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Abstract—In this paper, a novel method for recognition of mu-
sical instruments in a polyphonic music is presented by using an
embedded hidden Markov model (EHMM). EHMM is a doubly
embedded HMM structure where each state of the external HMM
is an independent HMM. The classification is accomplished for
two different internal HMM structures where GMMs are used as
likelihood estimators for the internal HMMs. The results are com-
pared to those achieved by an artificial neural network with two
hidden layers. Appropriate classification accuracies were achieved
both for solo instrument performance and instrument combinations
which demonstrates that the new approach outperforms the similar
classification methods by means of the dynamic of the signal.

Keywords—hidden Markov model (HMM), embedded hidden
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I. INTRODUCTION

MUSIC has become an inseparable part of everyday
human life. Moreover, with the advent of online music,

extensive music databases have become accessible with a
high variety of genres including a wide range of instruments.
Meanwhile, this diversity has imposed additional problems for
users as well as researchers. At the moment, the need for
fast and efficient methods to perform content based search
of music has substantially grown. For example, a common
requirement for these engines is the ability to recognize
different instruments presented in a polyphonic music.
Musical instrument recognition in a polyphonic music consists
of a multiple pitch estimation process which includes the task
of estimating fundamental frequencies and the onset times
of notes associated with different instruments presented in a
music signal. However, it is accounted as a challenging task
while harmonics of different pitches overlap [4]. Therefore,
this complexity has imposed a high demand for a fast and
moderate search engine to perform a pitch independent anal-
ysis of instruments in a music signal.
Statistical models have been extensively used in speech
recognition as well as musical information retrieval (MIR).
For example, Marques and Moreno [27] used Mel-frequency
cepstral coefficients as feature and attained %70 accuracy
for distinguishing eight instruments using a support vector
machines (SVM) classifier. Unlike deterministic models, sta-
tistical models aim to characterize statistical properties of
a signal [1]. However, the main drawback associated with
the aforementioned approaches is that the feature vectors
associated with the signal are considered as i.i.d. random
variables from an instance of a random process assumed
to generate the signal without accounting for the dynamic
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behavior of the signal which is substantial for perception of
acoustic phenomena by the human brain [5]. For this purpose,
one can benefit from a more comprehensive model, namely
hidden Markov model, which attempts to model frame-to-
frame dynamic in music by means of state transition [2].
Such dynamic models have been considerably used in music
analysis [6-10]. As a simple configuration, a single HMM can
be trained in an unsupervised manner by a music signal and
can be exploited to find music textures in a similar music [14].
In this case, each state is considered as a specific texture and
by finding the state sequence which best matches the signal,
one can find the sequence of textures representing the cor-
responding instrument combinations in the music. However,
due to unsupervised training of the proposed method, feature
vectors of distinct states may intermingle incorrectly leading
to an inaccurate model. Another issue arises in finding the
proper number of states for the model which needs additional
process on the model to find the indistinguishable states.
Additional techniques such as iHMM [25] can be used to infer
the appropriate number of states or to find a more complex
structure for the classification task [11]. Nevertheless, finding
a supervised training approach is still a challenging task. In
this paper, an alternative method based on embedded hidden
Markov model is exploited to overcome these issues. An
embedded hidden Markov model (EHMM) is an extension
of an ordinary HMM where each state is composed of an
independent HMM [26].
The remainder of this paper is organized as follows. Embedded
hidden Markov model is described in section II. Section III
provides feature extraction method and extraction of MFCC
features used in this paper. The proposed method using
EHMM is provided in Section IV. Experimental results are
presented in Section V. Section VI concludes the paper and
outlines the future work.

