Neighbors of Indefinite Binary Quadratic Forms

Ahmet Tekcan

Abstract

In this paper, we derive some algebraic identities on right and left neighbors $R(F)$ and $L(F)$ of an indefinite binary quadratic form $F=F(x, y)=a x^{2}+b x y+c y^{2}$ of discriminant $\Delta=b^{2}-4 a c$. We prove that the proper cycle of F can be given by using its consecutive left neighbors. Also we construct a connection between right and left neighbors of F.

Keywords-Quadratic form, indefinite form, cycle, proper cycle, right neighbor, left neighbor.

I. Preliminaries.

A real binary quadratic form F is a polynomial in two variables x and y of the type

$$
\begin{equation*}
F=F(x, y)=a x^{2}+b x y+c y^{2} \tag{1}
\end{equation*}
$$

with real coefficients a, b, c. We denote it by $F=(a, b, c)$. The discriminant of F is defined by the formula $b^{2}-4 a c$ and is denoted by $\Delta=\Delta(F) . F$ is an integral form if and only if $a, b, c \in Z$, and is called indefinite if and only if $\Delta(F)>0$. An indefinite form $F=(a, b, c)$ of discriminant Δ is said to be reduced if

$$
\begin{equation*}
|\sqrt{\Delta}-2| a|\mid<b<\sqrt{\Delta} \tag{2}
\end{equation*}
$$

Most properties of quadratic forms can be giving by the aid of extended modular group $\bar{\Gamma}$ (see [5]). Gauss (1777-1855) defined the group action of $\bar{\Gamma}$ on the set of forms as follows:

$$
\begin{align*}
g F(x, y)= & \left(a r^{2}+b r s+c s^{2}\right) x^{2} \\
& +(2 a r t+b r u+b t s+2 c s u) x y \tag{3}\\
& +\left(a t^{2}+b t u+c u^{2}\right) y^{2}
\end{align*}
$$

for $g=\left(\begin{array}{cc}r & s \\ t & u\end{array}\right) \in \bar{\Gamma}$. Hence two forms F and G are called equivalent if and only if there exists a $g \in \bar{\Gamma}$ such that $g F=G$. If $\operatorname{det} g=1$, then F and G are called properly equivalent, and if $\operatorname{det} g=-1$, then F and G are called improperly equivalent. If a form F is improperly equivalent to itself, then it called ambiguous.

Let $\rho(F)$ denotes the normalization (it means that replacing F by its normalization) of $(c,-b, a)$. To be more explicit, we set

$$
\begin{equation*}
\rho^{i}(F)=\left(c,-b+2 c r_{i}, c r_{i}^{2}-b r_{i}+a\right), \tag{4}
\end{equation*}
$$

where

$$
r_{i}=r_{i}(F)=\left\{\begin{array}{cl}
\operatorname{sign}(c)\left\lfloor\frac{b}{2|c|}\right\rfloor & \text { for }|c| \geq \sqrt{\Delta} \tag{5}\\
\operatorname{sign}(c)\left\lfloor\frac{b+\sqrt{\Delta}}{2|c|}\right\rfloor & \text { for }|c|<\sqrt{\Delta}
\end{array}\right.
$$

Ahmet Tekcan is with the Uludag University, Department of Mathematics, Faculty of Science, Bursa-TURKEY, email: tekcan@uludag.edu.tr, http://matematik.uludag.edu.tr/AhmetTekcan.htm.
for $i \geq 0$. Then the number r_{i} is called the reducing number and the form $\rho^{i}(F)$ is called the reduction of F. Further, if F is reduced, then so is $\rho^{i}(F)$ by (2). In fact, ρ^{i} is a permutation of the set of all reduced indefinite forms.

Now consider the following transformations

$$
\begin{aligned}
& \chi(F)=\chi(a, b, c)=(-c, b,-a) \\
& \tau(F)=\tau(a, b, c)=(-a, b,-c)
\end{aligned}
$$

If $\chi(F)=F$, that is, $F=(a, b,-a)$, then F is called symmetric. The cycle of F is the sequence $\left((\tau \rho)^{i}(G)\right)$ for $i \in \mathbf{Z}$, where $G=(A, B, C)$ is a reduced form with $A>0$ which is equivalent to F. The cycle and proper cycle of F can be given by the following theorem.

Theorem 1.1: Let $F=(a, b, c)$ be a reduced indefinite quadratic form of discriminant Δ. Then the cycle of F is a sequence $F_{0} \sim F_{1} \sim F_{2} \sim \cdots \sim F_{l-1}$ of length l, where $F_{0}=F=\left(a_{0}, b_{0}, c_{0}\right)$,

$$
s_{i}=\left|s\left(F_{i}\right)\right|=\left\lfloor\frac{b_{i}+\sqrt{\Delta}}{2\left|c_{i}\right|}\right\rfloor
$$

and

$$
\begin{aligned}
F_{i+1} & =\left(a_{i+1}, b_{i+1}, c_{i+1}\right) \\
& =\left(\left|c_{i}\right|,-b_{i}+2 s_{i}\left|c_{i}\right|,-\left(a_{i}+b_{i} s_{i}+c_{i} s_{i}^{2}\right)\right)
\end{aligned}
$$

for $1 \leq i \leq l-2$. If l is odd, then the proper cycle of F is

$$
\begin{aligned}
& F_{0} \sim \tau\left(F_{1}\right) \sim F_{2} \sim \tau\left(F_{3}\right) \sim \cdots \sim \tau\left(F_{l-2}\right) \sim F_{l-1} \sim \\
& \tau\left(F_{0}\right) \sim F_{1} \sim \tau\left(F_{2}\right) \sim \cdots \sim F_{l-2} \sim \tau\left(F_{l-1}\right)
\end{aligned}
$$

of length $2 l$ and if l is even, then the proper cycle of F is

$$
F_{0} \sim \tau\left(F_{1}\right) \sim F_{2} \sim \tau\left(F_{3}\right) \sim \cdots \sim F_{l-2} \sim \tau\left(F_{l-1}\right)
$$

of length l. In this case the equivalence class of F is the disjoint union of the proper equivalence class of F and the proper equivalence class of $\tau(F)$. [1], [4]

The right neighbor of $F=(a, b, c)$ is denoted by $R(F)$ is the form (A, B, C) determined by $A=c, b+B \equiv 0(\bmod 2 A)$, $\sqrt{\Delta}-2|A|<B<\sqrt{\Delta}$ and $B^{2}-4 A C=\Delta$. It is clear from definition that

$$
R(F)=\left(\begin{array}{ll}
0 & -1 \tag{6}\\
1 & -\delta
\end{array}\right)(a, b, c)
$$

where $b+B=2 c \delta$. The left neighbor is hence

$$
L(F)=\left(\begin{array}{ll}
0 & 1 \tag{7}\\
1 & 0
\end{array}\right) R(c, b, a)=\chi \tau(R(c, b, a))
$$

So F is properly equivalent to its right and left neighbors (for further details on binary quadratic forms see [1], [2], [3], [4]).

II. Neighbors of Indefinite Quadratic Forms.

In this section, we will derive some properties of neighbors of indefinite quadratic forms. In [6], we proved the following theorem.

Theorem 2.1: Let $F_{0} \sim F_{1} \sim \cdots \sim F_{l-1}$ be the cycle of F of length l and let $R^{i}\left(F_{0}\right)$ be the consecutive right neighbors of $F=F_{0}$ for $i \geq 0$.

