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Abstract—In this paper, the definitions of the quaternion measure
and the quaternion vector measure are introduced. The relation
between the quaternion measure and the complex vector measure
as well as the relation between the quaternion linear functional and
the complex linear functional are discussed respectively. By using
these relations, the necessary and sufficient condition to determine
the quaternion vector measure is given.
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I. INTRODUCTION

LET X be a Banach space over complex field and (Ω,Σ)
be a measurable space. A function m:

∑ → X is said

to be a vector measure if m satisfies

m(∪∞
n=1En) =

∑∞
n=1 m(En)

for all sequences of pairwise disjoint sets {En}∞n=1 ⊆ ∑
,

where the series is convergent in the norm topology of X .

The study of vector measure is a very active field of

research, and it is already very old, too. For the case of vector

measure on σ− algebra Σ to the real or complex Banach space,

in 1936, J. A. Clarkson [1] used vector measure-theoretic ideas

to prove that, many Banach spaces do not admit equivalent

uniformly convex norms. In 1938, I. Gel’fand [2] also used

vector measure-theoretic methods to prove that L1[0, 1] is not

isomorphic to a dual of a Banach space. From the forties to the

mid-sixties, many mathematicians, for example, R. G. Bartle

[3], N. Dinculeanu and I. Kluvánek [4], N. Dunford and J.

T. Schwartz [5], J. Lindenstrauss and A. Pelczyński [6], etc.,

gave many classical results on vector measure.

In 1977, J. Diestel and J. J. Uhl Jr [7] gave a comprehensive

survey of vector measures. After the Seventies, for example,

in 1980, I. Kluvánek [8] discussed the applications of vector

measures. In 1984, J. Diestel and J. J. Uhl Jr [9] again

gave the progress in vector measures. In 1997, A. Fernández

and Faranjo [10] studied the Rybakov’s theorem for vector

measures in Fréchet spaces. In 2007, G. P. Curbera and W. J.

Ricker [11] gave survey on vector measure, integration and

application. For more information on vector measures, the

reader is referred to [7], [9], [11] and its references.

Recent years, there are some interests in the quaternion

Banach space and quaternion Hilbert space. For example, in

1987, C. S. Sharma and T. J. Coulson [12] discussed the

spectral theory for unitary operators on a quaternion Hilbert

space; in 1992, S. H. Kulkarni [13] gave the representation of

a class of real B∗-algebras as algebras of quaternion-valued

functions; in 2007, Chi-Keung Ng [14] gave some results on
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quaternion normed spaces, S. V. Ladkovsky [15] studied the

algebra of operators in Banach spaces over the quaternion

skew field. For more details about quaternion analysis and

its applications, we refer to [16] and references there in.

Consider the differences between the complex Banach space

and the quaternion Banach space, and the applications of the

quaternion measure and quaternion vector measure to quantum

mechanics [17], we naturally discuss the following question.

Question. Does the quaternion vector measure have some

properties which are analogous to that of complex vector

measure ?

In this paper, we introduce the definition of the quaternion

vector measure, and discuss the above question, give some

properties on the quaternion measure and quaternion vector

measure. By using these obtained properties, we also prove

that Lemma 3, Theorem 1 and 2, which are necessary and

sufficient conditions for the quaternion measure and the

quaternion vector measure. Moreover, Theorem 1 and 2 are

similar to complex vector measure case.

II. PRELIMINARIES

Let R and C be the real number field and the complex

number field, respectively. The quaternion skew field, denoted

by H, is the set of all elements with the form q0+ q1i+ q2j+
q3k, where q0, q1, q2 and q4 ∈ R, moreover,

i2 = j2 = k2 = ijk = −1;
ij = −ji = k, jk = −kj = i, ki = −ik = j.

It is clear that R ⊂ C ⊂ H, and the multiplication operation

is noncommutative in H, it is easy to imply that jc = cj for

any complex number c. Furthermore, for every q ∈ H, q can

be uniquely expressed as

q = q1 + q2j, (1)

where q1, q2 ∈ C for q = q0 + q1i + q2j + q3k ∈ H. The

conjugate and norm of q are respectively defined as

q̄ = q0 − q1i − q2j − q3k,

|q| =
√

q20 + q21 + q22 + q23 .

