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Neighbors of Indefinite Binary Quadratic Forms

Ahmet Tekcan

Abstract—In this paper, we derive some algebraic identities on
right and left neighbors R(F) and L(F) of an indefinite binary
quadratic form F = F(z,y) = az® 4 bay + cy® of discriminant
A = b% — 4ac. We prove that the proper cycle of F' can be given by
using its consecutive left neighbors. Also we construct a connection
between right and left neighbors of F.
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|. PRELIMINARIES.

A rea binary quadratic form F' is a polynomial in two
variables = and y of the type

F = F(x,y) = az® + bay + cy® Q)

with real coefficients a,b,c. We denote it by F' = (a,b,c).
The discriminant of F is defined by the formula b? — 4ac and
is denoted by A = A(F). F isanintegral form if and only if
a,b,c € Z, and is caled indefinite if and only if A(F) > 0.
An indefinite form F' = (a, b, ¢) of discriminant A is said to

be reduced if
’\/Z—Z\a\‘<b<\/ﬁ. )

Most properties of quadratic forms can be giving by the aid
of extended modular group T (see [5]). Gauss (1777-1855)
defined the group action of T’ on the set of forms as follows:

gF(z,y) = (ar?+brs+cs?)a?
+ (2art + bru + bts + 2csu) zy  (3)
+ (at2 + btu + cu2) o>
for g = ; ® ) € T. Hence two forms F and G are called

equivalent if and only if thereexistsag € T suchthat g = G.
If det g = 1, then F and G are called properly equivalent, and
if det g = —1, then I and GG are called improperly equivalent.
If aform F is improperly equivalent to itself, then it called
ambiguous.

Let p(F') denotes the normalization (it means that replacing
F by its normalization) of (¢, —b, a). To be more explicit, we
set

P (F) = (¢, =b+ 2cry, cr? — bry + a), 4

sign(e) | ot | for lel = VA
ri =ri(F) = ©)
sign(c) V;{‘ZJ for |c| < VA
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for i > 0. Then the number r; is called the reducing number
and the form p(F) is called the reduction of F'. Further, if F
is reduced, then so is p*(F) by (2). Infact, p* is apermutation
of the set of all reduced indefinite forms.

Now consider the following transformations

x(F) = x(a,b,¢) = (—¢,b,—a)

7(F) =7(a,b,¢) = (—a,b,—c).
If x(F) = F, that is, F = (a,b,—a), then F is caled
symmetric. The cycle of F is the sequence ((tp)!(G)) for
i € Z, where G = (A, B,C) is a reduced form with A > 0
which is equivalent to F. The cycle and proper cycle of F
can be given by the following theorem.

Theorem 1.1: Let F = (a,b,c) be a reduced indefinite
quadratic form of discriminant A. Then the cycle of F is
asequence Fy ~ Fy ~ Fy ~ --- ~ F;_1 of length [, where
F() =F= ((lo,bo,CQ),

o0 = [8(F)| = VWEJ

2|ci]
and
Fiyr = (@ig1,bi41,Ciq1)
(\ci\7 —b; + 2s;|ci|, —(a; + bis; + clsf))
for 1 <4 <1[—2.If [ isodd, then the proper cycle of F is
Fo~7(Fy) ~ Fo o 7(F3) ~ oo v 7(Flog) ~ Fiog ~
T(Fo) ~ P~ 7(Fo) ~ oo~ Fig ~7(F1)
of length 2/ and if [ is even, then the proper cycle of F' is
Fo~1(F1)~ Fo~v1(Fy) ~ oo~ Fi_g ~7(F-1)

of length I. In this case the equivalence class of F is the
disoint union of the proper equivalence class of F' and the
proper equivalence class of 7(F). [1], [4]

The right neighbor of F = (a,b,c) is denoted by R(F) is
theform (A, B, C) determined by A = ¢, b+B = 0(mod 2A),
VA —2|A] < B < VA and B2 - 4AC = A. Itis clear from
definition that

0 -1
re = (73 ) @b, ©
where b + B = 2¢6. The left neighbor is hence

L(F) = ( Dy )R(c, ba) = xr(R(c,b,a)).  (7)

So F' is properly equivalent to its right and left neighbors (for
further details on binary quadratic forms see [1], [2], [3], [4]).
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I1. NEIGHBORS OF INDEFINITE QUADRATIC FORMS.

