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Natural Emergence of a Core Structure in Networks
via Clique Percolation

A. Melka, N. Slater, A. Mualem, Y. Louzoun

Abstract—Networks are often presented as containing a “core”
and a “periphery.” The existence of a core suggests that some
vertices are central and form the skeleton of the network, to which
all other vertices are connected. An alternative view of graphs is
through communities. Multiple measures have been proposed for
dense communities in graphs, the most classical being k-cliques,
k-cores, and k-plexes, all presenting groups of tightly connected
vertices. We here show that the edge number thresholds for such
communities to emerge and for their percolation into a single dense
connectivity component are very close, in all networks studied. These
percolating cliques produce a natural core and periphery structure.
This result is generic and is tested in configuration models and in
real-world networks. This is also true for k-cores and k-plexes. Thus,
the emergence of this connectedness among communities leading to
a core is not dependent on some specific mechanism but a direct
result of the natural percolation of dense communities.

Keywords—Networks, cliques, percolation, core structure, phase
transition.

I. INTRODUCTION

REAL-WORLD networks as well as simulated graphs are

characterized by multiple structural aspects. The first

discussion of such a structure was the emergence of a giant

connected component, followed by the connectedness of the

majority of vertices, studied in 1960 by Erdős and Rényi

[1], [2]. Networks can also have more local structures such

as communities that have gained attention in recent years

[3]-[6]. Those communities can either be loose and spanning

the entire graph [7]-[10], or multiple dense subgraphs. Dense

communities can be represented by structures, including

among others k-cliques, k-plexes, or k-cores. Cliques are the

most dense subgraph structure, in which each vertex must be

connected to all the other vertices in the clique [11], [4].

k-plexes [12] are groups of vertices in which each vertex

must be connected to all but n− k vertices of the k-plex. For

example, in a 3-plex of size 7, each vertex in the 7-vertices

group has to be connected to only 4 other vertices, whereas,

a clique of size 7 must have every vertex connected to the 6

other vertices. k-cores are even less restricted subgraphs [13].

In a k-core, all vertices must have at least k neighbors within

the core. Every clique of size k is contained in the (k−1)-core

and is a 1-plex of size k.

As is the case for single vertex connectedness, those

dense communities can also percolate with high probability.

Several models have been proposed for k-clique percolation.

Following Derenyi et al. [14], [15], two k-cliques were

considered adjacent if they shared k − 1 vertices. Using such

a strict definition, the critical probability for the generation
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of a giant component of k-cliques in the Erdős-Rényi (ER)

networks is Pc(k) = [(k − 1)N ]
− 1

k−1 , while the threshold

for percolation in general is Pc ∝ N−1, where N is the

total number of vertices in the graph. Their work has been

broadened to less restrictive forms of percolation. For example,

two k-cliques are considered to be adjacent if they share l
vertices with 1 � l � k − 1 [16], [17].

A third structural aspect of a network is the division

between a set of dense connected high degree core vertices

and sparse low degree periphery-vertices connected to other

vertices through the core [18], [19]. Formally, core and

periphery and dense communities are distinct concepts. The

presence of a core does not necessarily imply the emergence

of dense communities. However, there is a priori no reason

for those communities to aggregate into a core. Nevertheless,

communities and cores are correlated. Recently, Csermely

and Uzzi have proposed that there is no clear discrimination

between “networks modules” and “networks cores” [20].

Similarly, Rombach et al. [21] proposed that while networks

can have both core and periphery structure and community

structure, it would be desirable to study both and consider

communities as “tiles” that overlap to produce a network core.

We here show that in configuration models [22] (such as ER

and scale-free networks), real-world networks, and shuffled

real-world networks, a percolation of all vertices belonging

to k-cliques naturally emerges with a high probability, when

such cliques are frequent. This percolation is shown using

theoretical arguments and simulations. Although there is a gap

between the edge density threshold for the existence of cliques

and their percolation into a single connectivity component,

this gap is very narrow and gets even narrower in large clique

sizes. Thus, in practically every realistic network, the cliques

percolate into a connected core. These results hold when we

relax our constraint to all cliques with size above k and not just

k-cliques since all vertices belonging to cliques larger than k
are also in k-cliques. Moreover, our results hold even in less

restrictive definitions, such as k-cores and k-plexes. For the

purpose of our study, we will consider two k-cliques to be

“neighbors” if an edge from a vertex in the first clique to a

vertex in the second clique exists as illustrated in Fig. 1.