Let Mn(C) (resp. Mn(H)) be the collection of all n × n
matrices with complex entries (resp. quaternion entries). For

A ∈ Mn(H), then there exist A1 and A2 in Mn(C) such that

A = A1 +A2j and such representation is unique. We call the

2n× 2n complex matrix[
A1 A2

−A2 A1

]
(2)

as the complex adjoint matrix of the quaternion matrix A and

denote it by χA.
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Analogy to the classical measure theory, we extend the

definition of complex measure to the quaternion setting and

have Definition 1.

Definition 1. Let (Ω,Σ) be a measurable space. A function

μ : Σ → H is called a quaternion measure if

μ(∪∞
n=1En) = Σ∞

n=1μ(En)

whenever {En}∞n=1 ⊆ Σ is a sequence of pairwise disjoint

sets.

In this paper, we call the Banach space over complex field

as the complex Banach space and the vector measure from Σ
to the complex Banach space as the complex vector measure.

Similar to the definition of the complex vector measure, we

introduce the definition of a quaternion vector measure.

Definition 2. Let (Ω,Σ) be a measurable space and XH be a

quaternion Banach space. A function m : Σ → XH is called

a quaternion vector measure if m satisfies

m(∪∞
n=1En) = Σ∞

i=1m(En)

for all sequences of pairwise disjoint sets {En}∞n=1 ⊆ Σ,

where the series is convergent in the norm topology of XH.

III. NECESSARY AND SUFFICIENT CONDITIONS FOR THE

QUATERNION VECTOR MEASURE

Owing to the quaternion multiplication is noncommutative,

according to the left scalar multiplication and the right scalar

multiplication, we call a vector space over the quaternion field

H as a left or right quaternion vector space. For convenience,

the left quaternion vector space and the left quaternion Banach

space are also said to be the quaternion vector space and the

quaternion Banach space, respectively.

Throughout this paper, we assume that XH is a quaternion

vector space, {ei}∞i=1 ⊂ XH is a basis of XH,

XC = {x |x =
∑∞

i=1 αiei, αi ∈ C},
YC = {x |x =

∑∞
i=1 αijei, αi ∈ C},

then XC and YC are vector spaces over C with respect to the

addition operation and the scalar multiplication operation of

XH, respectively.

In order to give some necessary and sufficient conditions

for the quaternion measure and quaternion vector measure,

we need the following auxiliary lemmas.

Lemma 1. Let an, bn ∈ C and qn = an+ bnj, then the series∑∞
n=1 qn is convergent if and only if

∑∞
n=1 an and

∑∞
n=1 bn

are convergent, respectively.

Proof. Let
∑∞

n=1 qn = q, where q = a+ bj and a, b ∈ C. By

|
n∑

i=1

qi − q| = ((|
n∑

i=1

ai − a|)2 + (|
n∑

i=1

bi − b|)2) 1
2 ,

let n → ∞, then the conclusion is valid. �
Lemma 2. Under the hypotheses of XH, then

XH = XC + YC.
Moreover, if XH is a quaternion Banach space, then XC and

YC are complex Banach spaces under the norm of XH.

Proof. Let x ∈ XH, then x =
∑∞

n=1 αiei, αi ∈ H. By (1), then

αi can be represented as αi = αi1+αi2j, where αi1, αi2 ∈ C.

By simple computation, then

x =
∑∞

n=1 αi1ei +
∑∞

n=1 αi2jei.

By using the definitions of XC and YC, we have

XH = XC + YC.

Let {yn}∞n=1 ⊆ XC, then yn =
∑∞

i=1 βinei, where βin ∈ C.

If {yn}∞n=1 is a cauchy sequence of the complex vector space

XC under the norm of XH, note that XH is a Banach space,

then yn is convergent to y ∈ XH.

Let y =
∑∞

i=1 αiei, αi ∈ H. By (1), there exist αi1 and

αi2 ∈ C such that αi = αi1 + αi2j, thus

yn − y =
∞∑
i=1

(βin − αi1)ei −
∞∑
i=1

αi2jei.

Since yn is convergent to y, we have

lim
n→∞

∞∑
i=1

(βin − αi1)ei =
∞∑
i=1

αi2jei.

