\right)xy \qquad (10)$$

$$+ \left(-a_{0} - b_{0}s_{0} - c_{0}s_{0}^{2} + b_{0}\delta_{0} + 2s_{0}c_{0}\delta_{0} - c_{0}\delta_{0}^{2}\right)y^{2}.$$

Also for i = 0, we get $s_0 = -\delta_0$. So (10) becomes

$$R\left(-a_{0}-b_{0}s_{0}-c_{0}s_{0}^{2},-b_{0}-2s_{0}c_{0},-c_{0}\right)$$

= $-c_{0}x^{2}+(b_{0}-2c_{0}\delta_{0}-2c_{0}\delta_{0})xy$
+ $(-a_{0}+b_{0}\delta_{0}-c_{0}\delta_{0}^{2}+b_{0}\delta_{0}-2\delta_{0}^{2}c_{0}-c_{0}\delta_{0}^{2})y^{2}.$ (11)

Since $s_0 = -\delta_0 = 0$, (11) becomes

$$R\left(-a_0 - b_0 s_0 - c_0 s_0^2, -b_0 - 2s_0 c_0, -c_0\right)$$

= $-c_0 x^2 + b_0 x y - a_0 y^2.$ (12)

So applying (9) and (12), we get

$$\begin{split} L(F_1) &= L\left(-c_0, -b_0 - 2s_0c_0, -a_0 - b_0s_0 - c_0s_0^2\right) \\ &= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} R\left(-a_0 - b_0s_0 - c_0s_0^2, -b_0 - 2s_0c_0, -c_0\right) \\ &= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} (-c_0, b_0, -a_0) \\ &= (-a_0, b_0, -c_0) \\ &= \tau(F_0). \end{split}$$

Similarly we find that $L(F_2) = \tau(F_1)$, $L(F_3) = \tau(F_2)$, $\cdots, L(F_{l-1}) = \tau(F_{l-2})$ and $L(F_0) = \tau(F_{l-1})$. The other case can be proved similarly. Example 2.2: The cycle of F = (1, 7, -6) is

 $F_0 = (1, 7, -6) \sim F_1 = (6, 5, -2) \sim F_2 = (2, 7, -3) \sim F_3 = (3, 5, -4) \sim F_4 = (4, 3, -4) \sim F_5 = (4, 5, -3) \sim F_6 = (3, 7, -2) \sim F_7 = (2, 5, -6) \sim F_8 = (6, 7, -1).$

Then

$$\begin{split} L(F_0) &= L(1,7,-6) = (-6,7,1) = \tau(F_8) = \chi \tau(F_0) \\ L(F_1) &= L(6,5,-2) = (-1,7,6) = \tau(F_0) = \chi \tau(F_8) \\ L(F_2) &= L(2,7,-3) = (-6,5,2) = \tau(F_1) = \chi \tau(F_7) \\ L(F_3) &= L(3,5,-4) = (-2,7,3) = \tau(F_2) = \chi \tau(F_6) \\ L(F_4) &= L(4,3,-4) = (-3,5,4) = \tau(F_3) = \chi \tau(F_5) \\ L(F_5) &= L(4,5,-3) = (-4,3,4) = \tau(F_4) = \chi \tau(F_4) \\ L(F_6) &= L(3,7,-2) = (-4,5,3) = \tau(F_5) = \chi \tau(F_3) \\ L(F_7) &= L(2,5,-6) = (-3,7,2) = \tau(F_6) = \chi \tau(F_2) \\ L(F_8) &= L(6,7,-1) = (-2,6,5) = \tau(F_7) = \chi \tau(F_1) \end{split}$$

as we wanted.

From above theorem, we can give the following corollary.

Corollary 2.10: Let $F_0 \sim F_1 \sim \cdots \sim F_{l-1}$ be the cycle of F of length l. If l is odd, then 1) $\tau(L^i(F_0)) = L^{i+l}(F_0)$ for $1 \le i \le l$. 2) $\tau(L^i(F_0)) = L^{i+l-i}(F_0)$ for $1 \le i \le l$ and $\tau(L^i(F_0))$

2) $\chi(L^i(F_0)) = L^{l+1-i}(F_0)$ for $1 \le i \le l$ and $\chi(L^i(F_0)) = L^{3l+1-i}(F_0)$ for $l+1 \le i \le 2l$.