II. EMBEDDED HIDDEN MARKOV MODELS

A. Hidden Markov Models

A traditional one-dimensional HMM is a doubly embedded
stochastic process where the inner process includes a set of
states which are not directly observable and the observation
is performed through another set of stochastic processes that
generates observable events [1]. At each time step, a transition
occurs among the current state and the other states (possibly
the same state) and an observation takes place regarding
the new state. These observations are modeled by a set of
probability distributions associated with each state. In case of
a continuous observation HMM, these conditional probability
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Fig. 1. A Typical EHMM Structure.

distributions are usually mixtures of Gaussian distributions
called Gaussian Mixture Models (GMM) [2].
An HMM is denoted by λ = (A,B,π) where A, B and π
are defined as follows:

• A = {aij}, aij = P (qt+1 = Sj |qt = Si), 1 ≤ i, j ≤ n:
State transition probability distribution

• B = {bi(Ot)}, bi(Ot) = P (Ot|qt = Si): State observa-
tion probability distribution

• π = {πi}, πi = P (q1 = Si): Initial state probability
distribution

For a given model λ and observation sequence O, the joint
probability of the observation sequence and the underlying
state sequence is given by

P (O,Q|λ) = πq1

T−1∏
t=1

aqtqt+1

T∏
t=1

bqt(Ot) (1)

The probability of O (given the model) is obtained by sum-
ming over all possible state sequences Q

P (O|λ) =
∑
all Q

πq1

T−1∏
t=1

aqtqt+1

T∏
t=1

bqt(Ot). (2)

B. Embedded Hidden Markov Models

The idea of a Hidden Markov Model can be extended to
a more complex two-dimensional structure where each super
state associated with an external HMM is composed of an
independent HMM which includes a set of intrinsic states. This
configuration is called an embedded hidden Markov model or
simply an EHMM [15]. The structure of a typical EHMM is
shown in Fig. 1.
Each observation related to the external HMM is called a super
observation (or a super block). This super observation consists
of a sequence of consecutive observations associated with
the internal HMMs. So, between two state transition of the
external HMM, many intrinsic state transitions occur between
the states of the HMM corresponding to the current state. The
idea of super observation is illustrated in Fig. 2.

Fig. 2. State Transition in EHMM.

Let Ot be the super observation at time t and the model be
in state Si, i = 1, 2, . . . , N , at t i.e. qt = Si. Ot represents a
sequence of observation vectors, namely

Ot = Ot1Ot2 · · ·Otl (3)

as well, where l is the length of the super observation. The
probability of this observation, given the state Si at time t and
the EHMM, λ, is

P (Ot|qt = Si, λ) = P (Ot|λi) (4)

Where λi denotes the internal HMM i. The internal HMMs
in an EHMM act as likelihood estimators for the external
HMM, similar to the GMMs in the one-dimensional case. But
the difference with the traditional model lies in the ability of
this model to split every super observation into a sequence of
consecutive smaller observations which can be considered as
a sequence of observations for the internal HMMs. Thus, by
using this structure, it is possible to estimate the likelihood
of every super observation while maintaining the temporal
information of the observation.

III. FEATURE EXTRACTION

Different features including temporal [17], spectral or cep-
stral [18] as well as power spectra [19] have been extensively
used in music content analysis. In this paper, Mel-frequency
cepstral coefficients and their first and second derivatives were
used as features.

A. Mel-Frequency Cepstral Coefficients

Mel-Frequency Cepstral Coefficients (MFCC) provide a
compact representation of the spectral envelope of the signal
based on a STFT by using a model of human auditory
system which has a higher resolution in lower frequencies.
They can provide an effective pitch-independent feature to
model transfer function of the auditory filter, regardless of
the excitation source; even though they do not represent a
homomorphic transform in the same way as complex and real
cepstrum which are inverse Fourier transform of the logarithm
or logarithm magnitude of the Fourier transform, respectively
[2].
In addition to their reliability in speech recognition tasks, it
has been shown that MFCC can be effectively used in music
analysis [20-21]. However, they may be insufficient in case of
a complex texture including many musical instruments playing
simultaneously.
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Fig. 3. Mel-frequency Filterbank.

Fig. 4. Extraction of MFCC.

To obtain MFCC, the signal is first pre-emphasized by an all-
zero filter of the form H(z) = 1−αz−1 in which α typically
ranges from 0.93 to 0.97. In this paper, α is chosen equal
to 0.95. Then, the signal is framed into overlapping windows
with a proper duration through which the signal is assumed to
be quasi-stationary. Let x[n] and X[k] be the windowed signal
and its DFT, respectively. A Mel-scale filterbank is imposed
on the FFT of each window to obtain log-energy in every
sub-band.