1) If l is odd, then the proper cycle of F is
$F_{0} \sim R^{1}\left(F_{0}\right) \sim R^{2}\left(F_{0}\right) \sim \cdots \sim R^{2 l-2}\left(F_{0}\right) \sim R^{2 l-1}\left(F_{0}\right)$
of length $2 l$.
2) If l is even, then the proper cycle of F is
$F_{0} \sim R^{1}\left(F_{0}\right) \sim R^{2}\left(F_{0}\right) \sim \cdots \sim R^{l-2}\left(F_{0}\right) \sim R^{l-1}\left(F_{0}\right)$
of length l.
Also we proved that if l is odd, then $R^{\frac{l-1}{2}}\left(F_{0}\right)$ and $R^{\frac{3 l-1}{2}}\left(F_{0}\right)$ are the symmetric right neighbors of F. Further we proved the following corollary and two theorems in [6].

Corollary 2.2: Let $F_{0} \sim F_{1} \sim \cdots \sim F_{l-1}$ be the cycle of F of length l.

1) If l is odd, then

$$
R^{i}\left(F_{0}\right)=\left\{\begin{array}{cl}
F_{i} & i \text { is even } \\
\tau\left(F_{i}\right) & i \text { is odd }
\end{array}\right.
$$

for $1 \leq i \leq l-1$ and

$$
R^{i}\left(F_{0}\right)=\left\{\begin{array}{cl}
F_{i-l} & i \text { is even } \\
\tau\left(F_{i-l}\right) & i \text { is odd }
\end{array}\right.
$$

for $l \leq i \leq 2 l-1$.
2) If l is even, then

$$
R^{i}\left(F_{0}\right)=\left\{\begin{array}{cl}
F_{i} & i \text { is even } \\
\tau\left(F_{i}\right) & i \text { is odd }
\end{array}\right.
$$

for $1 \leq i \leq l-1$.
Theorem 2.3: If l is odd, then F has $2 l-1$ right neighbors and if l is even, then F has $l-1$ right neighbors.

Theorem 2.4: If l is odd, then

1) $R^{i}\left(F_{0}\right)=\chi \tau\left(R^{2 l-1-i}\left(F_{0}\right)\right)$ for $1 \leq i \leq 2 l-2$ and $R^{2 l-1}\left(F_{0}\right)=\chi \tau\left(F_{0}\right)$.
2) $R^{i}\left(F_{0}\right)=\tau\left(R^{i+l}\left(F_{0}\right)\right), R^{l}\left(F_{0}\right)=\tau\left(F_{0}\right)$ for $l \leq i \leq$ $l-1$ and $R^{i}\left(F_{0}\right)=\tau\left(R^{i-l}\left(F_{0}\right)\right)$ for $l+1 \leq i \leq 2 l-1$.

In [7], we also derived some algebraic identities on proper cycles and right neighbors of F. Now we can return our problem. Then we can give the following theorems.

Theorem 2.5: If l is odd, then in the proper cycle of F, we have

1) $R^{i}\left(F_{0}\right)=\tau\left(F_{i-l}\right)$ for $l \leq i \leq 2 l-1$.
2) $\chi \tau\left(R^{i}\left(F_{0}\right)\right)=R^{2 l-1-i}\left(F_{0}\right)$ for $0 \leq i \leq l-1$.

Proof: 1) Let $F_{0}=F=\left(a_{0}, b_{0}, c_{0}\right)$. Then applying (6), we get

$$
\begin{aligned}
F_{0}= & \left(a_{0}, b_{0}, c_{0}\right) \\
R^{1}\left(F_{0}\right)= & \left(a_{1}, b_{1}, c_{1}\right) \\
R^{2}\left(F_{0}\right)= & \left(a_{2}, b_{2}, c_{2}\right) \\
& \ldots \\
R^{\frac{l-3}{2}}\left(F_{0}\right)= & \left(a_{\frac{l-3}{2}}, b_{\frac{l-3}{2}}, c_{\frac{l-3}{2}}\right) \\
R^{\frac{l-1}{2}}\left(F_{0}\right)= & \left(a_{\frac{l-1}{2}}, b_{\frac{l-1}{2}}, c_{\frac{l-1}{2}}\right) \\
R^{\frac{l+1}{2}}\left(F_{0}\right)= & \left(-c_{\frac{l-3}{2}}, b_{\frac{l-3}{2}},-a_{\frac{l-3}{2}}\right) \\
& \cdots \\
R^{l-3}\left(F_{0}\right)= & \left(-c_{2}, b_{2},-a_{2}\right) \\
R^{l-2}\left(F_{0}\right)= & \left(-c_{1}, b_{1},-a_{1}\right) \\
R^{l-1}\left(F_{0}\right)= & \left(-c_{0}, b_{0},-a_{0}\right) \\
R^{l}\left(F_{0}\right)= & \left(-a_{0}, b_{0},-c_{0}\right) \\
R^{l+1}\left(F_{0}\right)= & \left(-a_{1}, b_{1},-c_{1}\right) \\
R^{l+2}\left(F_{0}\right)= & \left(-a_{2}, b_{2},-c_{2}\right) \\
& \cdots \\
R^{\frac{3 l-3}{2}}\left(F_{0}\right)= & \left(-a_{\frac{l-3}{2}}, b_{\frac{l-3}{2}},-c_{\frac{l-3}{2}}\right) \\
R^{\frac{3 l-1}{2}}\left(F_{0}\right)= & \left(-a_{\frac{l-1}{2}}, b_{\frac{l-1}{2}},-c_{\frac{l-1}{2}}^{2}\right) \\
R^{\frac{3 l+1}{2}}\left(F_{0}\right)= & \left(c_{\frac{l-3}{2}}, b_{\frac{l-3}{2}}, a_{\frac{l-3}{2}}\right) \\
& \cdots \\
R^{2 l-3}\left(F_{0}\right)= & \left(c_{2}, b_{2}, a_{2}\right) \\
R^{2 l-2}\left(F_{0}\right)= & \left(c_{1}, b_{1}, a_{1}\right) \\
R^{2 l-1}\left(F_{0}\right)= & \left(c_{0}, b_{0}, a_{0}\right) .
\end{aligned}
$$

Hence it is clear that

$$
\begin{aligned}
R^{l}\left(F_{0}\right)= & \tau\left(F_{0}\right) \\
R^{l+1}\left(F_{0}\right)= & \tau\left(F_{1}\right) \\
R^{l+2}\left(F_{0}\right)= & \tau\left(F_{2}\right) \\
& \cdots \\
R^{\frac{3 l-3}{2}}\left(F_{0}\right)= & \tau\left(F_{\frac{l-3}{2}}\right) \\
R^{\frac{3 l-1}{2}}\left(F_{0}\right)= & \tau\left(F_{\frac{l-1}{2}}\right) \\
R^{\frac{3 l+1}{2}}\left(F_{0}\right)= & \tau\left(F_{\frac{l+1}{2}}\right) \\
& \cdots \\
R^{2 l-3}\left(F_{0}\right)= & \tau\left(F_{l-3}\right) \\
R^{2 l-2}\left(F_{0}\right)= & \tau\left(F_{l-2}\right) \\
R^{2 l-1}\left(F_{0}\right)= & \tau\left(F_{l-1}\right) .
\end{aligned}
$$