II. RESULTS

Recall that a clique is a subset of vertices of an undirected

graph such that every two distinct vertices in the clique are

adjacent. To estimate whether all k-cliques are connected, we

first determine the frequency of k-cliques in a configuration

model graph. We then determine the probability that a

randomly chosen vertex would be in a k-clique, and the
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Fig. 1 Illustration of a 3-core (gray and black vertices inside the circle) that
also contains two adjacent 4-cliques (black vertices connected through the

dashed edge)

probability of two cliques of the same size to be neighbors

(either connected by a common vertex, or having an edge

connecting them). Finally, we determine the expected number

of cliques of the same size to which a given clique is connected

and compute the threshold for this number to be strictly greater

than 1. Derivation of the results can be found in the Appendix.

If the average number of other k-cliques neighboring each

k-clique is strictly larger than 1, we can expect all cliques

to percolate and all be connected to each other as the vertex

number tends to ∞.

We assume a configuration model graph with a general

degree distribution, a number N of vertices, a probability p(D)
for a vertex to have a degree D, and further assume that the

graph is fully connected. In this model, the degree distribution

is given. Hence, the sum of all degrees M =
∑N

i=1 Di (also

equal to twice the number of edges in the graph), has a narrow

distribution around its expected value. With pij being the

probability for two vertices i and j, with respective degrees

Di and Dj , to be connected, and pij|M being the conditional

probability, one obtains

pij ≈ pij|M =
DiDj

M
. (1)

The probability for k vertices with given degrees D1, ..., Dk

greater than k − 1 to be a clique is

P(k given vertices to be a clique) =

∏k
i=1 D

k−1
i

Mk(k−1)/2
. (2)

Summing over all possible degree values and approximating

that there is no degree correlation leads to

P(k vertices to be a clique) =

[∑
D�k−1 p(D)Dk−1

]k
Mk(k−1)/2

.

(3)

To estimate the total number of cliques, one can choose(
N
k

)
combinations among all the vertices. We define Mk =∑

D�k p(D)Dk as the modified kth moment of the degree

distribution (modified since we only count from k). Therefore,

the expected number N of cliques of size k is

N =

(
N

k

)
M

k
k−1

Mk(k−1)/2
. (4)

To compute the average number of cliques neighboring a

clique, we first compute the degree distribution of vertices

in cliques, and then the probability of each edge leaving the

clique to be connected to another clique. To compute if the

neighbors of a vertex of degree D form a clique, we follow

their degree distribution, which is distinct from the degree

distribution of a randomly chosen vertex [7]. Assuming no

degree correlation, this distribution is p̃(D) = Dp(D)
〈D〉 where

〈D〉 =
∑

D Dp(D) = M
N is the average degree. For further

use, we denote by Z the probability for k− 1 vertices to be a

clique, following a given edge:

Z =

(
N

M

)k−1 [
Mk−1 + p(k − 2)(k − 2)k−1

]k−1

M (k−1)(k−2)/2
. (5)

For a vertex of degree D not to be in a k-clique, none of the

subsets of vertices of size k−1 within its neighbors should be

a (k−1)-clique. Since we use a configuration model, all edges

are formed independently. We approximate that this is also the

case for cliques, allowing us to multiply those probabilities:

P(vertex in k-clique|D) = 1− [1− Z](
D

k−1) . (6)

The probability for a vertex in a k-clique to have a degree

D is then computed using Bayes theorem. k− 1 neighbors of

each vertex in the clique are connected to the other vertices

in the clique, and there are k vertices in the clique. Therefore,

for E being the expected total number of neighbors for the

clique (i.e., edges pointing outside the clique) to first order

(ignoring edges pointing to the same vertex outside the clique),

we obtain

E = k

⎡
⎣ ∑
D�k−1

P(D|vertex in k-clique)D − (k − 1)

⎤
⎦ . (7)

Given E the expected number of neighbors to a clique and

the probability P for a vertex to be in a clique of size k, the

expected number of neighboring cliques of size k for a given

clique of the same size is approximately E ·P. On average, the

condition for all cliques of size k to be connected can then be

argued to be E · P strictly larger than 1. Intuitively, as is the

case in ER networks, if all vertices have, on average, slightly

more than one neighbor, they are all connected. We actually

apply the same kind of reasoning to k-cliques: if their average

number of neighboring cliques is strictly greater than 1, then

they are all connected, and percolation emerges.