Em = ln(

[
N−1∑
k=0

|X[k]|2Hm[k]

]
) (5)

where Em is the log-energy of the signal in the mth sub-band,
0 ≤ m < M . Hm denotes the mth filter of the filterbank

Hm[k] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 k ≥ f [m− 1]
(k−f [m−1])

(f [m]−f [m−1]) f [m− 1] ≤ k ≤ f [m]
(f [m+1]−k)

(f [m+1]−f [m]) f [m] ≤ k ≤ f [m+ 1]

0 f [m+ 1] > k.

(6)

In (6), f [m − 1] and f [m + 1] represent the edges of the
mth filter and f [m] denotes its center, as shown in Fig. 3.
This filterbank is developed on a non-linear scale called Mel-
frequency scale which approximates the behavior of the human
auditory system [28]. Finally, a discrete cosine transform is
applied to decorrelate the resulting coefficients. It is shown
in [22] that DCT is appropriate both for speech and music
spectra to achieve decorrelated vectors. The overall procedure
to evaluate MFCC for an audio signal is shown in Fig. 4.
Fig. 5 shows feature extraction process where an additional
Hamming window is multiplied to each frame to smooth the
edges of the signal at both sides. A Hamming window is
defined by

w[n] = 0.54− 0.46 cos(
2πn

N
), 0 ≤ n ≤ N (7)

where N + 1 is the length of the window [2]. This would be
effective to reduce the effect of discontinuity of the signal in
each segment at both sides [23].

Fig. 5. Feature Extraction.

IV. EHMM IN MUSICAL INSTRUMENT CLASSIFICATION
IN A POLYPHONIC MUSIC

In a polyphonic music, different instruments are played
individually or simultaneously. Assuming the total number of
instruments in a music signal to be c, there exist N = 2c − 1
distinct combinations of instruments (Considering silence as
a combination yields 2c combinations). Each combination is
considered as a music texture. These textures are performed
successively, based on a specific principle which is highly
dependent on music genre as well as types of the instruments
of the track [24]. This may be a common repetition of one
particular texture after another [12]. These principles can be
exploited to recognize different textures in a polyphonic music
by using an EHMM as follows.
First, for every possible texture, an individual HMM is trained
by using any conventional re-estimation algorithm (e.g. Baum-
Welch Algorithm [29]). Since, there may be numerous amount
of instruments in different music tracks, we restrain ourselves
to a special genre with only a limited number of textures.
Generalization of the proposed method to consider different
genres will be discussed later. Additionally, textures with
trivial chance of occurrence can be ignored since they may
not appear in practical music performances.
Let λi, i = 1, 2, . . . , 2c − 1 be the model trained for texture i
and θt be the texture at time t. These models are considered as
likelihood estimators of states in an ergodic EHMM structure.
For any given music signal, the corresponding observation
sequence, O = O1O2 · · ·OT is extracted and then, the state
sequence which best explains the observation is found using
a dynamic programming method called Viterbi algorithm [16]
by defining

δt(i) = max︸︷︷︸
q1, q2, . . . , qt−1

P [q1 q2 · · · qt = Si, O1O2 · · ·Ot|λ] (8)

and maximizing over all possible paths at time T. δt(i)
denotes the highest probability of a particular state sequence,
at time t, which accounts for the first t observations of the
observation sequence and ends in state Si. Viterbi algorithm
is described in the appendix.
By assuming Ot as stated in (3) to be super observation of
l consecutive MFCC vectors of an observation sequence,
every time step of the external HMM is equal to l times
the time step of every internal HMM. This requires the
assumption that each texture in the track is played at least for
l consecutive blocks. This is not an inappropriate hypothesis
since in a real-world music performance, a texture usually
lasts at least for a considerable portion of a second [24].
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TABLE I
CLASSIFICATION RESULTS FOR THE FIRST EXPERIMENT WITH HMMS

INCLUDING 3 STATES AND 2 GAUSSIAN MIXTURE MODELS.