In this section, we will derive some properties of neighbors
of indefinite quadratic forms. In [6], we proved the following
theorem.

Theorem 2.1: Let Fy ~ F} ~ --- ~ F;_1 bethecycleof F
of length 7 and let R¥(Fy) be the consecutive right neighbors
of FF= F, fori>0.

1) If [ is odd, then the proper cycle of F'is

FO ~ Rl(Fo) ~ R2(FO) A e A R2l*2(FO) ~ R2171(F0)

of length 21.
2) If [ is even, then the proper cycle of F'is

Fy ~ RI(FO) ~ RZ(FO) ~ o RliZ(FO) -~ Rlil(Fo)

of length [.

Also we proved that if { is odd, then R%(FO) and
Rz (Fy) are the symmetric right neighbors of F. Further
we proved the following corollary and two theorems in [6].

Corollary 2.2: Let Fy ~ Fy ~ --- ~ F;_1 be the cycle of
F of length [.
1) If [ is odd, then

i . F; 1 1S even
R(F) = { 7(F;) iis odd

for1<i<[—1and

i . F;_; 1 1S even
R(Fo) _{ 7(F;_;) iis odd

forl <i<2]—1.
2) If [ is even, then

i _ F; 11s even
R(Fo) = { 7(F;) s odd

for1<i<[-—1.

Theorem 2.3: If [ is odd, then F' has 2] — 1 right neighbors
and if [ is even, then F' has ! — 1 right neighbors.

Theorem 2.4: If [ is odd, then

1) RI(Fy) = xr(R¥ 17 (Fy)) for 1 < i < 21 — 2 and
R*Y(Fy) = x1(Fp).

2) RY(Fy) = 7(RY(Fy)), RY(Fy) = 7(Fp) for 1 < i <
I—1and RY(Fy) = 7(R(Fy)) for 1 +1 <i<20—1.

In [7], we aso derived some agebraic identities on proper
cycles and right neighbors of F. Now we can return our
problem. Then we can give the following theorems.

Theorem 2.5: If [ is odd, then in the proper cycle of F, we
have

1) R{(Fy) =7(F;—y) for 1 <i<2l—1.

2) x7(R(Fp)) = R¥1=(Fy) for 0 <i <1 —1.

Proof: 1) Let Fy = F = (ao, by, ¢o). Then applying (6),

we get

Hence it is clear that

Fy
RlJrl(FO)
RH—Q(FO

R2l73(F0
R2l_2(F0)
R2l71 (FO)

(a0a b07 CO)

(a1,b1,¢1)

(027 by

) 62)

(c2,b2,a2)
(Clybhal)

(CO7 bO? ao).

T Fo)

S0 Ri(Fy) = 7(F;y) for 1 <i <20 —1.

2) Similarly we find that

x7(Fo
X7 (R (Fy)
x7(R*(Fy)

XT(RZ (Fo)

)
)
) =

) =
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XT(RT (F) = R°7 (Fy)
XT(RF(Ry) = R°7 (Fp)
xT(R7T3(Fy)) = R"™(F)
XT(R2(Fy)) = RYY(R)
XT(RYEF)) = RU(F).

So 7 (R (Fy)) = B2~ (Fy) for 0 < i <1 —1.

Now we consider the left neighbors of F'. Recall that the

left neighbor of F' is defined to be
0 1

L(F) = L(a,b,c) = ( Lo )R(c,b,a).

Then we can give the following theorem.

ISSN: 2517-9934
Vol:5, No:3, 2011

So the result is clear. The others can be proved similarly. =

Note that we proved in Theorem 2.1 that the proper cycle
of F can be given by using its consecutive right neighbors.
Similarly we can give the following theorem.

Theorem 2.7: Let L(F) denote the consecutive left neigh-

bors of F.

u 1) If [ is odd, then the proper cycle of F' = Fj is

of length 21.