Theorem 2.11: Let $F_0 \sim F_1 \sim \cdots \sim F_{l-1}$ be the cycle of F of length l. If l is odd, then $L^{\frac{l+1}{2}}(F_0)$ and $L^{\frac{3l+1}{2}}(F_0)$ are the symmetric left neighbors of F.

Proof: We know that F has 2l - 1 left neighbors when l is odd. Also

$$\begin{array}{rcl} L^1(F_0) &=& (c_0,b_0,a_0)\\ L^2(F_0) &=& (-c_1,b_1,-a_1)\\ L^3(F_0) &=& (c_2,b_2,a_2)\\ && \cdots\\ \\ L^{\frac{l-1}{2}}(F_0) &=& (-a_{\frac{l-1}{2}},b_{\frac{l-1}{2}},-c_{\frac{l-1}{2}})\\ L^{\frac{l+1}{2}}(F_0) &=& (-a_{\frac{l+1}{2}},b_{\frac{l+1}{2}},-a_{\frac{l+1}{2}})\\ L^{\frac{l+3}{2}}(F_0) &=& (c_{\frac{l-1}{2}},b_{\frac{l-1}{2}},a_{\frac{l-1}{2}})\\ && \cdots\\ \\ L^l(F_0) &=& (-a_0,b_0,-c_0)\\ L^{l+1}(F_0) &=& (-c_0,b_0,-a_0)\\ && \cdots\\ \\ L^{\frac{3l-1}{2}}(F_0) &=& (a_{\frac{l-1}{2}},b_{\frac{l-1}{2}},c_{\frac{l-1}{2}})\\ \\ L^{\frac{3l+3}{2}}(F_0) &=& (-c_{\frac{l-1}{2}},b_{\frac{l-1}{2}},-a_{\frac{l-1}{2}})\\ && \cdots\\ \\ L^{2l-1}(F_0) &=& (-a_1,b_1,-c_1) \end{array}$$

 $L^{2l}(F_0) = (a_0, b_0, c_0).$

So $L^{\frac{l+1}{2}}(F_0)$ and $L^{\frac{3l+1}{2}}(F_0)$ are symmetric left neighbors.

Theorem 2.12: If l is odd, then in the proper cycle of F, we have

1) $L^{i}(F_{0}) = F_{2l-i}$ for $1 \le i \le 2l$. 2) $L^{i}(F_{0}) = \tau(F_{l-i})$ for $1 \le i \le l$ and $L^{i}(F_{0}) = \tau(F_{3l-i})$ for $l+1 \le i \le 2l$. 3) $L^{i}(F_{0}) = \chi(F_{l-1+i})$ for $1 \le i \le l$ and $L^{i}(F_{0}) = \chi(F_{i-l-1})$ for $l+1 \le i \le 2l$. 4) $L^{i}(F_{0}) = \chi\tau(F_{i-1})$ for $1 \le i \le 2l$.

Proof: 1) Before starting our proof, we try to determine the cycle and proper cycle of F. To get this let $F = F_0 = (a_0, b_0, c_0)$. Then the cycle of F is $F_0 \sim F_1 \sim F_2 \sim \cdots \sim F_{l-2} \sim F_{l-1}$, where

$$F_{0} = (a_{0}, b_{0}, c_{0})$$

$$F_{1} = (a_{1}, b_{1}, c_{1})$$

$$F_{2} = (a_{2}, b_{2}, c_{2})$$

$$F_{3} = (a_{3}, b_{3}, c_{3})$$

$$\dots$$

$$F_{\frac{l-3}{2}} = \left(a_{\frac{l-3}{2}}, b_{\frac{l-3}{2}}, c_{\frac{l-3}{2}}\right)$$