Violin Piano Duet
Violin %92.87 %0.00 %7.13
Piano %0.82 %95.08 %4.10
Duet %0.00 %5.42 %94.58

TABLE II
CLASSIFICATION RESULTS FOR THE SECOND EXPERIMENT WITH HMMS

INCLUDING 4 STATES AND 5 GAUSSIAN MIXTURE MODELS.

Violin Piano Duet
Violin %95.47 %0.00 %4.53
Piano %0.60 %96.02 %3.38
Duet %0.00 %3.28 %96.72

Therefore, an EHMM having HMMs corresponding to
different combinations as likelihood estimators and with a set
of proper transition distribution among the states can be used
to find the best sequence of states that matches any given
music signal, namely,

Q = q1 q2 · · · qT . (9)

Since qt = Si corresponds to ith state of the EHMM, λi,
finding the best sequence is equal to finding the sequence of
textures, Θ, played in that track,

Θ = θ1 θ2 · · · θT . (10)

Using the proposed structure in finding the sequence of
musical instrument combinations in a polyphonic music is
appropriate in two manners: First, it takes into account more
transitional properties of the music signal while it determines
the probability of occurrence of any given observation which
consists of a super block by using an intrinsic HMM that
is capable of performing several transitions within its states
which reflects temporal characteristics of the signal. Second,
by means of state transition probability distribution of the
EHMM,

aij = P (qt = Sj |qt−1 = Si), 1 ≤ i, j ≤ N (11)

one can impose an a priori knowledge about the musical
events while finding the best state sequence for the input
observation. This can be done by training the external HMM
(finding the state transition probability distribution and the
initial state probability distribution for EHMM) using several
music tracks which results in probabilities which reflect a
statistical analysis of the musical structure in a specific genre.
This means those successive combinations which have more
chance of occurrence in a real-world performance will be given
a high probability while those being scarce will be ignored
with a lower probability of incidence. Moreover, additional
knowledge from various sources including music experts may
be effective on assigning these transition probabilities. As a
result, the state transition probability distribution will impact
on finding the best state sequence of a given observation and
enhance the accuracy.
Given the state transition probability distribution, aij , and

TABLE III
CLASSIFICATION RESULTS FOR NEURAL NETWORK CLASSIFIER WITH 2

HIDDEN LAYERS.

Violin Piano Duet
Violin %92.98 %0.00 %7.02
Piano %0.95 %97.74 %1.31
Duet %30.36 %3.81 %65.83

TABLE IV
CLASSIFICATION RESULTS FOR SUPER OBSERVATIONS EACH EQUAL TO 1

SECOND OF THE SIGNAL.

Violin Piano Duet
Violin %93.33 %0.00 %6.67
Piano %0.00 %99.86 %0.14
Duet %20.00 %0.00 %80.00

δt(i), i = 1, 2, . . . , n, δt+1(j) can be determined using the
inductive equation

δt+1(j) = max︸︷︷︸
i

[δt(i)aij ].P (Ot|λj). (12)

This eliminates the chance of occurrence of invalid state
sequences where there exists two specific states that can not
succeed (aij = 0). Additionally, state transition probability
distribution is applied in finding the best path by means of
maximizing over all the states that can precede the current
state.

V. EXPERIMENTAL RESULTS

The database used in this paper consists of 50 classical
music tracks each comprising two different instruments, i.e.
piano and violin. Consequently, it requires three separate
HMMs to be trained for the EHMM. These HMMS were
trained using music clips of one second duration by a multiple-
observation Baum-welch algorithm [30]. To extract MFCC
features, each clip was segmented into 25 ms windows with
%66 overlap. A left-right model was used for each HMM
with three states and two Gaussian mixture models for the
first experiment and four states and five mixtures for the
second one. After training these HMMs, they were used in
an ergodic EHMM structure with three states. To train the
EHMM, the same training music pieces were used with each
super block consisting of l = 120 consecutive frames of the
internal HMMs, equal to one second of music duration. For
testing purpose, the test set including 30 music pieces of the
same genre was applied to the model. The results are shown
in Table I and Table II for the first and second experiment,
respectively.
It can be seen that the highest accuracy was achieved for