To show that the thresholds for clique appearance and their

percolation are actually very close, we first study the ER,

G(N, p), random graph, where N is the number of vertices

and p is the probability for two vertices to be connected. The

sum of all degrees is M ≈ pN2, and the average degree

is λ = M
N ≈ pN . The degrees have a Poisson distribution

with an expected value λ. Their moment generating function

is given by f(t) = eλ(e
t−1). The variance is small and the
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degrees for all vertices are centered around λ. Moreover, the

relevant cliques are of k values much smaller than λ; therefore,

summing for all degrees greater than k is approximatively

equal to summing for all degrees. As such, using our definition

of the kth moment, we can approximate Mk ≈ λk, producing

an estimate for the number of cliques of size k:

NER ≈
(
N

k

)(
λ

N

)k(k−1)/2

=

(
N

k

)
pk(k−1)/2. (8)

We can intuitively deduce the right part of this result since

each connection is independent from the others and a clique

of size k will have k(k − 1)/2 edges, each of them having a

probability p.

Assuming N >> k ,λ >> k and
(
N
k

) ≈ Nk

k! , one can

closely approximate

NER > 1 ⇐⇒ p >

[
k!

Nk

] 2
k(k−1)

, (9)

EER · PER > 1 ⇐⇒ p >

[
k!

k2Nk

] 2
k(k−1)+2

. (10)

A more detailed derivation of those results can be found in

the Appendix. Equation (9) represents the probability at which

cliques of size k emerge, and (10) represents the probability

at which those cliques percolate. Those two conditions are

actually very close to each other as shown in Fig. 2. In

the extreme case of all degrees being equal to λ, a regular

graph is obtained, with the same results when replacing p by

λ/N . The main difference is obtained in the 2-cliques, which

are simply edges. As such, they appear as soon as there are

edges, whereas their percolation only emerges for p = 1/N
as shown by Erdős and Rényi. However, when one requires

the original graph to be connected even these differences

disappear. Indeed, the green (medium gray) surface in the

upper plot from Fig. 2 represents p = 1/N and, therefore,

the threshold at which the graph is connected. Cliques of

size 2 percolate even a little before this threshold. Hence, to

observe the percolation of cliques, one should actually look at

the maximum between the green (medium gray) surface and

the blue (dark gray) surface. Apart from this case, for higher

values of k, the mere presence of cliques almost surely implies

percolation: the blue (dark gray) surface is always above the

green (medium gray) one. In graphs with a wider tail degree

distribution, the two curves are even closer, as will be further

discussed.

For power-law distributions, the probability of a vertex to

have a degree D is p(D) = CD−α

N
, where N is the number

of vertices, C a normalization constant and α the slope of the

distribution. For the purpose of our study, we chose 1.5 �
α � 3. For values of α smaller than 2, the distribution has

to be cut off with a maximum degree. 〈D〉 is the average

degree. The constant C and the maximum degree Dmax are

chosen such that:
Dmax∑
D=1

CD−α = N , and
Dmax∑
D=1

CD−αD =

N〈D〉 = M . The average degree is much smaller than the

one used for the ER graphs. Nevertheless, the gap between

Fig. 2 Upper plot: Thresholds for clique appearance (blue/dark gray) and
clique percolation (red/light gray) in terms of probability p for two vertices
to be linked by an edge in an ER G(N, p) random graph. Beyond a clique

size of k = 3 the two surfaces are very close. The threshold for the
emergence of cliques for k = 2 is close to the vertex percolation threshold.