Note that {ei}∞i=1 is the basis of XH and XC ⊂ XH, hence

{ei}∞i=1 is also basis of the complex vector space XC. Since

βin − αi1 ∈ C and {ei}∞i=1 is a basis of XC, we imply that

αi2 = 0 for i = 1, 2, · · ·. Thus y =
∑∞

i=1 αi1ei and y ∈ XC.

So XC is a Banach space.

Analogue of the above proof, we can also show that YC is a

Banach space. Here we omit its proof. �
Lemma 3. Let (Ω,Σ) be a measurable space and XH a

quaternion Banach space. Then m : Σ → XH is a quaternion

vector measure if and only if there exist complex vector

measures m1 : Σ → XC and m2 : Σ → YC such that

m = m1 +m2.

Proof. For each E ∈ Σ, since m : Σ → XH, by Lemma 2, XC

and YC are complex Banach spaces under the norm of XH,

moreover, m(E) can be uniquely expressed as

m(E) = m1(E) +m2(E),
where

m1(E) =
∑∞

i=1 mi1(E)ei ∈ XC, mi1(E) ∈ C,
m2(E) =

∑∞
i=1 mi2(E)jei ∈ YC, mi2(E) ∈ C.

Note that m : Σ → XH is a function, thus m1 : Σ → XC

and m2 : Σ → YC are well defined and

m = m1 +m2. (3)

For all sequences of pairwise disjoint sets {En}∞n=1 ⊆ Σ,

by (3), then m(∪∞
n=1En) = m1(∪∞

n=1En) +m2(∪∞
n=1En).

According to the uniqueness of the representation of the

equality m(E) = m1(E) +m2(E) and

Σ∞
i=1m(En) = Σ∞

i=1m1(En) + Σ∞
i=1m2(En),

the proof follows. �
In following, We list a result in [18] as our Lemma 4.

Lemma 4 ([18]). Let A,B ∈ Mn(H), then

(1). χA+B = χA + χB ,
(2). ‖A‖ = ‖χA‖.

Theorem 1 reflects a relation between the quaternion

measure and the complex vector measure.

Theorem 1. Let (Ω,Σ) be a measurable space, μH : Σ → H

be a function. Then μH is a quaternion measure if and only

if m : Σ → M2(C) defined by m(E) = χμH(E) is a complex

vector measure.

Proof. By (1), then μH(E) can be uniquely expressed as

μH(E) = μ
(1)
H

(E)+μ
(2)
H

(E)j (4)
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where μ
(1)
H

(E), μ
(2)
H

(E) ∈ C.

By (2), then

m(E) = χμH
(E) =

[
μ
(1)
H

(E) μ
(2)
H

(E)

−μ
(2)
H

(E) μ
(1)
H

(E)

]
. (5)

Sufficiency: For all sequences of pairwise disjoint sets

{En}∞n=1 ⊆ Σ, since m : Σ → M2(C) is a complex vector

measure, we have

m(∪∞
n=1En) = Σ∞

n=1m(En)

in the norm topology of M2(C). By (5),

m(∪∞
n=1En) =

[
μ
(1)
H

(∪∞
n=1En) μ

(2)
H

(∪∞
n=1En)

−μ
(2)
H

(∪∞
n=1En) μ

(1)
H

(∪∞
n=1En)

]
,

Σ∞
n=1m(En) = limn→∞ Σn

i=1m(Ei)

= lim
n→∞

[
Σn

i=1μ
(1)
H

(Ei) Σn
i=1μ

(2)
H

(E)

−Σn
i=1μ

(2)
H

(E) Σn
i=1μ

(1)
H

(E)

]

= lim
n→∞

[
μ
(1)
H

(∪n
i=1En) μ

(2)
H

(∪n
i=1En)

−μ
(2)
H

(∪n
i=1En) μ

(1)
H

(∪n
i=1En)

]

=

[
μ
(1)
H

(∪∞
n=1En) μ

(2)
H

(∪∞
n=1En)

−μ
(2)
H

(∪∞
n=1En) μ

(1)
H

(∪∞
n=1En)

]
.

Consequently,

μ
(1)
H

(∪∞
n=1En) = Σ∞

n=1μ
(1)
H

(En),

μ
(2)
H

(∪∞
n=1En) = Σ∞

n=1μ
(2)
H

(En).