2) If [ is even, then the proper cycle of F' = Fj is

Fo ~ LN E) ~ oo~ L (Fy) ~
of length [.

Theorem 2.6: Let Fy ~ F} ~ --- ~ F;_1 denote the cycle

of F. If [ is odd, then
1)

i | T(F=)  iis odd
L (Fp) = { F_; 1158 even

for1 <i</(and

i | T(Fy—i) iisodd
L(Fo) = { Fy_y  iiseven

fori+1<:<2l.
2)

i B F 1 1s odd
T(L (FO)) = { T(Flfi) 118 even

for1 <i</[and

(L' (Fp))

{ FQl,,,j 118 odd

T(Fa—;) s even

forl+1<:<2l.
3)

; | 1(Fi21)  iis odd
X(L'(Fo)) = { F,_1 iiseven

for1 <i</and

Y(LH(Fy)) = { T(Fi—1-1) i is odd

F;__1 i 1S even

fori+1<:<2I.

Proof: 1) Applying (7), we get

Proof: 1) Let [ be odd. Then by Theorem 1.1 the proper

cycleof F'is

Fy NT(Fl) ~ Fy NT(F3) ~ e NT(F’Z72) ~
o~ EFlg ~T(Foy)

T(Fo)NFl NT(FQ)N

of length 2. We also see Theorem 2.6 that

i [ 1(F=) iisodd
L (Fo) = { F_; 118 even

for1<i<![and

i | T(Fy—i) iisodd
L (Fp) = { Fo_;  11is even

for I +1 < ¢ < 2. So the proper cycle of F' is Fy ~

LA=Y(Fy) ~ - ~ L2(Fy) ~ LY (Fyp).

Similarly it can be shown that if [ is even, then the proper
cycleof Fis Fy ~ L' (Fy) ~ - ~ L2(Fy) ~

Example 2.1: 1) The cycle of F = (1,5,
5—4) ~ Fi = (4,3,-2) ~ Fy = (2,5,-2) ~ F3 = (2,
3,—4) ~ Fy = (4,5,—1) of length 5. So its proper cycle is

hence
Fo=(1,5,-4) ~ Fy = (— 4,3,2)~F:
F3:(_7374)NF4:( 57_1)N
Fs=(4,3,-2) ~ Fr = (—2,5,2) ~
FQZ(_47571)

of length 10. The consecutive left neighbors of F are
LY(F) = (=4,5,1), L*(F) =

Fy ~ L2l*1(F0) ~ e NLQ(FO) ~

—4)is Fy = (1,

LY (Fy) = (co,bo,a0) = 7(F—1)
L*(Fy) = (—c1,b1,—a1) = F_»
L3(F0) (6271)27@2) :T(FZ—B)
LY(Fy) (—ao, by, —co) = 7(Fp)
Ll+1(FO) (_C07b0,—0,0) :Fl72
LY F) = (—a1,bi,—c1) =7(F)
L*(Fy) = (ao,bo,co) = Fp.

L (F) = (252) () =

LT(F) = (-2,3,4), L}(F) =
LO(F) = (—4,3,2), L' (F) = F.

So it is easily seen that the proper cycle of F'is
FoLYF)~ L3(F) ~ LT(F) ~ LS(F) ~

LYF) ~ L3(F) ~ L*(F) ~ L*(F).

(43_2)7
LP(F) = (-1,5,4),L5(F) = (5—1
(2,
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2) The cycle of F = (1,8,-5) is Fy = (1,8,—5) ~ F} =
(5727_4) ~ F2 = (4767_3) ~ F3 = (3767_4) ~ F4 =
(4,2,-5) ~ F5 = (5,8,—1) of length 6. So its proper cycle

IS

FO:(1787_5)NF1 :(_57274)NF2:(4:67_3)N
F3; = (—3,6,4) ~F,= (4,2,—5) ~ F5 = (—5,8,1).

The left neighbors of F' are

LY(F) = (-5,8,1),L*(F) =
L*(F) = (-3,6,4), L'(F) =
L3(F) = (-5,2,4),L5(F) = F.