the duet class while the lowest was attained for the violin.
Moreover, most of the errors occur in misclassification of
single instruments as combination of instruments. This may
have two main reasons. First, the resonance of the instruments
are ignored in the labeling phase of the music pieces leading to
some incorrect labels i.e. the other instrument which actually
is not playing is still resonating and affecting the signal. The
second reason is that MFCC are not sufficient features for
the purpose of multiple-instrument representation. This can be
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made up for by augmenting other features such as temporal
and spectral features which are capable of characterizing
important properties of music such as music timbre [31].
To compare the results, a MLP neural network classifier with
two hidden layers consisting of 20 and 15 neurons in the first
and second hidden layer, respectively, was used to classify
different instrument combinations. Same MFCC vectors were
used as features. The results are shown in Table III.
As shown in table, an NN classifier achieves higher accuracy
in case of solo instrument performance classification, but
it considerably underperforms when classifying instrument
combination. The main reason for this low accuracy is due
to the fact that it is impractical to label musical clips of very
short durations since it is not possible to distinguish between
musical instruments or to detect sound source activity. Another
approach would be to consider longer time intervals and assign
the most frequently occurring label to the corresponding clip.
Table IV shows the classification results for time intervals
of one second, equivalent to intervals used in the proposed
method for EHMM.
An enhancement in classification accuracy is obtained both
for the case of solo and instrument combination performance.
However, the proposed method outperforms in instrument
combination classification, in all cases. This higher accuracy
is due to EHMM’s dynamic structure which incorporates a
priori knowledge about the musical events by means of a state
transition probability distribution. This transition coefficients
modify the probability of occurrence of different combinations
in the next step, given the internal models and the current state.

VI. CONCLUSION

In this paper, the ability of EHMM structure in musical
instrument classification in a polyphonic music was investi-
gated. The results proved that this structure can be effectively
used for classification of musical instruments in a specific
genre, including a limited number of instruments. To extend
the proposed method for the purpose of the classification
of instruments in music pieces from different genres, first
a typical genre classification technique as presented in [32]
and [33] can be used to detect the genre of a specific music
piece and then the corresponding EHMM can be imposed for
instrument classification. Comparison of the results with those
achieved by a MLP neural network indicates that the proposed
method outperforms the NN classifier in musical combination
classification while attaining comparable accuracy in case of
solo instrument performance. Furthermore, different temporal
and spectral features can be utilized along with the MFCC to
improve the performance.

APPENDIX
VITERBI ALGORITHM

To find the single best state sequence, Q = q1 q2 · · · qT
for a given observation sequence, O = O1O2 · · · OT , δt(i) is
defined by (8). It can be evaluated by the inductive equation

δt+1(j) = max︸︷︷︸
1 ≤ i ≤ n

[δt(i)aij ].bj(Ot|λ). (13)

The overall procedure can be stated as follow where an
additional parameter, ψt(j), is included to keep track of the
argument which maximizes (eq) for each t and j.

1) Initialization:

δ1(i) = πibi(O1), 1 ≤ i ≤ n (14)
ψ1(i) = 0. (15)

2) Recursion:

δt(j) = max︸︷︷︸
1 ≤ i ≤ n

[δt−1(i)aij ].bj(Ot|λ), (16)

2 ≤ t ≤ T, 1 ≤ j ≤ n

ψt(j) = arg max︸︷︷︸
1 ≤ i ≤ n

[δt(i)aij ], (17)

2 ≤ t ≤ T, 1 ≤ j ≤ n

3) Termination:

P ∗ = max︸︷︷︸
1 ≤ i ≤ n

[δT (i)]

q∗T = arg max︸︷︷︸
1 ≤ i ≤ n

[δT (i)], (18)

4) Path (state sequence) backtracking:

q∗t = ψt+1(q
∗
t+1), t = T − 1, T − 2, · · · , 1. (19)

ACKNOWLEDGMENT

The authors would like to thank Hamed Dilish for his
support and assistance.