Thus, μ
(1)
H

and μ
(2)
H

are complex measures form Σ to C. By

(4) and Definition 1, then μH is a quaternion measure. The

sufficiency is proved.

Necessity: If μH : Σ → H is a quaternion measure, note that

the representation of the equality (4) is unique, by Lemma 1,

we can imply that μ
(1)
H

and μ
(2)
H

are complex measures.

Let {En}∞n=1 be a sequence of pairwise disjoint sets in Σ,

note that μ
(1)
H

and μ
(2)
H

are complex measures, by Lemma 4,

we can imply that

‖χμH(∪∞
i=1Ei) − χΣ∞

i=1μH(Ei)‖ → 0.
By (5), then m : Σ → M2(C) defined by m(E) = χμH(E) is

a complex vector measure. �
In the rest of this section, we will give a necessary and

sufficient condition for quaternion vector measure. Due to the

noncommutative of quaternion, there are two types of linear

functional on quaternion Banach space, left linear functional

and right linear functional. Here we are interested in the

left linear functional, so the introduction to the right linear

functional is omitted.

A left quaternion linear functional on a quaternion Banach

space X is a map f : X → H satisfying

f(αx+ βy) = αf(x) + βf(y)
for all x, y ∈ X and α, β ∈ H. For convenience, we also call

the left quaternion linear functional as the quaternion linear

functional.

Lemma 5. Let XH be a quaternion Banach space and f :
XC → C a bounded complex linear functional. If

F (x) = f(x1)− jf(jx2)

where x ∈ XH with form x = x1+x2, x1 ∈ XC and x2 ∈ YC,

then F : XH → H is a bounded quaternion linear functional.

Proof. Let x, y ∈ XH, by Lemma 2, then

x = x1 + x2, y = y1 + y2,
where x1, y1 ∈ XC and x2, y2 ∈ YC.

Note that jx2 ∈ XC, thus

F (x) = f(x1)− jf(jx2)
is well defined for each x ∈ XH.

Let α, β ∈ C, since αx = αx1 + αx2, jx = jx1 + jx2,

f : XC → C is a linear functional, by simple computation, we

can imply that

F (x+ y) = F (x) + F (y),
F (αx) = f(αx1)− jf(jαx2)

= αf(x1)− jf(α jx2)
= αf(x1)− j αf( jx2)
= αf(x1)− α jf( jx2)
= αF (x),

F (jx) = f(jx2)− jf(j2 x1)
= f(jx2) + jf(x1)
= j(−jf(jx2) + f(x1))
= jF (x).

By the above arguments, we have that

F ((α+ β j)x) = F (αx) + F (β jx)
= (α+ β j)F (x).

Thus, F is a linear functional on XH. Note that

|f(x)| ≤ |F (x)| ≤ |f(x)|+ |f(jx)| ≤ 2‖f‖‖x‖.
Hence, F (x) is a bounded quaternion linear functional. �
Lemma 6. Let XH be the quaternion Banach space and F a

bounded quaternion linear functional on XH, then there exist

bounded complex linear functionals f1 and f2 : XH → C such

that

F (x) = f1(x) + f2(x)j
for each x ∈ XH.

Proof. Since F is a bounded quaternion linear functional, for

each x ∈ XH, by (1), then F (x) can be uniquely expressed as

F (x) = f1(x)+f2(x)j, (6)

where f1(x), f2(x) ∈ C.

Let x, y ∈ XH, note that F (x+ y) = F (x)+F (y), by (6),

we can imply that

F (x+ y) = f1(x+ y) + f2(x+ y)j,
F (x) + F (y) = f1(x) + f2(x)j + f1(y) + f2(y)j,

= (f1(x) + f1(y)) + (f2(x) + f2(y))j.
Hence

f1(x+ y) = f1(x) + f1(y),
f2(x+ y) = f2(x) + f2(y).

Let α ∈ C, since F (αx) = αF (x), by (6), we have

F (αx) = f1(αx) + f2(αx)j,
αF (x) = αf1(x) + αf2(x)j.

Hence, f1(αx) = αf1(x), f1(αx) = αf1(x). Consequently,

f1 and f2 are complex linear functionals from XH to C.

