
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2497

Abstract—Databases have become ubiquitous. Almost all IT

applications are storing into and retrieving information from
databases. Retrieving information from the database requires
knowledge of technical languages such as Structured Query
Language (SQL). However majority of the users who interact with
the databases do not have a technical background and are intimidated
by the idea of using languages such as SQL. This has led to the
development of a few Natural Language Database Interfaces
(NLDBIs). A NLDBI allows the user to query the database in a
natural language. This paper highlights on architecture of new
NLDBI system, its implementation and discusses on results obtained.
In most of the typical NLDBI systems the natural language statement
is converted into an internal representation based on the syntactic and
semantic knowledge of the natural language. This representation is
then converted into queries using a representation converter. A
natural language query is translated to an equivalent SQL query after
processing through various stages. The work has been experimented
on primitive database queries with certain constraints.

Keywords—Natural language database interface, representation
converter, syntactic and semantic knowledge.

I. INTRODUCTION
N Natural Language Database Interface (NLDBI),
manual construction of translation knowledge normally

undermines domain portability because of its expensive
human intervention. To overcome it, the work carried out
linguistically motivated database semantics in order to
systematically construct translation knowledge [1]. Database
semantics consists of two structures; first one is designed to
function as a translation dictionary and other one to contain
selection restriction constraints on domain classes. The
database semantics is semi-automatically obtained from a
semantic data model for a target database. Based on this
database semantics, a conceptual NLDBI translation scheme is
developed. Translating a natural language question into a
database query suffers from translation ambiguity problem. In
NLDBI, translation ambiguities occur when a linguistic term
is associated with two or more domain classes. That is, a
linguistic term has many translation equivalents in physical
database structures. In previous works, translation ambiguity

N. D. Karande is with the Department of Computer Science & Engineering,

Shivaji University, Kolhapur 416113, (MS), India (Corresponding author to
provide phone: 91-9823986827; e-mail: nikhilkarande18@gmail.com).

G. A. Patil is with the Department of Computer Science & Engineering, Dr.
D. Y. Patil Colloge of Engineering, Kolhapur 416006, (MS), India (e-mail:
gasunikita@yahoo.com).

is not seriously considered, because it is assumed that, given a
specific database domain, each domain terminology has a
unique domain class. In experimental systems, this assumption
can be true. However, in real practical databases, this
assumption is too strong.
 One of the earliest NLDBI systems was LUNAR [2] which
was built on top of a database of rock samples brought back
from the Apollo missions to the moon. It uses an augmented
transition network (ATN) parser, a popular parser for
computational linguists. A query is matched recursively in a
semantic interpretation module to produce a representation
that together with quantifier information is ordered using
various heuristics. The final result is a representation language
in a logical form [3]. LUNAR and other early NLIDBs were
application dependent. Because of this, although the prototype
worked well, it was not very portable in the sense that major
modifications were required to use the NLIDB for different
databases. English Wizard is another successful natural
language query tool for relational database. It is one of the
leading software products that translate ordinary English
database requests into Structured Query Language (SQL), and
then return the results to the client. English Wizard enables
most database reporting tools and client/server applications to
understand everyday English requests for information, and
also provides graphical UI.
 All these tools translate a natural language query into an
intermediate language similar to first order logic and then into
SQL using a set of definitive rules. The intermediate language
expresses the meaning of the query in terms of high-level
concepts that are independent of database structures. In the
translating process, the premises of rules must match with
phrases of the query exactly; otherwise the rule will be re-
jected. Our goal is to overcome this problem by constructing
the most probable grammar tree and analyzing the non-
terminals (phrases) in the grammar tree to collect the
parameters, which will be used in SQL.

II. NATURAL LANGUAGE DATABASE INTERFACE BASED ON
GRAMMAR

The system architecture of natural language database
interface developed is given in Fig. 1, which depicts the layout
of the processes included in converting NL query into a
syntactical SQL query to be fired on the RDBMS.

N. D. Karande, and G. A. Patil

Natural Language Database Interface for
Selection of Data Using Grammar and Parsing

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2498

Fig. 1 Architecture of NLDBI System.