$$F_{\frac{l-1}{2}} = \left(a_{\frac{l-1}{2}}, b_{\frac{l-1}{2}}, -a_{\frac{l-1}{2}}\right)$$

$$F_{\frac{l+1}{2}} = \left(-c_{\frac{l-3}{2}}, b_{\frac{l-3}{2}}, -a_{\frac{l-3}{2}}\right)$$

$$\dots$$

$$F_{l-3} = (-c_{2}, b_{2}, -a_{2})$$

$$F_{l-2} = (-c_{1}, b_{1}, -a_{1})$$

$$F_{l-1} = (-c_{0}, b_{0}, -a_{0}).$$

So the proper cycle of F is hence $F_0 \sim F_1 \sim F_2 \sim \cdots \sim F_{l-1} \sim F_l \sim F_{l+1} \sim F_{l+2} \sim \cdots \sim F_{2l-2} \sim F_{2l-1}$, where

$$F_{0} = (a_{0}, b_{0}, c_{0})$$

$$F_{1} = (-a_{1}, b_{1}, -c_{1})$$

$$F_{2} = (a_{2}, b_{2}, c_{2})$$

$$F_{3} = (-a_{3}, b_{3}, -c_{3})$$

$$\cdots$$

$$F_{l-2} = (c_{1}, b_{1}, a_{1})$$

$$F_{l-1} = (-c_{0}, b_{0}, -a_{0})$$

$$F_{l} = (-a_{0}, b_{0}, -c_{0})$$

$$F_{l+1} = (a_{1}, b_{1}, c_{1})$$

$$\cdots$$

$$F_{2l-2} = (-c_{1}, b_{1}, -a_{1})$$

$$F_{2l-1} = (c_{0}, b_{0}, a_{0}).$$

Now we determine the left neighbors of $F = F_0$. Then applying (7), we get

$$L^{1}(F_{0}) = (c_{0}, b_{0}, a_{0}) = F_{2l-1}$$

$$L^{2}(F_{0}) = (-c_{1}, b_{1}, -a_{1}) = F_{2l-2}$$

$$\cdots$$

$$L^{l}(F_{0}) = (-a_{0}, b_{0}, -c_{0}) = F_{l}$$

$$L^{l+1}(F_{0}) = (-c_{0}, b_{0}, -a_{0}) = F_{l-1}$$

$$L^{2l-1}(F_0) = (-a_1, b_1, -c_1) = F_1$$

$$L^{2l}(F_0) = (a_0, b_0, c_0) = F_0.$$

So $L^{i}(F_{0}) = F_{2l-i}$ for $1 \le i \le 2l$.

2) Similarly we obtain

$$L^{1}(F_{0}) = (c_{0}, b_{0}, a_{0}) = \tau(F_{l-1})$$

$$L^{2}(F_{0}) = (-c_{1}, b_{1}, -a_{1}) = \tau(F_{l-2})$$

$$\dots$$

$$L^{l-2}(F_{0}) = (-a_{2}, b_{2}, -c_{2}) = \tau(F_{2})$$

$$L^{l-1}(F_{0}) = (a_{1}, b_{1}, c_{1}) = \tau(F_{1})$$

$$L^{l}(F_{0}) = (-a_{0}, b_{0}, -c_{0}) = \tau(F_{0})$$

$$L^{l+1}(F_{0}) = (-c_{0}, b_{0}, -a_{0}) = \tau(F_{2l-1})$$

$$L^{l+2}(F_{0}) = (c_{1}, b_{1}, a_{1}) = \tau(F_{2l-2})$$

$$L^{2l-1}(F_0) = (-a_1, b_1, -c_1) = \tau(F_{l+1})$$

$$L^{2l}(F_0) = (a_0, b_0, c_0) = \tau(F_l).$$

So $L^{i}(F_{0}) = \tau(F_{l-i})$ for $l \le i \le l$ and $L^{i}(F_{0}) = \tau(F_{3l-i})$ for $l+1 \le i \le 2l$.

The others are proved similarly.