So its proper cycle is F ~ L3(F) ~ L4(F) ~ L3(F) ~
L2(F) ~ L(F).

From above theorem, we can give the following result.

Theorem 2.8: If [ is odd, then F' has 2] — 1 left neighbors
and if [ iseven it has [ — 1 left neighbors.

Proof: Let [ be odd. Then we get

Fo (ao, bo, o)
Fi = (a1,b1,¢1)
F, = (ag, b, c2)
F3 = (

a37b37c3)

Fi_s = (—c2,b2,—a2)
F_, = (—C17b17—(11)
ﬂ—l = (7CO7b0>7a0)

The first left neighbor of F' = Fy is
Ll(Fo) = (al7b1701)

0 1
= ( 1 0 )R(Cwbo,do)

< 0 1 > (CL(], *b() + 2@0(5(),00 — (Sob() + a(]ég)

1 0
(co — Bobo + aody, —bo + 2aodo, ap)
= (Coyboya0)~

Similarly we obtain

L2(FO) = (_Clabla_al)
L3(Fy) = (c2,b3,a2)
LY(Fy) = (—c3,b3,—as3)
Ll (FO) = (70407 bOy 700)
LY (Fy) = (—co,bo, —ao)

LPYFR) = (~a1,bi,—c1)
L*(Fy) = (ag,bo,co) = F.

So F has 2] — 1 left neighbors. Similarly it can be shown that
F hasl —1 left neighbors if [ is even. [ ]

Theorem 2.9: Let Fy ~ Fy ~ ---
F of length {. If [ is odd, then

1) L(F;) = 7(F;—q) for 1 <4 < 1—1and L(Fy) =
T(F[71).
X7 (Fo).

~ F;_1 be the cycle of

Proof: 1) Let F'= Fy = (ao,bo,CO). Then
Fi = (a1,b1,¢1)
= (‘Co|, —b0+280|00‘, —(CLO +b080+608%))
= (—co, —bo — 2s0co, —ao — boso — cosy) . (8)
Now we try to determine thefirst left neighbor of F;. Applying
its definition, we get
L(Fl) =L (7(207 *bo — 28()(2()7 —ag — boSo — Cosg)

01
= < 1 0 ) R (—a() — boSQ — 608(2)7 —bo — 280607 —Co) . (9)

So we have to find out the right neighbor of (—ag — bgso —
cs2, —bo — 2s9co, —cp). To get this we make the change of
variables x — y and y — —x — dpy. Then we get
R (fao —bpsp — cosg7 —bo — 2s¢co, fco)
= (—ao — boso — cosg)y® + (—bo — 2s0co)y(—z — doy)
+(—co)(—z = doy)?
= —cox? + (by 4 2c050 — 2c000) Ty (20)
+(—ag — boso — cosg ~+ bgdo + 2s9codo — codg)yQ.
Also for i = 0, we get so = —dy. So (10) becomes
R (—ao — bosg — cos%7 —bo — 2s¢co, —co)
= —cox? + (by — 2c080 — 2¢odp)xy
+(—ag + bodo — b2 + bodo — 202c0 — codd)y>. (11)
Since sqg = —dp = 0, (11) becomes
R (fao — bosg — cosg, —bo — 2s¢co, fc())
= —cox® + bozy — apy>. (12
So applying (9) and (12), we get

L(Fl) = L (—Co, —b() — 28060, —ag — boSQ — C()S%)

( 01 ) R (*ao — b()S() — C()S(%7 *bo — 28060, *Co)

1 0
0 1
= ( 1 0 )(_607b07_a0)

= (_a07b07_60)

= T(F()).
Similarly we find that L(F») = 7(F1), L(Fs) = 7(F3),
<o L(Fj—1) = 7(F1—2) and L(Fy) = 7(F;—1). The other
case can be proved similarly. ]
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Example 2.2: The cycle of F = (1,7,-6) is

FO:(1a77_6)NF1 :(6757_2)NF2:(277a_3)N
F3=(3,5,—4) ~ Fy = (4,3,—4) ~ F5 = (4,5,-3) ~
F6:(3777_2)NF7:(2757_6)NF8:(6777_1)'

Then

So LT (Fy) and L*% (F,) are symmetric left neighbors. m

Theorem 2.12: If [ is odd, then in the proper cycle of F,

we have

1) Li(Fp) = Fy—; for 1 <4 <2l
2) L'(Fo) = 7(Fii) for 1 <i < land L'(Fo) = 7(Fyi—i)

fori+1<:<2l.