So $R^{i}\left(F_{0}\right)=\tau\left(F_{i-l}\right)$ for $l \leq i \leq 2 l-1$.
2) Similarly we find that

$$
\begin{aligned}
\chi \tau\left(F_{0}\right)= & R^{2 l-1}\left(F_{0}\right) \\
\chi \tau\left(R^{1}\left(F_{0}\right)\right)= & R^{2 l-2}\left(F_{0}\right) \\
\chi \tau\left(R^{2}\left(F_{0}\right)\right)= & R^{2 l-3}\left(F_{0}\right) \\
& \cdots \\
\chi \tau\left(R^{\frac{l-3}{2}}\left(F_{0}\right)\right)= & R^{\frac{3 l+1}{2}}\left(F_{0}\right)
\end{aligned}
$$

$$
\begin{aligned}
\chi \tau\left(R^{\frac{l-1}{2}}\left(F_{0}\right)\right)= & R^{\frac{3 l-1}{2}}\left(F_{0}\right) \\
\chi \tau\left(R^{\frac{l+1}{2}}\left(F_{0}\right)\right)= & R^{\frac{3 l-3}{2}}\left(F_{0}\right) \\
& \cdots \\
\chi \tau\left(R^{l-3}\left(F_{0}\right)\right)= & R^{l+2}\left(F_{0}\right) \\
\chi \tau\left(R^{l-2}\left(F_{0}\right)\right)= & R^{l+1}\left(F_{0}\right) \\
\chi \tau\left(R^{l-1}\left(F_{0}\right)\right)= & R^{l}\left(F_{0}\right) .
\end{aligned}
$$

So $\chi \tau\left(R^{i}\left(F_{0}\right)\right)=R^{2 l-1-i}\left(F_{0}\right)$ for $0 \leq i \leq l-1$.
Now we consider the left neighbors of F. Recall that the left neighbor of F is defined to be

$$
L(F)=L(a, b, c)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) R(c, b, a) .
$$

Then we can give the following theorem.
Theorem 2.6: Let $F_{0} \sim F_{1} \sim \cdots \sim F_{l-1}$ denote the cycle of F. If l is odd, then
1)

$$
L^{i}\left(F_{0}\right)=\left\{\begin{array}{cc}
\tau\left(F_{l-i}\right) & \text { i is odd } \\
F_{l-i} & \text { i is even }
\end{array}\right.
$$

for $1 \leq i \leq l$ and

$$
L^{i}\left(F_{0}\right)=\left\{\begin{array}{cc}
\tau\left(F_{2 l-i}\right) & i \text { is odd } \\
F_{2 l-i} & i \text { is even }
\end{array}\right.
$$

for $l+1 \leq i \leq 2 l$.
2)

$$
\tau\left(L^{i}\left(F_{0}\right)\right)=\left\{\begin{array}{cc}
F_{l-i} & i \text { is odd } \\
\tau\left(F_{l-i}\right) & i \text { is even }
\end{array}\right.
$$

for $1 \leq i \leq l$ and

$$
\tau\left(L^{i}\left(F_{0}\right)\right)=\left\{\begin{array}{cc}
F_{2 l-i} & i \text { is odd } \\
\tau\left(F_{2 l-i}\right) & i \text { is even }
\end{array}\right.
$$

for $l+1 \leq i \leq 2 l$.
3)

$$
\chi\left(L^{i}\left(F_{0}\right)\right)=\left\{\begin{array}{cc}
\tau\left(F_{i-1}\right) & i \text { is odd } \\
F_{i-1} & \text { i is even }
\end{array}\right.
$$

for $1 \leq i \leq l$ and

$$
\chi\left(L^{i}\left(F_{0}\right)\right)=\left\{\begin{array}{cc}
\tau\left(F_{i-l-1}\right) & i \text { is odd } \\
F_{i-l-1} & i \text { is even }
\end{array}\right.
$$

for $l+1 \leq i \leq 2 l$.
Proof: 1) Applying (7), we get

$$
\begin{aligned}
L^{1}\left(F_{0}\right)= & \left(c_{0}, b_{0}, a_{0}\right)=\tau\left(F_{l-1}\right) \\
L^{2}\left(F_{0}\right)= & \left(-c_{1}, b_{1},-a_{1}\right)=F_{l-2} \\
L^{3}\left(F_{0}\right)= & \left(c_{2}, b_{2}, a_{2}\right)=\tau\left(F_{l-3}\right) \\
& \cdots \\
L^{l}\left(F_{0}\right)= & \left(-a_{0}, b_{0},-c_{0}\right)=\tau\left(F_{0}\right) \\
L^{l+1}\left(F_{0}\right)= & \left(-c_{0}, b_{0},-a_{0}\right)=F_{l-2} \\
& \cdots \\
L^{2 l-1}\left(F_{0}\right)= & \left(-a_{1}, b_{1},-c_{1}\right)=\tau\left(F_{1}\right) \\
L^{2 l}\left(F_{0}\right)= & \left(a_{0}, b_{0}, c_{0}\right)=F_{0} .
\end{aligned}
$$

So the result is clear. The others can be proved similarly.
Note that we proved in Theorem 2.1 that the proper cycle of F can be given by using its consecutive right neighbors. Similarly we can give the following theorem.

Theorem 2.7: Let $L^{i}(F)$ denote the consecutive left neighbors of F.

1) If l is odd, then the proper cycle of $F=F_{0}$ is

$$
F_{0} \sim L^{2 l-1}\left(F_{0}\right) \sim \cdots \sim L^{2}\left(F_{0}\right) \sim L^{1}\left(F_{0}\right)
$$

of length $2 l$.
2) If l is even, then the proper cycle of $F=F_{0}$ is

$$
F_{0} \sim L^{l-1}\left(F_{0}\right) \sim \cdots \sim L^{2}\left(F_{0}\right) \sim L^{1}\left(F_{0}\right)
$$

of length l.
Proof: 1) Let l be odd. Then by Theorem 1.1 the proper cycle of F is

$$
\begin{aligned}
& F_{0} \sim \tau\left(F_{1}\right) \sim F_{2} \sim \tau\left(F_{3}\right) \sim \cdots \sim \tau\left(F_{l-2}\right) \sim F_{l-1} \sim \\
& \tau\left(F_{0}\right) \sim F_{1} \sim \tau\left(F_{2}\right) \sim \cdots \sim F_{l-2} \sim \tau\left(F_{l-1}\right)
\end{aligned}
$$

of length $2 l$. We also see Theorem 2.6 that

$$
L^{i}\left(F_{0}\right)=\left\{\begin{array}{cc}
\tau\left(F_{l-i}\right) & i \text { is odd } \\
F_{l-i} & i \text { is even }
\end{array}\right.
$$

for $1 \leq i \leq l$ and

$$
L^{i}\left(F_{0}\right)=\left\{\begin{array}{cc}
\tau\left(F_{2 l-i}\right) & \text { i is odd } \\
F_{2 l-i} & \text { i is even }
\end{array}\right.
$$

for $l+1 \leq i \leq 2 l$. So the proper cycle of F is $F_{0} \sim$ $L^{2 l-1}\left(F_{0}\right) \sim \cdots \sim L^{2}\left(F_{0}\right) \sim L^{1}\left(F_{0}\right)$.