To process a query, the first step is speech tagging;
followed by word tagging. The second step is parsing the
tagged sentence by a grammar. The grammar parser analyzes
the query sentence according to the tag of each word and
generates the grammar tree/s. Finally, the SQL translator
processes the grammar tree to obtain the SQL query.

The paper is based on a unique concept of processing user
natural language into a technical form so as to access the data
from higher end data storage. NLDBI is a system that allows
users to access a database in natural language and has been a
popular field of study. Suppose we consider a properly
normalized database. Now if the user wishes to access the data
from the table, he/she accesses the tables in his/her language.

III. GRAMMAR AND PARSING
Consider a sentence w1m which is a sequence of words w1

w2 w3…wm (ignoring punctuations), and each string wi in the
sequence stands for a word in the sentence. The grammar tree
of w1m can be generated by a set of predefined grammar rules;
usually more than one grammar tree may be generated. The
formalizing capability of grammar help in describing most
sentence structures and built efficient sentence parsers.

A parser is one of the components in an interpreter or
compiler, which checks for correct syntax and builds a data
structure (often some kind of parse tree, abstract syntax tree or
other hierarchical structure) implicit in the input tokens. The
parser often uses a separate lexical analysis to create tokens
from the sequence of input characters. Parsers may be
programmed by hand or may be semi automatically generated
(in some programming language) by a tool (such as Yacc)
from a grammar written in Backus-Naur form.

The SQL translator generates query in SQL. Using
grammar the parse tree is obtained from the input statement.
The leaves of the parse tree are translated to corresponding
SQL. Fig. 2 depicts the processing of English input statement
to generate SQL query. The entire process involves tagging of
input statement, apply grammar and semantic representation to
generate parse tree, analyze the parse tree using grammar and
translating the leaves of the tree to generate corresponding
SQL query.

Fig. 2 Generation of SQL query from English Statement.

The database tables considered are EMP (empid, empname,

salary, edepid, address, post, mobileno), DEPT (deptid,
deptname, deptloc, dcapacity) and PROJECT (pid, pname,
epid). From the input NL statement, to generate parse tree the
grammar written based on database tables is:

WhatKeyBank → for | of | with | is | where | whose |
having | in | on
AAnTheBank → a | an | the
empid → integer | id | number
empname → string | name
salary → integer | salary | income | earning
mgrid → integer | manager | boss | superior
edeptid → integer | id | number
deptid → integer | id | number
deptname → string | name
deptloc → string | location
dcapacity → integer | capacity
EmpTable → employee | worker | person | emp |
employees | emps | workers |persons
ProjectTable → project | projects
DeptTable → department | dept | dpt | departments | depts
| dpts

The experimental work is to design an interface for

generating queries from natural language statements/
questions. It also consists of designing a parser for the natural
language statements, which will parse the input statement,
generate the query and fire it on the database. The
experimental work will understand the exact meaning the end
user wants to go for, generate a what- type sentence and then
convert it into a query and handover it to the interface. The
interface further processes the query and searches for the
database. The database gives the result to the system which is
displayed to the user. The following modules were developed.

 An Interface: It allows the user to enter the
query in NL, interact with the system during
ambiguities and display the query results.

 Parsing: Derives the Semantics of the statement
given by the user and parses it into its internal
representation, to convert NL input statement
into what- type question for selection of data.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2499

 Query Generation: It generates a query against
the user statement in SQL and passes on to the
database.

The algorithm designed is put as mention below:

A. Scope of the Experimental Work

1 To work on a Relational database (RDBMS), one
should know the syntax of the commands of that
particular database software.

2 The Natural language processing is done on
statements written in English language.

3 NL Input from the user is converted in the form of
what- type questions only.

 For example: What is salary of employee with name
 Nikhil

4 A limited Data Dictionary is used where all possible
words related to a particular system are included. The
Data Dictionary of the system need to be regularly
updated with words that are specific to the particular
system.

5 Ambiguity among the words is taken care of while
processing the natural language.

6 All the names in the input natural language statement
have to be in double quotes.

 For Example: Address of emp “Vivek”
7 Data dictionary used are: EMP, DEPT and ROJECT

IV. EXPERIMENTAL RESULTS
The system implemented was tested for variety of NL

statements under various categories and the results obtained
were satisfactory under the known constraints. The results
were categorized based on the generation of unambiguous
pares tree, ambiguous parse trees with two and three parse
trees.