Example 2.3: The cycle of F = (1, 7, -6) is

$$\begin{split} F_0 &= (1,7,-6) \sim F_1 = (6,5,-2) \sim F_2 = (2,7,-3) \sim \\ F_3 &= (3,5,-4) \sim F_4 = (4,3,-4) \sim F_5 = (4,5,-3) \sim \\ F_6 &= (3,7,-2) \sim F_7 = (2,5,-6) \sim F_8 = (6,7,-1) \end{split}$$

and hence the proper cycle of is

$$\begin{split} F_0 &= (1,7,-6) \sim F_1 = (-6,5,2) \sim F_2 = (2,7,-3) \sim \\ F_3 &= (-3,5,4) \sim F_4 = (4,3,-4) \sim F_5 = (-4,5,3) \sim \\ F_6 &= (3,7,-2) \sim F_7 = (-2,5,6) \sim F_8 = (6,7,-1) \sim \\ F_9 &= (-1,7,6) \sim F_{10} = (6,5,-2) \sim F_{11} = (-2,7,3) \sim \\ F_{12} &= (3,5,-4) \sim F_{13} = (-4,3,4) \sim F_{14} = (4,5,-3) \sim \\ F_{15} &= (-3,7,2) \sim F_{16} = (2,5,-6) \sim F_{17} = (-6,7,1). \end{split}$$

The left neighbors of F are

$$\begin{split} L^1(F_0) &= (-6,7,1) = F_{17}, \ L^2(F_0) = (2,5,-6) = F_{16}, \\ L^3(F_0) &= (-3,7,2) = F_{15}, \\ L^4(F_0) = (4,5,-3) = F_{14}, \\ L^5(F_0) &= (-4,3,4) = F_{13}, \\ L^6(F_0) &= (3,5,-4) = F_{12}, \\ L^7(F_0) &= (-2,7,3) = F_{11}, \ L^8(F_0) = (6,5,-2) = F_{10}, \\ L^9(F_0) &= (-1,7,6) = F_9, \\ L^{10}(F_0) &= (6,7,-1) = F_8, \\ L^{11}(F_0) &= (-2,5,6) = F_7, \\ L^{12}(F_0) &= (3,7,-2) = F_6, \\ L^{13}(F_0) &= (-4,5,3) = F_5, \ L^{14}(F_0) = (4,3,-4) = F_4, \\ L^{15}(F_0) &= (-3,5,4) = F_3, \\ L^{16}(F_0) &= (1,7,-6) = F_0. \end{split}$$

Here, $L^5(F_0)$ and $L^{14}(F_0)$ are symmetric left neighbors of F by Theorem 2.11.

Now we give the connection between right and left neighbors of F. To get this we can give the following theorem.

Theorem 2.13: Let $R^i(F_0)$ and $L^i(F_0)$ be denote the right and left neighbors of F, respectively.

1) If *l* is odd, then $L^{i}(F_{0}) = R^{2l-i}(F_{0})$ for $1 \le i \le 2l-1$. **2)** If *l* is even, then $L^{i}(F_{0}) = R^{l-i}(F_{0})$ for $1 \le i \le l-1$.

Proof: 1) Let l be odd. Then the proper cycle of F can be given by using its consecutive right neighbors, that is, $F_0 \sim R^1(F_0) \sim R^2(F_0) \sim \cdots \sim R^{2l-2}(F_0) \sim R^{2l-1}(F_0)$ by Theorem 2.1. Also by considering the proper cycle $F_0 \sim \tau(F_1) \sim F_2 \sim \tau(F_3) \sim \cdots \sim \tau(F_{l-2}) \sim F_{l-1} \sim \tau(F_0) \sim F_1 \sim \tau(F_2) \sim \cdots \sim F_{l-2} \sim \tau(F_{l-1})$ of F, we get

$$R^{i}(F_{0}) = \begin{cases} F_{i} & i \text{ is even} \\ \tau(F_{i}) & i \text{ is odd} \end{cases}$$

for $1 \leq i \leq l-1$ and

$$R^{i}(F_{0}) = \begin{cases} F_{i-l} & i \text{ is even} \\ \tau(F_{i-l}) & i \text{ is odd} \end{cases}$$