Similarly it can be shown that if l is even, then the proper cycle of F is $F_{0} \sim L^{l-1}\left(F_{0}\right) \sim \cdots \sim L^{2}\left(F_{0}\right) \sim L^{1}\left(F_{0}\right)$.

Example 2.1: 1) The cycle of $F=(1,5,-4)$ is $F_{0}=(1$, $5,-4) \sim F_{1}=(4,3,-2) \sim F_{2}=(2,5,-2) \sim F_{3}=(2$, $3,-4) \sim F_{4}=(4,5,-1)$ of length 5 . So its proper cycle is hence

$$
\begin{aligned}
& F_{0}=(1,5,-4) \sim F_{1}=(-4,3,2) \sim F_{2}=(2,5,-2) \sim \\
& F_{3}=(-2,3,4) \sim F_{4}=(4,5,-1) \sim F_{5}=(-1,5,4) \sim \\
& F_{6}=(4,3,-2) \sim F_{7}=(-2,5,2) \sim F_{8}=(2,3,-4) \sim \\
& F_{9}=(-4,5,1)
\end{aligned}
$$

of length 10 . The consecutive left neighbors of F are

$$
\begin{aligned}
& L^{1}(F)=(-4,5,1), L^{2}(F)=(2,3,-4), \\
& L^{3}(F)=(-2,5,2), L^{4}(F)=(4,3,-2), \\
& L^{5}(F)=(-1,5,4), L^{6}(F)=(4,5,-1), \\
& L^{7}(F)=(-2,3,4), L^{8}(F)=(2,5,-2), \\
& L^{9}(F)=(-4,3,2), L^{10}(F)=F .
\end{aligned}
$$

So it is easily seen that the proper cycle of F is

$$
\begin{aligned}
& F \sim L^{9}(F) \sim L^{8}(F) \sim L^{7}(F) \sim L^{6}(F) \sim L^{5}(F) \sim \\
& L^{4}(F) \sim L^{3}(F) \sim L^{2}(F) \sim L^{1}(F) .
\end{aligned}
$$

2) The cycle of $F=(1,8,-5)$ is $F_{0}=(1,8,-5) \sim F_{1}=$ $(5,2,-4) \sim F_{2}=(4,6,-3) \sim F_{3}=(3,6,-4) \sim F_{4}=$ $(4,2,-5) \sim F_{5}=(5,8,-1)$ of length 6 . So its proper cycle is

$$
\begin{aligned}
& F_{0}=(1,8,-5) \sim F_{1}=(-5,2,4) \sim F_{2}=(4,6,-3) \sim \\
& F_{3}=(-3,6,4) \sim F_{4}=(4,2,-5) \sim F_{5}=(-5,8,1) .
\end{aligned}
$$

The left neighbors of F are

$$
\begin{aligned}
& L^{1}(F)=(-5,8,1), L^{2}(F)=(4,2,-5) \\
& L^{3}(F)=(-3,6,4), L^{4}(F)=(4,6,-3), \\
& L^{5}(F)=(-5,2,4), L^{6}(F)=F
\end{aligned}
$$

So its proper cycle is $F \sim L^{5}(F) \sim L^{4}(F) \sim L^{3}(F) \sim$ $L^{2}(F) \sim L^{1}(F)$.

From above theorem, we can give the following result.
Theorem 2.8: If l is odd, then F has $2 l-1$ left neighbors and if l is even it has $l-1$ left neighbors.

Proof: Let l be odd. Then we get

$$
\begin{aligned}
F_{0} & =\left(a_{0}, b_{0}, c_{0}\right) \\
F_{1} & =\left(a_{1}, b_{1}, c_{1}\right) \\
F_{2} & =\left(a_{2}, b_{2}, c_{2}\right) \\
F_{3} & =\left(a_{3}, b_{3}, c_{3}\right) \\
& \cdots \\
F_{\frac{l-3}{2}}= & \left(a_{\frac{l-3}{2}}, b_{\frac{l-3}{2}}, c_{\frac{l-3}{2}}\right) \\
F_{\frac{l-1}{2}}= & \left(a_{\frac{l-1}{2}}, b_{\frac{l-1}{2}},-a_{\frac{l-1}{2}}\right) \\
F_{\frac{l+1}{2}}= & \left(-c_{\frac{l-3}{2}}, b_{\frac{l-3}{2}},-a_{\frac{l-3}{2}}\right) \\
& \cdots \\
F_{l-3}= & \left(-c_{2}, b_{2},-a_{2}\right) \\
F_{l-2} & =\left(-c_{1}, b_{1},-a_{1}\right) \\
F_{l-1} & =\left(-c_{0}, b_{0},-a_{0}\right) .
\end{aligned}
$$

The first left neighbor of $F=F_{0}$ is

$$
\begin{aligned}
L^{1}\left(F_{0}\right) & =\left(a_{1}, b_{1}, c_{1}\right) \\
& =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) R\left(c_{0}, b_{0}, a_{0}\right) \\
& =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(a_{0},-b_{0}+2 a_{0} \delta_{0}, c_{0}-\delta_{0} b_{0}+a_{0} \delta_{0}^{2}\right) \\
& =\left(c_{0}-\delta_{0} b_{0}+a_{0} \delta_{0}^{2},-b_{0}+2 a_{0} \delta_{0}, a_{0}\right) \\
& =\left(c_{0}, b_{0}, a_{0}\right) .
\end{aligned}
$$

Similarly we obtain

$$
\begin{aligned}
L^{2}\left(F_{0}\right)= & \left(-c_{1}, b_{1},-a_{1}\right) \\
L^{3}\left(F_{0}\right)= & \left(c_{2}, b_{2}, a_{2}\right) \\
L^{4}\left(F_{0}\right)= & \left(-c_{3}, b_{3},-a_{3}\right) \\
& \cdots \\
L^{l}\left(F_{0}\right)= & \left(-a_{0}, b_{0},-c_{0}\right) \\
L^{l+1}\left(F_{0}\right)= & \left(-c_{0}, b_{0},-a_{0}\right)
\end{aligned}
$$

$$
\begin{aligned}
L^{2 l-1}\left(F_{0}\right) & =\left(-a_{1}, b_{1},-c_{1}\right) \\
L^{2 l}\left(F_{0}\right) & =\left(a_{0}, b_{0}, c_{0}\right)=F_{0} .
\end{aligned}
$$

So F has $2 l-1$ left neighbors. Similarly it can be shown that F has $l-1$ left neighbors if l is even.