L(Fy) =L(1,7,—6) = (—6,7,1) = 7(Fg) = x7(Fp) N Vfori41<i<al
— _ _ _ i—l-1 <1< 2.
L) = L(6,5,-2) = (=1,7,6) = 7(Fo) = x7(F%) "4y 1i(7) = xr(F_y) for 1 <i <2l
L(FQ) = L(2a 77 3) = ( 67572) - T(Fl) = XT(F7)
L(F3) = L(3,5,—4) = (=2,7,3) = 7(Fy) = x7(F) Proof: 1) Before starting our proof, we try to determine
L(Fy) = L(4,3,—4) = (=3,5,4) = 7(F3) = x7(F5) the cycle and proper cycle of F'. To get thislet F' = Fjy = (ay,
i bo,CO).ThenthecycleofFing~F1~ Fo~oii~nFig~
L(F5) = L(4a 57 _3) = (_47 37 4) = T(F4) = XT(F4) F‘l71' where
L(Fs) = L(3,7,—2) = (—4,5,3) = 7(F5) = x7(F3) r b
L(Fy) = L(2,5,~6) = (~3,7,2) = 7(Fy) = x7(F) oo e
L(Fs) = L(6,7,—1) = (—2,6,5) = 7(Fy) = x7(F\) 1= (anbua)
F2 - (a27 b27 62)
as we wanted. F3 = (a3, bs,c3)
From above theorem, we can give the following corollary. P
FFTS = (alTTs,bszs,cszs)
Corollary 2.10: Let Fy ~ Fy ~ --- ~ F;_1 be the cycle of 7 B b
F of length 1. If 1 is odd, then e (“; = *“%)
1) 7(L(Fp)) = L+ (Fy) for 1 < i < 1. | Fra = (—cﬁmﬂ,—azi)
2) X(L!(Fp)) = L (Fy) for 1 < i < land x(L'(Fp)) = 2 z2 2
L3F=i(Fy) forl4+1<i<2l.
Fi_z3 = (—co,b,—ay)
Theorem 2.11: Llet Fy~F ~o F begtﬂ? cycle of F_o = (—c1,b1,—ay)
F of length I. If [ is odd, then L™= (Fp) and L2 (Fp) are F_1 = (—co,bo, —ap)

the symmetric left neighbors of F.

Proof: We know that F' has 2] — 1 left neighbors when |
is odd. Also

So the proper cycle of F ishence Fy ~ F; ~ Fy ~ -+ ~

Fiy~F~Fi~Fi~--

~ Fy_o ~ Fy_1, where

Fo = (ao, bo, o)
L'(Fy) = (co,bo,ap) F = (=a1,bi,—c1)
LQ(F()) = (—Cl, bl, —a1) F2 = (a27 b27 02)
LJ(F()) = (027b2,a2) FS = (_adab37 _05)
LT (R) = (—aia,bis, —ci) Fiy = (c1,b1,a1)
41 F1 = (—co bo,—ao)
L= (Fy) = (—awm, b, —a111) B
s 2 2 2 F, = (—ap,by,—co)
L= (k) = (6%7 bit, alTTl) Fio1r = (a1,b1,¢1)
ILYF,) = (—ao,bo,—
Ll+1(FO) ( ao,bo, ) Fy o = (—c1,b1,—a1)
(Fo) = (—co,bo,—ao) Fo_y = (co,bo,ag).
LBL;I(FO) R TP Now we determine the left neighbors of FF = F,. Then
2 2 2 applying (7), we get
3141
Lm; (Fo) = (ale, blTl’ 7%#) LY(Fy) (co, Do, ag) = Far—1
L (Fo) = (—Clzl, b%7—al—71) LQ(FO) (—Cl,b17—al) = F2172
LN F) = (—a1,b1,—c1) L'(Fy) (—ao,bo, —co) = F}
L*(Fy) = (ao,bo,co) LY (Fy) (—co,bo, —ao) = F1—1
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L*"NFy) = (—ai,bi,—c1)=F
L*(Fy) = (ao, by, co) = Fy.
So LL(F()) =Fy_; for 1 < <2l