for $l \leq i \leq 2l - 1$ by Corollary 2.2. Also

$$L^{i}(F_{0}) = \begin{cases} \tau(F_{l-i}) & i \text{ is odd} \\ F_{l-i} & i \text{ is even} \end{cases}$$

for $1 \leq i \leq l$ and

$$L^{i}(F_{0}) = \begin{cases} \tau(F_{2l-i}) & i \text{ is odd} \\ F_{2l-i} & i \text{ is even} \end{cases}$$

for $l+1 \leq i \leq 2l$. On the other hand, since the proper cycle of F is $L^{2l}(F_0) \sim L^{2l-1}(F_0) \sim \cdots \sim L^2(F_0) \sim L^1(F_0)$, we conclude that $L^i(F_0) = R^{2l-i}(F_0)$ for $1 \leq i \leq 2l-1$.

Similarly if l is even, then $L^i(F_0) = R^{l-i}(F_0)$ for $1 \le i \le l-1$.

 $F_{12} = (3, 5, -4) \sim F_{13} = (-4, 3, 4) \sim F_{14} = (4, 5, -3) \sim -4) \sim F_1 = (4, 3, -2) \sim F_2 = (2, 5, -4) \sim F_3 = (2, 3, 5, -4) \sim F_{15} = (-3, 7, 2) \sim F_{16} = (2, 5, -6) \sim F_{17} = (-6, 7, 1).$ $F_{12} = (-3, 7, 2) \sim F_{16} = (2, 5, -6) \sim F_{17} = (-6, 7, 1).$ $F_{13} = (-3, 7, 2) \sim F_{16} = (2, 5, -6) \sim F_{17} = (-6, 7, 1).$ $F_{13} = (-3, 7, 2) \sim F_{16} = (2, 5, -6) \sim F_{17} = (-6, 7, 1).$ $F_{13} = (-3, 7, 2) \sim F_{16} = (2, 5, -6) \sim F_{17} = (-6, 7, 1).$ $F_{13} = (-3, 7, 2) \sim F_{16} = (2, 5, -6) \sim F_{17} = (-6, 7, 1).$ $F_{13} = (-3, 7, 2) \sim F_{16} = (2, 5, -6) \sim F_{17} = (-6, 7, 1).$ $F_{13} = (-3, 7, 2) \sim F_{16} = (-3, 7, 2) \sim F_{16} = (-3, 7, 2) \sim F_{17} = (-6, 7, 1).$ $F_{13} = (-3, 7, 2) \sim F_{16} = (-3, 7, 2) \sim F_{17} = (-6, 7, 1).$

$$\begin{split} L^1(F) &= (-4,5,1) = R^9(F) \\ L^2(F) &= (2,3,-4) = R^8(F) \\ L^3(F) &= (-2,5,2) = R^7(F) \\ L^4(F) &= (4,3,-2) = R^6(F) \\ L^5(F) &= (-1,5,4) = R^5(F) \\ L^6(F) &= (4,5,-1) = R^4(F) \\ L^7(F) &= (-2,3,4) = R^3(F) \\ L^8(F) &= (2,5,-2) = R^2(F) \\ L^9(F) &= (-4,3,2) = R^1(F). \end{split}$$

2) The cycle of F = (1, 8, -5) is $F_0 = (1, 8, -5) \sim F_1 = (5, 2, -4) \sim F_2 = (4, 6, -3) \sim F_3 = (3, 6, -4) \sim F_4 = (4, 2, -5) \sim F_5 = (5, 8, -1)$. The consecutive left and right

neighbors of F are

$$L^{1}(F) = (-5, 8, 1) = R^{5}(F)$$

$$L^{2}(F) = (4, 2, -5) = R^{4}(F)$$

$$L^{3}(F) = (-3, 6, 4) = R^{3}(F)$$

$$L^{4}(F) = (4, 6, -3) = R^{2}(F)$$

$$L^{5}(F) = (-5, 2, 4) = R^{1}(F).$$

From above theorem, we can give the following result.