Theorem 2.9: Let $F_{0} \sim F_{1} \sim \cdots \sim F_{l-1}$ be the cycle of F of length l. If l is odd, then

1) $L\left(F_{i}\right)=\tau\left(F_{i-1}\right)$ for $1 \leq i \leq l-1$ and $L\left(F_{0}\right)=$ $\tau\left(F_{l-1}\right)$.
2) $L\left(F_{i}\right)=\chi \tau\left(F_{l-i}\right)$ for $1 \leq i \leq l-1$ and $L\left(F_{0}\right)=$ $\chi \tau\left(F_{0}\right)$.

$$
\text { Proof: 1) Let } F=F_{0}=\left(a_{0}, b_{0}, c_{0}\right) \text {. Then }
$$

$$
\begin{align*}
F_{1} & =\left(a_{1}, b_{1}, c_{1}\right) \\
& =\left(\left|c_{0}\right|,-b_{0}+2 s_{0}\left|c_{0}\right|,-\left(a_{0}+b_{0} s_{0}+c_{0} s_{0}^{2}\right)\right) \\
& =\left(-c_{0},-b_{0}-2 s_{0} c_{0},-a_{0}-b_{0} s_{0}-c_{0} s_{0}^{2}\right) \tag{8}
\end{align*}
$$

Now we try to determine the first left neighbor of F_{1}. Applying its definition, we get

$$
\begin{align*}
& L\left(F_{1}\right)=L\left(-c_{0},-b_{0}-2 s_{0} c_{0},-a_{0}-b_{0} s_{0}-c_{0} s_{0}^{2}\right) \\
& =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) R\left(-a_{0}-b_{0} s_{0}-c_{0} s_{0}^{2},-b_{0}-2 s_{0} c_{0},-c_{0}\right) . \tag{9}
\end{align*}
$$

So we have to find out the right neighbor of $\left(-a_{0}-b_{0} s_{0}-\right.$ $\left.c_{0} s_{0}^{2},-b_{0}-2 s_{0} c_{0},-c_{0}\right)$. To get this we make the change of variables $x \rightarrow y$ and $y \rightarrow-x-\delta_{0} y$. Then we get

$$
\begin{align*}
& R\left(-a_{0}-b_{0} s_{0}-c_{0} s_{0}^{2},-b_{0}-2 s_{0} c_{0},-c_{0}\right) \\
= & \left(-a_{0}-b_{0} s_{0}-c_{0} s_{0}^{2}\right) y^{2}+\left(-b_{0}-2 s_{0} c_{0}\right) y\left(-x-\delta_{0} y\right) \\
& +\left(-c_{0}\right)\left(-x-\delta_{0} y\right)^{2} \\
= & -c_{0} x^{2}+\left(b_{0}+2 c_{0} s_{0}-2 c_{0} \delta_{0}\right) x y \tag{10}\\
& +\left(-a_{0}-b_{0} s_{0}-c_{0} s_{0}^{2}+b_{0} \delta_{0}+2 s_{0} c_{0} \delta_{0}-c_{0} \delta_{0}^{2}\right) y^{2} .
\end{align*}
$$

Also for $i=0$, we get $s_{0}=-\delta_{0}$. So (10) becomes

$$
\begin{align*}
& R\left(-a_{0}-b_{0} s_{0}-c_{0} s_{0}^{2},-b_{0}-2 s_{0} c_{0},-c_{0}\right) \\
= & -c_{0} x^{2}+\left(b_{0}-2 c_{0} \delta_{0}-2 c_{0} \delta_{0}\right) x y \\
& +\left(-a_{0}+b_{0} \delta_{0}-c_{0} \delta_{0}^{2}+b_{0} \delta_{0}-2 \delta_{0}^{2} c_{0}-c_{0} \delta_{0}^{2}\right) y^{2} . \tag{11}
\end{align*}
$$

Since $s_{0}=-\delta_{0}=0$, (11) becomes

$$
\begin{align*}
& R\left(-a_{0}-b_{0} s_{0}-c_{0} s_{0}^{2},-b_{0}-2 s_{0} c_{0},-c_{0}\right) \\
& =-c_{0} x^{2}+b_{0} x y-a_{0} y^{2} . \tag{12}
\end{align*}
$$

So applying (9) and (12), we get

$$
\begin{aligned}
L\left(F_{1}\right) & =L\left(-c_{0},-b_{0}-2 s_{0} c_{0},-a_{0}-b_{0} s_{0}-c_{0} s_{0}^{2}\right) \\
& =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) R\left(-a_{0}-b_{0} s_{0}-c_{0} s_{0}^{2},-b_{0}-2 s_{0} c_{0},-c_{0}\right) \\
& =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(-c_{0}, b_{0},-a_{0}\right) \\
& =\left(-a_{0}, b_{0},-c_{0}\right) \\
& =\tau\left(F_{0}\right) .
\end{aligned}
$$

Similarly we find that $L\left(F_{2}\right)=\tau\left(F_{1}\right), L\left(F_{3}\right)=\tau\left(F_{2}\right)$, $\cdots, L\left(F_{l-1}\right)=\tau\left(F_{l-2}\right)$ and $L\left(F_{0}\right)=\tau\left(F_{l-1}\right)$. The other case can be proved similarly.

Example 2.2: The cycle of $F=(1,7,-6)$ is

$$
\begin{aligned}
& F_{0}=(1,7,-6) \sim F_{1}=(6,5,-2) \sim F_{2}=(2,7,-3) \sim \\
& F_{3}=(3,5,-4) \sim F_{4}=(4,3,-4) \sim F_{5}=(4,5,-3) \sim \\
& F_{6}=(3,7,-2) \sim F_{7}=(2,5,-6) \sim F_{8}=(6,7,-1) .
\end{aligned}
$$

Then

$$
\begin{aligned}
& L\left(F_{0}\right)=L(1,7,-6)=(-6,7,1)=\tau\left(F_{8}\right)=\chi \tau\left(F_{0}\right) \\
& L\left(F_{1}\right)=L(6,5,-2)=(-1,7,6)=\tau\left(F_{0}\right)=\chi \tau\left(F_{8}\right) \\
& L\left(F_{2}\right)=L(2,7,-3)=(-6,5,2)=\tau\left(F_{1}\right)=\chi \tau\left(F_{7}\right) \\
& L\left(F_{3}\right)=L(3,5,-4)=(-2,7,3)=\tau\left(F_{2}\right)=\chi \tau\left(F_{6}\right) \\
& L\left(F_{4}\right)=L(4,3,-4)=(-3,5,4)=\tau\left(F_{3}\right)=\chi \tau\left(F_{5}\right) \\
& L\left(F_{5}\right)=L(4,5,-3)=(-4,3,4)=\tau\left(F_{4}\right)=\chi \tau\left(F_{4}\right) \\
& L\left(F_{6}\right)=L(3,7,-2)=(-4,5,3)=\tau\left(F_{5}\right)=\chi \tau\left(F_{3}\right) \\
& L\left(F_{7}\right)=L(2,5,-6)=(-3,7,2)=\tau\left(F_{6}\right)=\chi \tau\left(F_{2}\right) \\
& L\left(F_{8}\right)=L(6,7,-1)=(-2,6,5)=\tau\left(F_{7}\right)=\chi \tau\left(F_{1}\right)
\end{aligned}
$$

as we wanted.
From above theorem, we can give the following corollary.

Corollary 2.10: Let $F_{0} \sim F_{1} \sim \cdots \sim F_{l-1}$ be the cycle of F of length l. If l is odd, then

1) $\tau\left(L^{i}\left(F_{0}\right)\right)=L^{i+l}\left(F_{0}\right)$ for $1 \leq i \leq l$.
2) $\chi\left(L^{i}\left(F_{0}\right)\right)=L^{l+1-i}\left(F_{0}\right)$ for $1 \leq i \leq l$ and $\chi\left(L^{i}\left(F_{0}\right)\right)=$ $L^{3 l+1-i}\left(F_{0}\right)$ for $l+1 \leq i \leq 2 l$.

Theorem 2.11: Let $F_{0} \sim F_{1} \sim \cdots \sim F_{l-1}$ be the cycle of F of length l. If l is odd, then $L^{\frac{l+1}{2}}\left(F_{0}\right)$ and $L^{\frac{3 l+1}{2}}\left(F_{0}\right)$ are the symmetric left neighbors of F.