REFERENCES

[1] L. R. Rabiner, ”A tutorial on hidden Markov models and selected
applications in speech recognition”, Proc. IEEE, vol. 77, no. 2, pp.
257-286, Feb. 1989.

[2] Xuedong Huang, Alejandro Acero, Alex Acero and Hsiao-Wuen Hon,
Spoken language processing: a guide to theory, algorithm, and system
development, Prentice Hall PTR, 2001.

[3] Lawrence R. Rabiner, Biing-Hwang Juang, Fundamentals of Speech
Recognition, Pearson Education, 1993.

[4] Jun Wu, E. Vincent, S. A. Raczynski, T. Nishimoto, N. Ono and
S. Sagayama, ”Polyphonic Pitch Estimation and Instrument Identification
by Joint Modeling of Sustained and Attack Sounds”, Selected Topics
in Signal Processing, IEEE Journal of , vol.5, no.6, pp.1124-1132, Oct.
2011

[5] J. J. Aucouturier and M. Sandler, ”Segmentation of musical signals using
hidden Markov models”, presented at the 110th Conv. Audio Eng. Soc.,
May 2001.

[6] T. Virtanen and T. Heittola, ”Interpolating hidden Markov model and its
application to automatic instrument recognition”, Acoustics, Speech and
Signal Processing, 2009. ICASSP 2009. IEEE International Conference
on , vol., no., pp.49-52, 19-24 April 2009.

[7] C. Raphael, ”Automatic segmentation of acoustic musical signals using
hidden Markov models”, IEEE Trans. Pattern Anal. Mach. Intell., vol.
21, no. 4, pp. 360370, Apr. 1999.

[8] A. Eronen, ”Musical instrument recognition using ICA-based transform
of features and discriminatively trained HMMs”, Signal Processing and
Its Applications, 2003. Proceedings. Seventh International Symposium on
, vol.2, no., pp. 133- 136 vol.2, 1-4 July 2003.

[9] Jonghyun Lee and Joohwan Chun, ”Musical instruments recognition
using hidden Markov model”, Signals, Systems and Computers, 2002.
Conference Record of the Thirty-Sixth Asilomar Conference on , vol.1,
no., pp.196-199 vol.1, 3-6 Nov. 2002.



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:6, No:7, 2012

617

[10] N. Degara, M. E. P. Davies, A. Pena and M. D. Plumbley, ”Onset
Event Decoding Exploiting the Rhythmic Structure of Polyphonic Music”,
Selected Topics in Signal Processing, IEEE Journal of , vol.5, no.6,
pp.1228-1239, Oct. 2011.

[11] Yuting Qi, J. W. Paisley, L. Carin, ”Music Analysis Using Hidden
Markov Mixture Models”, Signal Processing, IEEE Transactions on ,
vol.55, no.11, pp.5209-5224, Nov. 2007.

[12] R. J. Weiss and J. P. Bello, ”Unsupervised Discovery of Temporal
Structure in Music”, Selected Topics in Signal Processing, IEEE Journal
of , vol.5, no.6, pp.1240-1251, Oct. 2011.

[13] A. Pikrakis, S. Theodoridis, and D. Kamarotos, ”Classification of
musical patterns using variable duration hidden Markov models”, IEEE
Trans. Audio, Speech, Lang. Process. ,voI.14, pp.1795-1807, 2006.

[14] Jean-Julien Aucouturier and Mark Sandler, ”Segmentation of Musical
Signals Using Hidden Markov Models”, Presented at the 110th
Convention, Amsterdam, The Netherlands, 12-15 May 2001.

[15] Kai Shen, Sheng Gao, Peiqi Chai and Q. Sun, ”Music Identification
Using Embedded HMM”, Multimedia Signal Processing, 2005 IEEE
7th Workshop on , vol., no., pp.1-4, Oct. 30 2005-Nov. 2 2005.

[16] G. D. Forney, ”The Viterbi algorithm”, Proc. IEEE, vol.61, pp. 268-
278, Mar. 1973.