Note that

|f1(x)| < |F (x)|, |f2(x)| < |F (x)|.
Then, f1 and f2 are bounded complex linear functionals. �
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Lemma 7. Let (Ω,Σ) be a measurable space and XH a

quaternion Banach space. If m, m1 and m2 are the same as

Lemma 3, and m : Σ → XH satisfies that F (m) : Σ → H

defined by E → F (m(E)) is quaternion measure for each

bounded quaternion linear functional F . Then m1 : Σ → XC

and m2 : Σ → YC are complex vector measures, respectively.

Proof. Let f : XC → C be an arbitrary bounded complex

linear functional, by Lemma 5, then

F (x) = f(x1)− jf(jx2),
is a bounded quaternion linear functional on XH, where x ∈
XH with the form x = x1 + x2, x1 ∈ XC and x2 ∈ YC.

By Lemma 3, for every E ∈ Σ, then

m(E) = m1(E) +m2(E),
m1(E) ∈ XC and m2(E) ∈ YC. Hence

F (m(E)) = f(m1(E))− jf(jm2(E)).
Let {En}∞n=1 ⊆ Σ be a pairwise disjoint sequence of sets,

since F (m(E)) is a quaternion measure, we have

F (m(∪∞
n=1En))) =

∑∞
n=1 F (m(En)).

Note that

F (m(∪∞
n=1En))) = f(m1(∪∞

n=1En))− jf(jm2(∪∞
n=1En)),∑∞

n=1 F (m(En)) =
∑∞

n=1(f(m1(En))− jf(jm2(En))),
by Lemma 1, then

f(m1(∪∞
n=1En)) =

∑∞
n=1 f(m1(En)). (7)

By Lemma 2, XC is a complex Banach space, note that f
is an arbitrary bounded complex linear functional, apply [19,

Proposition I,1] to (7), we can imply that m1 : Σ → XC is a

complex vector measure.

Similar to the above proof, we can also show that m2 : Σ →
YC is a complex vector measure. Here its proof is omitted. �

The following theorem is the main result in this paper.

Theorem 2. Let (Ω,Σ) be a measurable space and XH a

quaternion Banach space. If m : Σ → XH is a function, then

m is a quaternion vector measure if and only if F (m) : Σ → H

defined by E → F (m(E)) is a quaternion measure for each

bounded quaternion linear functional F .

Proof. Let F be a bounded quaternion linear functional, by

Lemma 6, then F (x) = f1(x) + f2(x)j, where f1 and f2 :
XH → C are bounded complex linear functionals, respectively.

Necessity: Let {En}∞n=1 ⊆ Σ be a sequence of pairwise

disjoint sets, if m : Σ → XH is a quaternion vector measure,

then

F (m(∪∞
n=1En)) = f1(m(∪∞

n=1Ei)) + f2(m(∪∞
n=1Ei))j.

Since XH can be also regard as a Banach space over C,

we regard m as a complex vector measure. Note that f1 and

f2 : XH → C are bounded complex linear functionals, apply

[19, Proposition I.1] to f1 and f2, we have

f1(m(∪∞
n=1Ei)) = f1(

∞∑
n=1

(m(En))) =

∞∑
n=1

f1(m(En)),

f2(m(∪∞
n=1Ei)) = f2(

∞∑
n=1

(m(En))) =
∞∑

n=1

f2(m(En)).

By the above equalities, then

f1(m(∪∞
n=1Ei)) + f2(m(∪∞

n=1Ei))j

= lim
n→∞

n∑
i=1

f1(m(Ei)) + lim
n→∞

n∑
i=1

f2(m(Ei))j

=
∞∑

n=1

(f1(m(En)) + f2(m(En))j) =

∞∑
n=1

F (m(En)).

Hence, for each sequence {En}∞n=1 ⊆ Σ of pairwise disjoint

sets, we have

F (m(∪∞
n=1En)) =

∞∑
n=1

F (m(En)).

Consequently, the function F (m) : Σ → H defined by E →
F (m(E)) is a quaternion measure. The proof for the necessity

of Theorem 2 is complete.

Sufficiency: By using Lemma 7 and Lemma 3, then m is a

quaternion vector measure. The proof is completed. �
By Theorem 1 and 2, the following corollary is valid.

Corollary 1. With the same notations as Theorem 2. Then

m : Σ → XH is a quanternionic vector measure if and only if

χF (m(E)) : Σ → M2(C) is a complex vector measure.
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