Proof: We know that F has $2 l-1$ left neighbors when l is odd. Also

$$
\begin{aligned}
L^{1}\left(F_{0}\right)= & \left(c_{0}, b_{0}, a_{0}\right) \\
L^{2}\left(F_{0}\right)= & \left(-c_{1}, b_{1},-a_{1}\right) \\
L^{3}\left(F_{0}\right)= & \left(c_{2}, b_{2}, a_{2}\right) \\
& \cdots \\
L^{\frac{l-1}{2}}\left(F_{0}\right)= & \left(-a_{\frac{l-1}{2}}, b_{\frac{l-1}{2}},-c_{\frac{l-1}{2}}\right) \\
L^{\frac{l+1}{2}}\left(F_{0}\right)= & \left(-a_{\frac{l+1}{2}}, b_{\frac{l+1}{2}},-a_{\frac{l+1}{2}}\right) \\
L^{\frac{l+3}{2}}\left(F_{0}\right)= & \left(c_{\frac{l-1}{2}}, b_{\frac{l-1}{2}}, a_{\frac{l-1}{2}}\right) \\
& \cdots \\
L^{l}\left(F_{0}\right)= & \left(-a_{0}, b_{0},-c_{0}\right) \\
L^{l+1}\left(F_{0}\right)= & \left(-c_{0}, b_{0},-a_{0}\right) \\
L^{\frac{3 l-1}{2}}\left(F_{0}\right)= & \left(a_{\frac{l-1}{2}}, b_{\frac{l-1}{2}}, c_{\frac{l-1}{2}}\right) \\
L^{\frac{3 l+1}{2}}\left(F_{0}\right)= & \left(a_{\frac{l+1}{2}}, b_{\frac{l+1}{2}},-a_{\frac{l+1}{2}}\right) \\
L^{\frac{3 l+3}{2}}\left(F_{0}\right)= & \left(-c_{\frac{l-1}{2}}, b_{\frac{l-1}{2}},-a_{\frac{l-1}{2}}\right) \\
& \cdots \\
L^{2 l-1}\left(F_{0}\right)= & \left(-a_{1}, b_{1},-c_{1}\right) \\
L^{2 l}\left(F_{0}\right)= & \left(a_{0}, b_{0}, c_{0}\right) .
\end{aligned}
$$

So $L^{\frac{l+1}{2}}\left(F_{0}\right)$ and $L^{\frac{3 l+1}{2}}\left(F_{0}\right)$ are symmetric left neighbors.

Theorem 2.12: If l is odd, then in the proper cycle of F, we have

1) $L^{i}\left(F_{0}\right)=F_{2 l-i}$ for $1 \leq i \leq 2 l$.
2) $L^{i}\left(F_{0}\right)=\tau\left(F_{l-i}\right)$ for $1 \leq i \leq l$ and $L^{i}\left(F_{0}\right)=\tau\left(F_{3 l-i}\right)$ for $l+1 \leq i \leq 2 l$.
3) $L^{i}\left(F_{0}\right)=\chi\left(F_{l-1+i}\right)$ for $1 \leq i \leq l$ and $L^{i}\left(F_{0}\right)=$ $\chi\left(F_{i-l-1}\right)$ for $l+1 \leq i \leq 2 l$.
4) $L^{i}\left(F_{0}\right)=\chi \tau\left(F_{i-1}\right)$ for $1 \leq i \leq 2 l$.

Proof: 1) Before starting our proof, we try to determine the cycle and proper cycle of F. To get this let $F=F_{0}=\left(a_{0}\right.$, $\left.b_{0}, c_{0}\right)$. Then the cycle of F is $F_{0} \sim F_{1} \sim F_{2} \sim \cdots \sim F_{l-2} \sim$ F_{l-1}, where

$$
\begin{aligned}
F_{0}= & \left(a_{0}, b_{0}, c_{0}\right) \\
F_{1}= & \left(a_{1}, b_{1}, c_{1}\right) \\
F_{2}= & \left(a_{2}, b_{2}, c_{2}\right) \\
F_{3}= & \left(a_{3}, b_{3}, c_{3}\right) \\
& \cdots \\
F_{\frac{l-3}{2}}= & \left(a_{\frac{l-3}{2}}, b_{\frac{l-3}{2}}, c_{\frac{l-3}{2}}\right) \\
F_{\frac{l-1}{2}}= & \left(a_{\frac{l-1}{2}}, b_{\frac{l-1}{2}},-a_{\frac{l-1}{2}}\right) \\
F_{\frac{l+1}{2}}= & \left(-c_{\frac{l-3}{2}}, b_{\frac{l-3}{2}},-a_{\frac{l-3}{2}}\right) \\
& \cdots \\
F_{l-3}= & \left(-c_{2}, b_{2},-a_{2}\right) \\
F_{l-2}= & \left(-c_{1}, b_{1},-a_{1}\right) \\
F_{l-1}= & \left(-c_{0}, b_{0},-a_{0}\right) .
\end{aligned}
$$

So the proper cycle of F is hence $F_{0} \sim F_{1} \sim F_{2} \sim \cdots \sim$ $F_{l-1} \sim F_{l} \sim F_{l+1} \sim F_{l+2} \sim \cdots \sim F_{2 l-2} \sim F_{2 l-1}$, where

$$
\begin{aligned}
F_{0}= & \left(a_{0}, b_{0}, c_{0}\right) \\
F_{1}= & \left(-a_{1}, b_{1},-c_{1}\right) \\
F_{2}= & \left(a_{2}, b_{2}, c_{2}\right) \\
F_{3}= & \left(-a_{3}, b_{3},-c_{3}\right) \\
& \cdots \\
F_{l-2}= & \left(c_{1}, b_{1}, a_{1}\right) \\
F_{l-1}= & \left(-c_{0}, b_{0},-a_{0}\right) \\
F_{l}= & \left(-a_{0}, b_{0},-c_{0}\right) \\
F_{l+1}= & \left(a_{1}, b_{1}, c_{1}\right) \\
& \cdots \\
F_{2 l-2}= & \left(-c_{1}, b_{1},-a_{1}\right) \\
F_{2 l-1}= & \left(c_{0}, b_{0}, a_{0}\right)
\end{aligned}
$$

Now we determine the left neighbors of $F=F_{0}$. Then applying (7), we get

$$
\begin{aligned}
L^{1}\left(F_{0}\right)= & \left(c_{0}, b_{0}, a_{0}\right)=F_{2 l-1} \\
L^{2}\left(F_{0}\right)= & \left(-c_{1}, b_{1},-a_{1}\right)=F_{2 l-2} \\
& \cdots \\
L^{l}\left(F_{0}\right)= & \left(-a_{0}, b_{0},-c_{0}\right)=F_{l} \\
L^{l+1}\left(F_{0}\right)= & \left(-c_{0}, b_{0},-a_{0}\right)=F_{l-1}
\end{aligned}
$$

$$
\begin{aligned}
L^{2 l-1}\left(F_{0}\right) & =\left(-a_{1}, b_{1},-c_{1}\right)=F_{1} \\
L^{2 l}\left(F_{0}\right) & =\left(a_{0}, b_{0}, c_{0}\right)=F_{0}
\end{aligned}
$$