[17] A. Eronen and A. Klapuri, ”Musical instrument recognition using
cepstral coefcients and temporal features”, in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process. (ICASSP), 2000, vol. 2, pp. 753-756.

[18] J. C. Brown, ”Computer identication of musical instruments using
pattern recognition with cepstral coefcients as features”, J. Acoust.
Soc. Amer., vol. 105, no. 3, pp. 19331941, 1999.

[19] E. Vincent and X. Rodet, ”Instrument identication in solo and ensemble
music using independent subspace analysis”, in Proc. Int. Conf. Music
Inf. Retrieval (ISMIR), 2004, pp. 576-581.

[20] A. Eronen, ”Comparison of features for musical instrument recognition”,
Applications of Signal Processing to Audio and Acoustics, 2001 IEEE
Workshop on the , vol., no., pp.19-22, 2001.

[21] A. Eronen and A. Klapuri; , ”Musical instrument recognition using cep-
stral coefficients and temporal features”, Acoustics, Speech, and Signal
Processing, 2000. ICASSP ’00. Proceedings. 2000 IEEE International
Conference on , vol.2, no., pp.II753-II756 vol.2, 2000.

[22] Beth Logan, ”Mel frequency cepstral coefficients for music modeling”,
In International Symposium on Music Information Retrieval, 2000.

[23] Monson H. Hayes, Statistical digital signal processing and modeling,
John Wiley & Sons, Inc., 1996.

[24] N. C. Maddage, ”Automatic structure detection for popular music”,
Multimedia, IEEE , vol.13, no.1, pp. 65- 77, Jan.-March 2006.

[25] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei, ”Hierarchical
Dirichlet processes”, J. Amer. Statist. Assoc., vol. 101, pp. 15661581,
2006.

[26] Katrin Weber, ”HMM Mixtures (HMM2) for Robust Speech Recog-
nition”, http://www.idiap.ch/publications/weberrr-0334.bib.abs.html,
2003.

[27] J. Marques and P. Moreno, ”A study of musical instrument classification
using gaussian mixture models and support vector machines”, Compaq
Computer Corporation, Tech. Rep. CRL 99/4, 1999.

[28] S. S. Stevens and J. Volkman, ”The Relation of Pitch to Frequency”,
Journal of Psychology, 1940, 53, pp. 329.

[29] L. E. Baum, ”An inequality and associated maximization technique in
statistical estimation for probabilistic functions of Markov processes”,
Inequalities, vol. 3, pp. 1-8, 1972.

[30] S. E. Levinson, L. R. Rabiner and M. M. Sondhi, ”An introduction to the
application of the theory of probabilistic functions of a Markov process
to automatic speech recognition”, Bell Syst. Tech. J., vol. 62, no. 4, pp.
1035-1074, Apr. 1983.

[31] Xin Zhang and Z. W. Ras, ”Analysis of Sound Features for Music
Timbre Recognition”, Multimedia and Ubiquitous Engineering, 2007.
MUE ’07. International Conference on , vol., no., pp.3-8, 26-28 April
2007.

[32] G. Tzanetakis and P. Cook, ”Musical genre classification of audio
signals”, Speech and Audio Processing, IEEE Transactions on , vol.10,
no.5, pp. 293- 302, Jul 2002.

[33] Changsheng Xu, N. C. Maddage and Xi Shao, ”Automatic music
classification and summarization”, Speech and Audio Processing, IEEE
Transactions on , vol.13, no.3, pp. 441- 450, May 2005.

Ehsan Amid received the B.Sc. degree in electrical
engineering from the Amirkabir University of Tech-
nology (Tehran Polytechnic), Tehran, Iran, in 2012.
His research interests include speech processing,
pattern recognition and machine learning.

Sina Rezaei Aghdam received B.Sc. degree in
electrical engineering from the Amirkabir University
of Technology (Tehran Polytechnic), Tehran, Iran,
in 2011. He is currently working toward the M.Sc.
degree at the Amirkabir University of Technology
(Tehran Polytechnic).
His research interests range from wireless commu-
nications to digital signal processing.