Thus, in connected networks, the values of p are typically on the green
(medium gray) curve hence, much above the blue (dark gray) curve. The

lower plot represents the same results for scale-free networks as a function
of the average degree. The similarity between the two curves is even more

pronounced in this case

the threshold for cliques to appear and their percolation is

even narrower (see Fig. 2 for the theory and Fig. 3 for a

comparison to simulations). Unlike the ER case, no closed

form expressions could be derived and, therefore, we had to

resort to numerical methods to evaluate the thresholds. The

percolation in power-law degree distribution networks is the

direct result of the presence of common hubs, as is the case for

regular percolation, but even more stringent since the degree

distribution within cliques is biased toward high degrees.

III. SIMULATIONS

To test the theoretical predictions and show that clique

percolation is a universal feature, we tested for such a

percolation on three types of networks: (A) configuration

model simulated networks of different degree distributions,

(B) real-world networks, and (C) shuffled real-world networks,

where the degree distribution was maintained, and edges were

randomly shuffled. For all studied graphs, we computed all

cliques using the Bron-Kerbosch algorithm [23] and computed
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Fig. 3 Comparison between theory and simulations. Dots give the average
over 500 simulations, and the full lines represent the theoretical results. The

left column (A, C, E) shows the number of cliques of a given size. The
standard error for this column is smaller than the marker size. The right

column (B, D, F) shows the number of adjacent cliques to a random clique.
While, for the clique number estimate, the theoretical result is a tight

estimate, for the number of neighboring cliques, the theoretical result is a
lower bound. The first row (A, B) is for power-law graphs with average
degree 3 (α = 1.8). and the second row (C, D), with average degree 2
(α = 2.2). The third row (E, F) row is for ER graphs with an average

degree of 50. All Graphs are for graphs with 500 vertices

the average number of cliques of each size in each real-world

and simulated graph.

In the simulated networks, we sampled random cliques

and counted how many neighboring cliques of the same size

each clique had on average. In Erdős-Rényi graphs, the fit

is tight. For power-law distributed graphs, there is a gap

between theory and simulations, as expected by the higher

overlap of cliques emerging around the high degree vertices

in scale-free networks. Thus, clique percolation occurs for

even lower average degree than expected by theory, further

strengthening the claim that this is a universal feature. Note

that we only studied percolation between cliques of the same

size. Obviously, if we were to look at all cliques of size k
and above, there would be even more neighbors and therefore

percolation would happen for even lower average degree.

In all the results here, we assumed random pairing.

However, multiple networks were reported to have degree

assortativity. Such an assortativity could lead to a lower

threshold for the emergence of cliques, and a gap between

the threshold for the clique appearance and their percolation.

We thus tested numerically whether the argument above still

holds in assortative networks. To do so, we simulated ER
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Fig. 4 Influence of assortativity (or disassortativity) on the number of
cliques for different sizes. The first row (A, B) is for power-law graphs and

the second row (C, D), for ER graphs. The left column (A, C) shows the
number of cliques of a given size. The right column (B, D) shows the

number of adjacent cliques to a random clique

and power-law networks and then, before computing the

number of cliques and the average number of neighboring

cliques, a certain fraction of the edges in those networks

were reshuffled to achieve positive or negative assortativity.

Edges were swapped only if this would increase (respectively,

decrease) the assortativity. For k = 1 and k = 2, since

the graph is connected and those cliques span over all the

graph, the assortativity has no effect. For cliques of size above

2, positive or negative assortativity increases or decreases,

respectively, the total number of cliques. This influence is more

pronounced in the power-law distributed graphs (see Fig. 4).

Still, whenever those cliques exist they percolate to form one

connected component. We tested this feature by isolating the

subgraph comprised only by nodes included in cliques of a

given size and this subgraph was systematically connected.

This compares to the theoretical threshold E · P (representing

the expected number of neighboring cliques). Just like the total

number of cliques grows with the assortativity, so does E · P
and, as soon as cliques exist, E · P is greater than 1.

Real-world networks usually have a heavy tail. We checked

the connectivity of the cliques of different sizes in some

real-world networks. We calculated the probabilities for two

cliques to be connected and compared the calculations to the

actual fraction of vertices which are in the largest connected

component of the subgraph consisting of only the k-cliques.