So $L^{i}\left(F_{0}\right)=F_{2 l-i}$ for $1 \leq i \leq 2 l$.
2) Similarly we obtain

$$
\begin{aligned}
L^{1}\left(F_{0}\right)= & \left(c_{0}, b_{0}, a_{0}\right)=\tau\left(F_{l-1}\right) \\
L^{2}\left(F_{0}\right)= & \left(-c_{1}, b_{1},-a_{1}\right)=\tau\left(F_{l-2}\right) \\
& \cdots \\
L^{l-2}\left(F_{0}\right)= & \left(-a_{2}, b_{2},-c_{2}\right)=\tau\left(F_{2}\right) \\
L^{l-1}\left(F_{0}\right)= & \left(a_{1}, b_{1}, c_{1}\right)=\tau\left(F_{1}\right) \\
L^{l}\left(F_{0}\right)= & \left(-a_{0}, b_{0},-c_{0}\right)=\tau\left(F_{0}\right) \\
L^{l+1}\left(F_{0}\right)= & \left(-c_{0}, b_{0},-a_{0}\right)=\tau\left(F_{2 l-1}\right) \\
L^{l+2}\left(F_{0}\right)= & \left(c_{1}, b_{1}, a_{1}\right)=\tau\left(F_{2 l-2}\right) \\
& \cdots \\
L^{2 l-1}\left(F_{0}\right)= & \left(-a_{1}, b_{1},-c_{1}\right)=\tau\left(F_{l+1}\right) \\
L^{2 l}\left(F_{0}\right)= & \left(a_{0}, b_{0}, c_{0}\right)=\tau\left(F_{l}\right)
\end{aligned}
$$

So $L^{i}\left(F_{0}\right)=\tau\left(F_{l-i}\right)$ for $l \leq i \leq l$ and $L^{i}\left(F_{0}\right)=\tau\left(F_{3 l-i}\right)$ for $l+1 \leq i \leq 2 l$.

The others are proved similarly.
Example 2.3: The cycle of $F=(1,7,-6)$ is

$$
\begin{aligned}
& F_{0}=(1,7,-6) \sim F_{1}=(6,5,-2) \sim F_{2}=(2,7,-3) \sim \\
& F_{3}=(3,5,-4) \sim F_{4}=(4,3,-4) \sim F_{5}=(4,5,-3) \sim \\
& F_{6}=(3,7,-2) \sim F_{7}=(2,5,-6) \sim F_{8}=(6,7,-1)
\end{aligned}
$$

and hence the proper cycle of is

$$
\begin{aligned}
& F_{0}=(1,7,-6) \sim F_{1}=(-6,5,2) \sim F_{2}=(2,7,-3) \sim \\
& F_{3}=(-3,5,4) \sim F_{4}=(4,3,-4) \sim F_{5}=(-4,5,3) \sim \\
& F_{6}=(3,7,-2) \sim F_{7}=(-2,5,6) \sim F_{8}=(6,7,-1) \sim \\
& F_{9}=(-1,7,6) \sim F_{10}=(6,5,-2) \sim F_{11}=(-2,7,3) \sim \\
& F_{12}=(3,5,-4) \sim F_{13}=(-4,3,4) \sim F_{14}=(4,5,-3) \sim \\
& F_{15}=(-3,7,2) \sim F_{16}=(2,5,-6) \sim F_{17}=(-6,7,1)
\end{aligned}
$$

The left neighbors of F are

$$
\begin{aligned}
& L^{1}\left(F_{0}\right)=(-6,7,1)=F_{17}, L^{2}\left(F_{0}\right)=(2,5,-6)=F_{16} \\
& L^{3}\left(F_{0}\right)=(-3,7,2)=F_{15}, L^{4}\left(F_{0}\right)=(4,5,-3)=F_{14} \\
& L^{5}\left(F_{0}\right)=(-4,3,4)=F_{13}, L^{6}\left(F_{0}\right)=(3,5,-4)=F_{12} \\
& L^{7}\left(F_{0}\right)=(-2,7,3)=F_{11}, L^{8}\left(F_{0}\right)=(6,5,-2)=F_{10} \\
& L^{9}\left(F_{0}\right)=(-1,7,6)=F_{9}, L^{10}\left(F_{0}\right)=(6,7,-1)=F_{8} \\
& L^{11}\left(F_{0}\right)=(-2,5,6)=F_{7}, L^{12}\left(F_{0}\right)=(3,7,-2)=F_{6} \\
& L^{13}\left(F_{0}\right)=(-4,5,3)=F_{5}, L^{14}\left(F_{0}\right)=(4,3,-4)=F_{4} \\
& L^{15}\left(F_{0}\right)=(-3,5,4)=F_{3}, L^{16}\left(F_{0}\right)=(2,7,-3)=F_{2} \\
& L^{17}\left(F_{0}\right)=(-6,5,2)=F_{1}, L^{18}\left(F_{0}\right)=(1,7,-6)=F_{0}
\end{aligned}
$$

Here, $L^{5}\left(F_{0}\right)$ and $L^{14}\left(F_{0}\right)$ are symmetric left neighbors of F by Theorem 2.11.

Now we give the connection between right and left neighbors of F. To get this we can give the following theorem.

Theorem 2.13: Let $R^{i}\left(F_{0}\right)$ and $L^{i}\left(F_{0}\right)$ be denote the right and left neighbors of F, respectively.

1) If l is odd, then $L^{i}\left(F_{0}\right)=R^{2 l-i}\left(F_{0}\right)$ for $1 \leq i \leq 2 l-1$.
2) If l is even, then $L^{i}\left(F_{0}\right)=R^{l-i}\left(F_{0}\right)$ for $1 \leq i \leq l-1$.

Proof: 1) Let l be odd. Then the proper cycle of F can be given by using its consecutive right neighbors, that is, $F_{0} \sim R^{1}\left(F_{0}\right) \sim R^{2}\left(F_{0}\right) \sim \cdots \sim R^{2 l-2}\left(F_{0}\right) \sim R^{2 l-1}\left(F_{0}\right)$ by Theorem 2.1. Also by considering the proper cycle $F_{0} \sim$ $\tau\left(F_{1}\right) \sim F_{2} \sim \tau\left(F_{3}\right) \sim \cdots \sim \tau\left(F_{l-2}\right) \sim F_{l-1} \sim \tau\left(F_{0}\right) \sim$ $F_{1} \sim \tau\left(F_{2}\right) \sim \cdots \sim F_{l-2} \sim \tau\left(F_{l-1}\right)$ of F, we get

$$
R^{i}\left(F_{0}\right)=\left\{\begin{array}{cl}
F_{i} & \text { i is even } \\
\tau\left(F_{i}\right) & \text { i is odd }
\end{array}\right.
$$

for $1 \leq i \leq l-1$ and

$$
R^{i}\left(F_{0}\right)=\left\{\begin{array}{cl}
F_{i-l} & \text { i is even } \\
\tau\left(F_{i-l}\right) & \text { i is odd }
\end{array}\right.
$$

for $l \leq i \leq 2 l-1$ by Corollary 2.2. Also

$$
L^{i}\left(F_{0}\right)=\left\{\begin{array}{cl}
\tau\left(F_{l-i}\right) & \text { i is odd } \\
F_{l-i} & \text { i is even }
\end{array}\right.
$$

for $1 \leq i \leq l$ and

$$
L^{i}\left(F_{0}\right)=\left\{\begin{array}{cl}
\tau\left(F_{2 l-i}\right) & i \text { is odd } \\
F_{2 l-i} & \text { i is even }
\end{array}\right.
$$

for $l+1 \leq i \leq 2 l$. On the other hand, since the proper cycle of F is $L^{2 l}\left(\overline{F_{0}}\right) \sim L^{2 l-1}\left(F_{0}\right) \sim \cdots \sim L^{2}\left(F_{0}\right) \sim L^{1}\left(F_{0}\right)$, we conclude that $L^{i}\left(F_{0}\right)=R^{2 l-i}\left(F_{0}\right)$ for $1 \leq i \leq 2 l-1$.