2) Similarly we obtain

LYFy) = (co, bo, ag) = 7(F_1)

L*(Fy) = (—c1,bi,—a1) =7(F_2)
L'72(Fy) = (—ag, by, — ) = 7(F)
LYYF) = (a1,b1,¢1) =7(Fy

LYFy) = (—ao, by, —co) = 7(Fp)
LMY F) = (—co,bo, —ao) = 7(Fa-1)
LY2(F) = (e1,b1,a1) = 7(Fy_2)
LAY EF) = (—ay,b1,—c1) =7(F41)

L*"(Fy) = (ao,bo,co) = 7(F).

So LZ(F()) = T(Fl,i) for | <<l and LZ(F()) = T(Fgl,i)
forl+1<i<2l.

The others are proved similarly. ]

Example 2.3: The cycle of F' = (1,7,—6) is
Fy=(1,7,—6) ~ F; = (6,5,—2) ~ F» = (2,7,-3) ~
F3 = (3157_4) NF4 = (4a37_4) NF5 = (4a‘5a_3) ~
Fs=(3,7,-2) ~ Fy = (2,5,—6) ~ [y = (6,7, —1)

and hence the proper cycle of is

~F =(-6,5,2) ~ F, =(2,7,—-3) ~
~ Fy=(4,3,—4) ~ F5 = (—4,5,3) ~
=(-2,5,6) ~ Fg = (6,7,—1) ~
Fy=(—-1,7,6) ~ Fy9 = (6,5, —2) ~

Fio = (3,5,—4) ~ Fig = (—4,3,4) ~ F1y = (4,5,-3) ~
Fis = (—3,7,2) ~ Fig = (2,5, —6) ~ Fi7 = (—6,7,1).
The left neighbors of F are
LYFy) = (=6,7,1) = Fi7, L*(Fy) = (2,5, —6) = Fie,
L3(Fy) = (=3,7,2) = Fi5, LY(Fy) = (4,5, —3) = Fl4,
LE(FO) = (747374) = F137L6(F0) = (3757 74) = F12
L7(Fy) = (=2,7,3) = Fi1, L¥Fy) = (6,5, —2) = Flo,
LO(Fy) = (—1,7,6) = Fy, L'(Fy) = (6,7, —1) = Fj,
LY (Fy) = (-2,5,6) = Fr, LY3(Fy) = (3,7,-2) = Fs
L¥(Fy) = (—4,5,3) = F5, LY(Fy) = (4,3, -4) = Fy,
LY (Fy) = (~3,5,4) = F5, L' (Fy) = (2,7, —3) = Fy,
LY(Fy) = (—6,5,2) = Fy, L'"(Fy) = (1,7,—-6) = Fy
Here, L°(Fy) and L1*(Fy) are symmetric left neighbors of F

by Theorem 2.11.

Fip =(-2,7,3) ~

Now we give the connection between right and left neigh-
bors of F'. To get this we can give the following theorem.

Theorem 2.13: Let R¥(Fy) and Li(Fy) be denote the right
and left neighbors of F', respectively.

1) If isodd, then Li(Fy) = R~ (Fp) for 1 <i <21 —1.

2) If 1 is even, then Li(F,) = R'=%(Fp) for 1 <i <1 —1.