As was the case for the ER network, in real-world networks,

in the majority of studied network and clique sizes, when

cliques are present, percolation occurs, and cliques form a

single connected component [see Fig. 5 (A)]. To test that this

is a random mechanism, and not related to any specific feature

of the network, we shuffled the edges of the network, keeping

the degree distribution, with an even clearer percolation [see
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Fig. 5 Fraction of nodes in the main connectivity component as defined by
k-cliques percolation (upper plots), k-cores (middle plots), and k-plexes

(lower plots). The right columns are for the studied networks (A, C, E) and
the left columns are for the scrambled version of the same networks (B, D,
F). Each band is a different network. In the absence of cliques of a given

size, no value is plotted. For all scrambled networks, and for the majority of
real-world networks, all cliques, cores and plexes form a single fully

connected component

Fig. 5 (B)].

A similar argument holds for other structures which are less

stringent than cliques: k-plexes where k = 2 and k-cores.

Note that the theoretical argument raised above for cliques

works almost as is for k-cores and k-plexes. Thus, the

natural emergence of a single connectivity component in such

structures naturally is explained via similar reasons. For the

majority of k values, all the vertices are part of one connected

component, both for k-cores and for 2-plexes percolations

[Figs. 5 (C) and (E)]. Again, when shuffling the networks,

the result was maintained [Figs. 5 (D) and (F)]. The fact that

the same results are obtained for the shuffled networks shows

that the phenomena is related to the degree distributions and

it is not a specific feature of the real-world networks.

IV. DISCUSSION

As mentioned above, multiple definitions have been

proposed for the core and periphery structure. Some are based

on cliques or other cohesive subgroups which are not cliques

(for a review, see [24], [25]). We examined the vertices

belonging to communities above a specific size k, and all the

edges between them. We have shown that, when the graph

itself is fully connected, these vertices percolate. We define

the single connectivity component composed of these cliques

as the network “core.” Unlike Derenyi et al. [14], we defined

two cliques to be adjacent when they shared one vertex or

when there is an edge between them.

Core and periphery structures have been argued to be the

result of specific dynamical processes (such as assortativity

[26]). At the static level, many real-world networks have

been analysed in terms of core structure or the presence

of communities, but it was broadly believed that those

characteristics emerged due to the fact that some of the

vertices had a dominant role and were therefore “strategically”

positioned in essential locations inside the network. For

instance, Wang et al. [27] state that essential proteins are

placed as “hubs” in the network. Lin et al. [28] claim

that those proteins would be part of cliques or cores. We

demonstrated here that this does not have to be the case,

and a core emerges naturally even in random networks.

Strategic positioning may actually not be the consequence of

the essentiality but the opposite. It is the position of a vertex

that makes it essential and this process can happen randomly

and is not based on any subjective characteristic. Kitsak et

al. [29] also view cores or shells as more adequate to the

spreading of information and “hubs” are key players but they

assumed that those cores appeared according to the way people

interact. We showed that, unless a process explicitly prevents

the percolation of cliques, those communities will naturally

form and percolate into a core. Instead of being a specific

characteristic, core and periphery through clique percolation

is actually the default setting. Note that historically, most of

the studies on clique percolation were done on ER graphs

with clique size rarely exceeding 4, explaining the observed

gap between the emergence of cliques and their percolation

as we mentioned above. In more realistic networks, this gap

would be almost nonexistent.

Cores were used to determine the robustness of the network.

Removing a vertex from the periphery has been argued not to

affect the network, whereas removing a vertex from the core

might jeopardize the whole structure. This is assuming that the

core was formed through percolation between vertices alone.

If, as we showed, the core emerges from the percolation of

communities, then removing one vertex from the core will not

affect the network since the rest of its community will ensure

the connectivity. This definition of a core is much more robust

than a definition based only on vertex degrees. This argument

holds for both random and intended attacks. Similarly, Zhou et

al. [30] showed that an intended process such as assortativity

would actually decrease the robustness of the network and

Xiao et al. [31] showed that re-wiring would actually improve

the robustness. We suggest that for a high robustness, it indeed

suffices to randomly build the network with the same degree

distribution and naturally let cliques emerge and percolate into

a core.