Similarly if l is even, then $L^{i}\left(F_{0}\right)=R^{l-i}\left(F_{0}\right)$ for $1 \leq i \leq$ $l-1$.

Example 2.4: 1) The cycle of $F=(1,5,-4)$ is $F_{0}=(1,5$, $-4) \sim F_{1}=(4,3,-2) \sim F_{2}=(2,5,-2) \sim F_{3}=(2,3$, $-4) \sim F_{4}=(4,5,-1)$. The consecutive left and right neighbors of F are

$$
\begin{aligned}
& L^{1}(F)=(-4,5,1)=R^{9}(F) \\
& L^{2}(F)=(2,3,-4)=R^{8}(F) \\
& L^{3}(F)=(-2,5,2)=R^{7}(F) \\
& L^{4}(F)=(4,3,-2)=R^{6}(F) \\
& L^{5}(F)=(-1,5,4)=R^{5}(F) \\
& L^{6}(F)=(4,5,-1)=R^{4}(F) \\
& L^{7}(F)=(-2,3,4)=R^{3}(F) \\
& L^{8}(F)=(2,5,-2)=R^{2}(F) \\
& L^{9}(F)=(-4,3,2)=R^{1}(F)
\end{aligned}
$$

2) The cycle of $F=(1,8,-5)$ is $F_{0}=(1,8,-5) \sim F_{1}=$ $(5,2,-4) \sim F_{2}=(4,6,-3) \sim F_{3}=(3,6,-4) \sim F_{4}=$ $(4,2,-5) \sim F_{5}=(5,8,-1)$. The consecutive left and right
neighbors of F are

$$
\begin{aligned}
& L^{1}(F)=(-5,8,1)=R^{5}(F) \\
& L^{2}(F)=(4,2,-5)=R^{4}(F) \\
& L^{3}(F)=(-3,6,4)=R^{3}(F) \\
& L^{4}(F)=(4,6,-3)=R^{2}(F) \\
& L^{5}(F)=(-5,2,4)=R^{1}(F) .
\end{aligned}
$$

From above theorem, we can give the following result.
Corollary 2.14: Let $R^{i}\left(F_{0}\right)$ and $L^{i}\left(F_{0}\right)$ denote the right and left neighbors of F_{0}, respectively. If l is odd, then

1) $L^{i}\left(F_{0}\right)=\tau\left(R^{l-i}\left(F_{0}\right)\right)$ for $1 \leq i \leq l$ and $L^{i}\left(F_{0}\right)=$ $\tau\left(R^{3 l-i}\left(F_{0}\right)\right)$ for $l+1 \leq i \leq 2 l$.
2) $L^{i}\left(F_{0}\right)=\chi\left(R^{i+l-1}\left(F_{0}\right)\right)$ for $1 \leq i \leq l$ and $L^{i}\left(F_{0}\right)=$ $\chi\left(R^{i-l-1}\left(F_{0}\right)\right)$ for $l+1 \leq i \leq 2 l$.

If l is even, then $L^{i}\left(F_{0}\right)=\chi \tau\left(R^{i-1}\left(F_{0}\right)\right)$ for $1 \leq i \leq l-1$.
Finally, we can give the following theorem.
Theorem 2.15: $R\left(F_{0}\right)$ and $L\left(F_{0}\right)$ denote the right and left neighbors of F_{0}, respectively. Then

$$
R\left(L\left(F_{0}\right)\right)=L\left(R\left(F_{0}\right)\right)=F_{0} .
$$

Proof: Recall that the right neighbor of $F=(a, b, c)$ is the form $R(F)=(A, B, C)$, where $A=c, b+B \equiv 0$ $(\bmod 2 A), \sqrt{\Delta}-2|A|<B<\sqrt{\Delta}$ and $B^{2}-4 A C=\Delta$. Also $R(F)=[0 ;-1 ; 1 ;-\delta](a, b, c)$ for $b+B=2 c \delta$ and $L(F)=$ $\chi \tau(R(c, b, a))$. For $F=F_{0}=\left(a_{0}, b_{0}, c_{0}\right)$, we get

$$
L\left(F_{0}\right)=\left(\begin{array}{ll}
0 & 1 \tag{13}\\
1 & 0
\end{array}\right) R\left(c_{0}, b_{0}, a_{0}\right) .
$$

Now we try to find $R\left(c_{0}, b_{0}, a_{0}\right)$. It is easily seen that

$$
R\left(c_{0}, b_{0}, a_{0}\right)=\left(a_{0},-b_{0}+2 a_{0} \delta_{0}, c_{0}-b_{0} \delta_{0}+a_{0} \delta_{0}^{2}\right)
$$

So (13) becomes

$$
L\left(F_{0}\right)=\left(c_{0}-b_{0} \delta_{0}+a_{0} \delta_{0}^{2},-b_{0}+2 a_{0} \delta_{0}, a_{0}\right) .
$$

Note that $-b_{0}+2 a_{0} \delta_{0} \equiv-b_{0}(\bmod 2 a)$. Also $\sqrt{\Delta}-2\left|a_{0}\right|<$ $-b_{0}+2 a_{0} \delta_{0}<\sqrt{\Delta}$. So if we take the right neighbor of $L\left(F_{0}\right)$, then we get

$$
\begin{aligned}
R\left(L\left(F_{0}\right)\right) & =R\left(c_{0}-b_{0} \delta_{0}+a_{0} \delta_{0}^{2},-b_{0}+2 a_{0} \delta_{0}, a_{0}\right) \\
& =\left(a_{0}, b_{0}, c_{0}\right) \\
& =F_{0}
\end{aligned}
$$

Similarly it can be proved that $L\left(R\left(F_{0}\right)\right)=F_{0}$.

References

[1] J.Buchmann and U.Vollmer. Binary Quadratic Forms: An Algorithmic Approach. Springer-Verlag, Berlin, Heidelberg, 2007.
[2] D.A.Buell. Binary Quadratic Forms, Clasical Theory and Modern Computations. Springer-Verlag, New York, 1989.
[3] D.E.Flath. Introduction to Number Theory. Wiley, 1989
[4] R.A. Mollin. Advanced Number Theory with Applications. CRC Press, Taylor and Francis Group, Boca Raton, London, New York, 2009.
[5] A.Tekcan and O.Bizim. The Connection between Quadratic Forms and the Extended Modular Group. Mathematica Bohemica 128(3)(2003), 225236.
[6] A.Tekcan. Proper Cycle of Indefinite Quadratic Forms and their Right Neighbors. Applications of Mathematics 52(5)(2007), 407-415.
7] A.Tekcan. A Second Approach to the Proper Cycles of Indefinite Quadratic Forms and their Right Neighbors. Int. Journal of Contemporary Math. Sci. 2(6)(2007), 249-260.