Proof: 1) Let | be odd. Then the proper cycle of F
can be given by using its consecutive right neighbors, that
iS, Fo ~ Rl(Fo) ~ R2(Fo) ~ ey R2l72(F0) ~ R2l71(F0)
by Theorem 2.1. Also by considering the proper cycle Fy ~
T(Fl) ~ F2 ~ T(Fg) ~ e T(Flfg) ~ F},l ~ T(F()) ~
Fy~7(Fy) ~-~F_g~7(F_1) Of F, we get

F; 1 1S even

R(FO):{ HF) iis odd
for1<i<il-1and

i . F;_; 1 1S even
R(Fo) _{ 7(Fy_;) iis odd

for I <i<2l—1 by Corollary 2.2. Also

i | T(F=;) s odd
L'(Fo) = { Fi_;, iiseven
for1 <i</(and
i _ T(FQZ_Z‘) i 1s odd
Li(Fp) = { Fo_i  11is even

for I + 1 < i < 2[. On the other hand, since the proper cycle
of Fis L2l(F0) ~ Lzlil(Fo) ~eee LQ(F()) ~ LI(F()), we
conclude that L*(Fp) = R¥~(Fy) for 1 <4 < 2] — 1.
Similarly if I is even, then L*(Fy) = RV (Fp) for 1 < <
[ —1.

Example 2.4: 1) Thecycleof F = (1,5,—4) isFy = (1,5,
_4)NF1:(4737_2)NF2:(2757 _Z)NF3:(2737
—4) ~ Fy = (4,5,—1). The consecutive left and right neigh-

bors of F' are
LY(F) = (—4,5,1) = R(F)
L*(F) = (2,3,—4) = R}(F)
L3(F) = (-2,5,2) = R'(F)
L*(F) = (4,3,—2) = R5(F)
L3(F) = (—1,5,4) = R5(F)
LS(F) = (4,5,—1) = R*(F)
LT(F) = (-2,3,4) = R3(F)
L3(F) = (2,5,-2) = R*(F)
L(F) = (—4,3,2) = RY(F).

2) The cycle of F = (1,8,-5) is Fy = (1,8,—5) ~ F} =
(5727_4) ~ F2 = (4767_3) ~ F3 = (3767_4) ~ F4 =
(4,2,-5) ~ F5 = (5,8, —1). The consecutive left and right
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neighbors of F' are

LY(F) = (-5,8,1) = R*(F)
L*(F) = (4,2,-5) = R*(F)
L3(F) = (-3,6,4) = R3(F)
LY(F) = (4,6,-3) = R*(F)
L?(F) = (=5,2,4) = RY(F).

From above theorem, we can give the following result.

Corollary 2.14: Let Ri(F,) and Li(F,) denote the right
and left neighbors of Fy, respectively. If [ is odd, then

1) LI(Fy) = 7(R7(Fp)) for 1 < i < 1 and Li(Fp) =
(R (Fy)) for 1 +1 <4 < 2.

2) Li(Fy) = x(RT=Y(Fy)) for 1 <4 <1 and Li(Fp) =
X(RTY(FY) for 141 <i < 2l.

If I iseven, then Li(Fy) = x7(RH(Fp)) for 1 <i < 1—1.

Finaly, we can give the following theorem.
Theorem 2.15: R(F},) and L(Fy) denote the right and left
neighbors of Fj, respectively. Then
R(L(Fy)) = L(R(Fp)) = Fo.

Proof: Recall that the right neighbor of F = (a,b,¢)
is the form R(F) = (A,B,C), where A = ¢, b+ B =0
(mod 2A), VA—2|A| < B < VA and B —4AC = A. Also
R(F) = [0;—1;1; —d](a,b,c) for b+ B = 2¢d and L(F) =
x7(R(c,b,a)). For F = Fy = (ag, bo, co), We get

L(FO) = < (1] (1) )R(Co,bo,ao). (13)

Now we try to find R(cy, by, ag). It is easily seen that
R(co, by, ap) = (ag, —by + 2a¢dy, co — bodo + aoég).
So (13) becomes
L(Fy) = (co — bodo + apd, —bo + 2aodo, ap).

Note that —bg + 2a¢dg = 7b0(m0d 20,) Also \/Z — 2\a0| <
—bo+2a0dy < VA. Soif we take the right neighbor of L(Fy),
then we get

R(L(Fy)) = R(co — bodo + aodg, —bo + 2a06o, ao)
= (ao,bo, co)
= Fp.
Similarly it can be proved that L(R(Fp)) = Fo. |
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