APPENDICES

A. Results Derivation

1) General Case:
Number of Cliques of Size k in a Graph: We assume a

configuration model graph with a general degree distribution, a

number N of vertices, a probability p(D) for a vertex to have a

degree D, and further assume that the graph is fully connected.

In this model, the degree distribution is given. Hence, the sum
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of all degrees M =
∑N

i=1 Di (also equal to twice the number

of edges in the graph), has a narrow distribution around its

expected value. With pij being the probability for two vertices

i and j, with respective degrees Di and Dj , to be connected,

and pij|M being the conditional probability, one obtains

pij ≈ pij|M =
DiDj

M
. (11)

The probability for k vertices with given degrees D1, ..., Dk

greater than k − 1 to be a clique is

P(k given vertices to be a clique) =

k−1∏
i=1

k∏
j=i+1

pij

=
k−1∏
i=1

⎡
⎣ k∏
j=i+1

DiDj

M

⎤
⎦

=

∏k
i=1 D

k−1
i

Mk(k−1)/2
.

(12)

Summing over all possible degree value and approximating

that there is no degree correlation leads to

P(k vertices to be a clique) =

∏k
i=1

[∑
D�k−1 p(D)Dk−1

]
Mk(k−1)/2

=

[∑
D�k−1 p(D)Dk−1

]k
Mk(k−1)/2

.

(13)

We define Mk =
∑

D�k p(D)Dk as the modified kth

moment of the degree distribution (modified since we only

count from k). Since one can choose
(
N
k

)
combinations among

all the vertices, the expected number N of cliques of size k is

N =

(
N

k

)[∑
D�k−1 p(D)Dk−1

]k
Mk(k−1)/2

=

(
N

k

)
M

k
k−1

Mk(k−1)/2
.

(14)

Note that for k = 1, N = N , the number of vertices in the

graph and for k = 2, N = M/2, the number of edges in the

graph.

Probability for a Vertex to Be in a Clique of Size k: To

compute if a vertex is in a k-clique, we must first determine

if the neighbors of a given vertex of degree D form a clique.

We follow the degree distribution, which is distinct from the

degree distribution of a randomly chosen vertex. Assuming no

degree correlation, this distribution is p̃(D) = Dp(D)
〈D〉 where

〈D〉 =
∑

D Dp(D) = M
N is the average degree. For further

use, we denote by Z the probability for k− 1 vertices to be a

clique, following a given edge:

TABLE I
LIST OF REAL-WORLD NETWORKS USED

Networks Number of nodes Average degree
Cenn 297 4.5
Foldoc 13356 13.7
PairsP 10617 12
eatSR 23218 26.3
Cemeta 453 9
Political blogs 1224 27.3
Autonomous systems 22963 4.2
High energy theory 7610 4.1

Z =
1

M (k−1)(k−2)/2

⎡
⎣ ∑
D�k−2

p̃(D)Dk−2

⎤
⎦
k−1

=
1

M (k−1)(k−2)/2

[∑
D�k−2 Np(D)Dk−1

M

]k−1

,

=

(
N
M

)k−1

M (k−1)(k−2)/2

⎡
⎣ ∑
D�k−2

p(D)Dk−1

⎤
⎦
k−1

,

=

(
N

M

)k−1 [
Mk−1 + p(k − 2)(k − 2)k−1

]k−1

M (k−1)(k−2)/2
.

(15)

The probability for a vertex in a k-clique to have a degree

D is then computed using Bayes theorem:

P(D|vertex in k-clique) =
P(vertex in k-clique|D)p(D)

P(vertex in k-clique)
,

(16)

where P = P(vertex in k-clique) is the probability for a vertex

to be in a k-clique. Using the Law of Total Probability, we

get

P =
∑
D′�k

P(vertex in k-clique|D′)p(D′). (17)

The probability for a vertex of degree D to be in a k-clique

is one minus the probability of this vertex not being in a

k-clique. For this vertex not to be in a k-clique, none of the

subsets of vertices of size k−1 within its neighbors should be

a (k−1)-clique. Each subset has a probability Z to be a clique

and, therefore, a probability 1−Z not to be a clique. Since we

use a configuration model, all edges are formed independantly.