Corollary 2.14: Let $R^i(F_0)$ and $L^i(F_0)$ denote the right and left neighbors of F_0 , respectively. If l is odd, then

1) $L^{i}(F_{0}) = \tau(R^{l-i}(F_{0}))$ for $1 \leq i \leq l$ and $L^{i}(F_{0}) =$ $\tau(R^{3l-i}(F_0)) \text{ for } l+1 \leq i \leq 2l.$ 2) $L^i(F_0) = \chi(R^{i+l-1}(F_0)) \text{ for } 1 \leq i \leq l \text{ and } L^i(F_0) =$

 $\chi(R^{i-l-1}(F_0)) = \chi(I_0) = \chi(I_0)$ $\chi(R^{i-l-1}(F_0)) \text{ for } l+1 \le i \le 2l.$

If *l* is even, then $L^{i}(F_{0}) = \chi \tau(R^{i-1}(F_{0}))$ for $1 \le i \le l-1$.

Finally, we can give the following theorem.

Theorem 2.15: $R(F_0)$ and $L(F_0)$ denote the right and left neighbors of F_0 , respectively. Then

$$R(L(F_0)) = L(R(F_0)) = F_0$$

Proof: Recall that the right neighbor of F = (a, b, c)is the form R(F) = (A, B, C), where $A = c, b + B \equiv 0$ $(mod \ 2A), \sqrt{\Delta} - 2|A| < B < \sqrt{\Delta}$ and $B^2 - 4AC = \Delta$. Also $R(F) = [0; -1; 1; -\delta](a, b, c)$ for $b + B = 2c\delta$ and L(F) = $\chi \tau(R(c, b, a))$. For $F = F_0 = (a_0, b_0, c_0)$, we get

$$L(F_0) = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} R(c_0, b_0, a_0).$$
(13)

Now we try to find $R(c_0, b_0, a_0)$. It is easily seen that

$$R(c_0, b_0, a_0) = (a_0, -b_0 + 2a_0\delta_0, c_0 - b_0\delta_0 + a_0\delta_0^2).$$

So (13) becomes

$$L(F_0) = (c_0 - b_0\delta_0 + a_0\delta_0^2, -b_0 + 2a_0\delta_0, a_0).$$

Note that $-b_0 + 2a_0\delta_0 \equiv -b_0 \pmod{2a}$. Also $\sqrt{\Delta} - 2|a_0| < b_0$ $-b_0+2a_0\delta_0 < \sqrt{\Delta}$. So if we take the right neighbor of $L(F_0)$, then we get

$$\begin{aligned} R(L(F_0)) &= R(c_0 - b_0 \delta_0 + a_0 \delta_0^2, -b_0 + 2a_0 \delta_0, a_0) \\ &= (a_0, b_0, c_0) \\ &= F_0. \end{aligned}$$

Similarly it can be proved that $L(R(F_0)) = F_0$.

REFERENCES

- [1] J.Buchmann and U.Vollmer. Binary Quadratic Forms: An Algorithmic Approach. Springer-Verlag, Berlin, Heidelberg, 2007.
- [2] D.A.Buell. Binary Quadratic Forms, Clasical Theory and Modern Computations. Springer-Verlag, New York, 1989.
- D.E.Flath. Introduction to Number Theory. Wiley, 1989.
- [4] R.A. Mollin. Advanced Number Theory with Applications. CRC Press, Taylor and Francis Group, Boca Raton, London, New York, 2009.

- [5] A.Tekcan and O.Bizim. The Connection between Quadratic Forms and the Extended Modular Group. Mathematica Bohemica 128(3)(2003), 225-236.
- [6] A.Tekcan. Proper Cycle of Indefinite Quadratic Forms and their Right Neighbors. Applications of Mathematics 52(5)(2007), 407-415.
- [7] A.Tekcan. A Second Approach to the Proper Cycles of Indefinite Quadratic Forms and their Right Neighbors. Int. Journal of Contemporary Math. Sci. 2(6)(2007), 249-260.