A. Generation of ambiguous parse trees.

Fig. 3 NLDBI System.

The Fig. 3 shows the typical category of generating
ambiguous parse trees.
1 The user expects the salary and department name of

employee with id 2 and accordingly the statement
that he gives to the system may be as under;

 “Salary and department name of emp of id 2”

2 The result generated depicts the ambiguous parse
trees were the system is not able to identify the
expected meaning of the statements. Instead it
generates more than one parse trees leading two
different meanings.
For example:
 i What is salary and department name of
 employee with id 2
 ii What is salary and department name of
 department with id 2

3 The user here can interact to remove the ambiguity
by choosing the appropriate options.

4 The SQL query is generated by the system which
further fired on to the database to obtain the results
as shown in Fig. 4 as employee salary – “12000” and
department name – “Management”.

Fig. 4 Result for NL statement input to system.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2500

V. CONCLUSION
The NL statement is converted into machine understandable

form such as SQL. The NLDBI system is tested for more than
75 different NL input statements and the system works
satisfactorily. The advantage of NLDBI system is that it works
on a Relational database and removes ambiguities. So far, our
NLDBI system considers selection of data and performing
primitive queries onto the database and JOIN operation with
some constraints. The next step of research is to optimize
grammar to accommodate more complex queries.

ACKNOWLEDGMENT
I express my deep sense of gratitude and appreciation

towards my research guide Prof. G. A. Patil for his continuous
inspiration and valuable guidance in throughout my
dissertation work.

REFERENCES
[1] In-Su Kang, Jae-Hak J. Bae, Jong-Hyeok Lee “Database Semantics

Representation for Natural Language Access.” Department of Com
Computer Science and Engineering, Electrical and Computer
Engineering Division Pohang University of Science and Technology
(POSTECH) and Advanced Information Technology Research Center
(AITrc), 2002.

[2] Woods, W., Kaplan, R. “Lunar rocks in natural English: Explorations in
natural language question answering.” Linguistic Structures
Processing. In Fundamental Studies in Computer Science, 5:521-569,
1977.

[3] Androutsopoulos, I., Richie, G.D., Thanisch, P. “Natural Language
Interface to Database – An Introduction.” Journal of Natural Language
Engineering, Cambridge University Press. 1(1), 29-81, 1995.

[4] Linguistic Technology. English Wizard – Dictionary Administrator's
Guide. Linguistic Technology Corp., Littleton, MA, USA, 1997.

[5] Dan Klein, Christopher D. Manning: Corpus-Based Induction of
Syntactic Structure: Models of Dependency and Constituency. ACL
2004: 478-485.

[6] M-C.de Marneffe, B. MacCartney, and C. D. Manning. “Generating
Typed Dependency Parses from Phrase Structure Parses.” In Pro-
ceedings of the IEEE /ACL 2006 Workshop on Spoken Language
Technology. The Stanford Natural Language Processing Group. 2006.

[7] Dan Klein and Christopher D. Manning. 2003. Fast Exact Inference
with a Factored Model for Natural Language Parsing. In Advances in
Neural Information Processing Systems 15 (NIPS 2002), Cambridge,
MA: MIT Press, pp. 3-10.

[8] Marie-Catherine de Marneffe, Bill MacCartney, and Christopher D.
Manning. Generating Typed Dependency Parses from Phrase Structure
Parses. In LREC 2006.

N. D. Karande received the B.E. degree in
Computer Science and Engineering from
Bharati Vidyapeeth College of Engineering,
Kolhapur, India in 2006. He is doing his
MTech in Computer Science and Technology
at Shivaji University, Kolhapur, India. From
2007 to 2009, he is working as Lecturer at
Bharati Vidyapeeth College of Engineering,
Kolhapur, India. He has published various
papers in the area of Network Security and
Natural Language Processing.

G. A. Patil received the BE degree in
Computer Science and Engineering from PES
college of Engineering, Mandya and ME in
Computer Science and Engineering from
Walchand College of Engineering, Sangli.
Since 1992 he is working as Assistant Professor
at D. Y. Patil College of Engineering,
Kolhapur, India. He has published various
papers in the area of Distributed System and
Information Security.