We approximate that this is also the case for cliques, allowing

us to multiply those probabilities:

P(vertex in k-clique|D) = 1− [1− Z](
D

k−1) . (18)

2) ER Case: We study the ER, G(N, p), random graph,

where N is the number of vertices and p is the probability

for two vertices to be connected. The sum of all degrees is

M ≈ pN2, and the average degree is λ = M
N ≈ pN . The

degrees have a Poisson distribution with an expected value

λ. The variance is small and the degrees for all vertices are

centered around λ. Moreover, the relevant cliques are of k
values much smaller than λ; therefore, summing for all degrees

greater than k is approximatively equal to summing for all

degrees. As such, using our definition of the kth moment,
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we can approximate Mk ≈ λk, producing, with a first order

expansion, an estimate for the number of cliques of size k:

NER ≈
(
N

k

)(
λ

N

)k(k−1)/2

≈ Nk

k!
pk(k−1)/2, (19)

the probability for a vertex to be in a k-clique:

PER ≈ 1−
[
1−

(
λ

N

)(k−1)(k−2)/2
]( λ

k−1)

,

≈
(

λ

k − 1

)(
λ

N

)(k−1)(k−2)/2

,

≈
(

λ

k − 1

)
p(k−1)(k−2)/2,

(20)

and the expected number of neighboring cliques:

EER ≈ k[λ− (k − 1)]. (21)

Combining those results leads us to

EER · PER ≈ k[λ− (k − 1)]

(
λ

k − 1

)(
λ

N

)(k−1)(k−2)/2

,

≈ k2
(
λ

k

)(
λ

N

)(k−1)(k−2)/2

,

≈ k2
λ

N

Nk

k!

(
λ

N

)k(k−1)/2

,

≈ k2p
Nk

k!
pk(k−1)/2 = k2pNER.

(22)

From those calculations, we derive the thresholds for cliques

of size k to emerge and for those cliques to percolate [(9) and

(10)]. As a simple illustration, for cliques of size k = 1, which

merely represents the vertices of the graph, we logically find

N = N and their percolation appears for p > 1/N . For cliques

of size k = 2, which represents the number of edges in the

graph, N = pN2/2 = M/2. They appear for p > 2/N2 and

percolate for p > 1/N
√
2. Therefore, those cliques appear

well before they percolate as shown in Fig. 2.

B. Real-World Networks and Methods

We studied eight real-world networks ranging from 297

to 23,218 vertices and an average undirected degree from 4

to 27. We used networks from various resources: biological

networks, neural networks, and networks extracted from

archives of citations, books and blogs [32] (see Table I for a

description of the networks. The methods used were as follow:

k-cliques: We enumerated all cliques of different sizes on

all networks. For each k, we generated a graph only from the

vertices which belong to cliques of sizes k and above. We

computed the fraction of vertices (of the subgraph consisting

of the cliques of sizes k and above only) belonging to the

largest connected component.

k-plexes and k-cores: We enumerated all the 2-plexes of

all sizes using a C++ implementation of the Wu and Pei

algorithm [33]. We then measured the fraction of vertices in

the largest connected component of the graph composed of

only the 2-plexes of sizes equal or larger than k. For the

k-cores, we used C++ implementation based on the Boost

library which lists every vertex in the graph and is assigned

several of its k-cores. We checked the fraction of vertices in

the largest connected component of each k-core graph.

Networks shuffling: For each real-world network, we have

generated a random network with the same number of vertices

and the same degree distribution as the original network.

This algorithm is sometimes called “local rewiring” [34]. The

shuffled networks were obtained by iteratively choosing a pair

of random edges and switching their destination. For example,

the edges (1,2) and (3,4) in the original network were switched

to edges (1,4) and (2,3) in the shuffled network. We checked

that the newly obtained edges are not self-edges or overlapping

edges. If the new candidate edges were found to be self-edges

or overlapping edges, we canceled the switch and chose a

different pair of edges to switch. There were a few networks

in which double or self-edges could not be avoided, mainly in

cases where vertices had a very large degree. This had a very

minor effect on the degree or clique distribution.
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