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 
Abstract—22 physicochemical variables have been determined in 

water samples collected weekly from January to December in 2013 
from three sampling stations located within a major drinking water 
reservoir. Classical Multivariate Curve Resolution Alternating Least 
Squares (MCR-ALS) analysis was used to investigate the 
environmental factors associated with the physico-chemical 
variability of the water samples at each of the sampling stations. 
Matrix augmentation MCR-ALS (MA-MCR-ALS) was also applied, 
and the two sets of results were compared for interpretative clarity. 
Links between these factors, reservoir inflows and catchment land-
uses were investigated and interpreted in relation to chemical 
composition of the water and their resolved geographical distribution 
profiles. The results suggested that the major factors affecting 
reservoir water quality were those associated with agricultural runoff, 
with evidence of influence on algal photosynthesis within the water 
column. Water quality variability within the reservoir was also found 
to be strongly linked to physical parameters such as water 
temperature and the occurrence of thermal stratification. The two 
methods applied (MCR-ALS and MA-MCR-ALS) led to similar 
conclusions; however, MA-MCR-ALS appeared to provide results 
more amenable to interpretation of temporal and geological variation 
than those obtained through classical MCR-ALS. 
 

Keywords—Catchment management, drinking water reservoir, 
multivariate curve resolution alternating least squares, thermal 
stratification, water quality. 

I. INTRODUCTION 

NVIRONMENTAL monitoring of water quality can 
produce large and complex datasets which are often 

difficult to interpret, inviting application of multivariate data 
analysis methods to extract the underlying information. These 
techniques have been applied in a variety of scenarios for the 
identification of factors that influence water systems to 
facilitate more effective pollution control strategies and 
management of water resources [1], [2]. Among these 
methods, MCR-ALS [3]-[5] has been shown to be useful for 
the resolution and interpretation of real environmental sources 
affecting a particular geographical area over a period of time 
[6], [7] using existing environmental monitoring data. 

Environmental datasets are usually organized in tables or 
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matrices with rows corresponding to geographical and or 
temporal sampling sites and columns corresponding to 
measured variables (concentrations of chemical contaminants 
or other environmental parameters). Classical MCR-ALS 
assumes a linear model to explain the observed data variance 
using a reduced number of contamination sources, 
representing a linear decomposition of the data. More detailed 
description of this method can be found in previous 
publications [3], [4], [8]-[10]. This linear decomposition used 
in the method can be written in matrix form as: 

 
D=SL+E                                        (1) 

 
where D is the experimental data array arranged in a data 
matrix. Equation (1) describes the decomposition of matrix D 
on two matrices, the loadings matrix L and the scores matrix 
S. The loadings matrix L, may identify the main sources of 
data variance by means of their chemical composition 
(composition loadings), which eventually may be related with 
the main patterns and sources of contamination. The scores 
matrix S, provides sample scores for these data variance 
patterns (i.e. it will indicate the geographical/temporal sample 
distribution of these patterns). The matrix E is residuals 
(noise) or non-modelled parts of D, which has the same 
dimension as D. However, the matrix decomposition in this 
equation has to be performed under some constraints as MCR-
ALS solutions are usually not unique, being potentially scale 
and rotation ambiguous [3], [4], [11], [12]. One of the main 
advantages of MCR-ALS is that it uses physically and 
chemically interpretable constraints [4], [13], [14] such as 
non-negativity, selectivity, or closure, to give loading and 
score profiles that are more easily interpreted and more 
meaningful from an environmental management perspective. 
Notwithstanding, it is important to recognise that MCR-ALS 
solutions to (1) under a set of constraints, must be interpreted 
with caution, as the obtaining of a unique solution is not 
guaranteed.  

MCR-ALS can be easily extended to the simultaneous 
analysis of several data matrices via column- or row-wise 
augmented data matrices, as shown in Fig. 1. By application of 
these methods to simultaneous analysis via column- wise 
augmented data matrices, the geographical and temporal 
information of the main sources of contamination can be 
obtained. This procedure has been applied to the analysis of 
environmental data, such as water samples from lakes [15] and 
rivers [16], fish and sediments [16]. 
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Equation (2) describes the decomposition of the column-
wise augmented experimental data matrix Daug on two 
matrices, the loadings matrix L, the augmented scores matrix 
Saug with N factors and the augmented residual matrix Eaug.  

 
Daug=Saug L+Eaug                                 (2) 

Geographical and temporal information of main sources of 
contamination are readily available from scores Sgeo and Stemp, 
which are obtained by the refolding and averaging procedure 
of augmented scores matrix Saug [7], [17] (Fig. 1).  

 

 

Fig. 1 Using (2), augmented data matrix Daug of data cube D can be resolved to the augmented scores, Saug, and loadings, L, matrices 
considering N factors. For each factor (column filled black), score matrix, S, is constructed by refolding the relevant column of Saug matrix. 
Geographical (sgeo) and temporal (stemp) profile distributions of each factor are obtained by taking an average of the rows and columns of S 
matrix respectively. Sgeo and Stemp matrices are obtained by repeating the above procedure for all N factors and combining them. These two 

matrices give geographical and temporal distributions of these factors 
 

By the extension of MCR-ALS to the simultaneous analysis 
of the multiple data sets via column- or row-wise augmented 
data matrices, an additional constraint, so-called trilinearity 
[18]-[20], can be implemented. By applying this trilinear 
constraint, temporal profile distributions of each factor in the 
different geographical sites are forced to have a common 
shape during each iteration of the ALS optimization and only 
differ in a scaling factor. This constraint can be applied either 
to all factors or selectively to some, but with this additional 
constraint imposed, a unique solution can be achieved. It is 
therefore strongly recommended to apply the trilinearity 
constraint whenever there is a trilinear structure in the data. 
Explanation of the implementation of these additional 
constraints can be found in previous publications [4], [18], 
[19], [21]-[24].  

In this study, multivariate data analysis including matrix 
augmentation MCR-ALS was applied in order to better 

visualize and interpret physicochemical monitoring data 
collected from three key sites within Grahamstown reservoir, 
the major drinking water supply for the urban area of 
Newcastle, New South Wales, Australia. The reservoir is a 
broad, relatively shallow storage, receiving inputs from a 
largely unprotected mixed land-use catchment, including 
urban residential development and a variety of agricultural, 
industrial and recreational activities. The nature of the 
catchment lends itself to a variety of potentially adverse water 
quality outcomes for the reservoir including elevated nutrient 
levels which, coupled with the physical dimensions of the 
reservoir, leave it vulnerable to development of algal blooms. 
In relation to this, stratification of the water column has been 
considered potentially important in terms of explaining 
fluctuations in algal productivity within the reservoir. Hence, 
data relating to temperature gradient within the water column 
has been included among the physico-chemical parameters 
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analysed. 
The objective of the implementation of an MCR-ALS 

approach to this data was to identify and assess the spatial and 
temporal distribution of key water quality variables, and their 
likely links with the main contamination sources within the 
Grahamstown catchment. In particular, the aim was to clarify 
the relative influence of the major inflows from different 
regions of the catchment along with factors such as 
stratification, on water quality conditions at the key 
monitoring points within the reservoir, thereby informing 
management strategies needed to prevent development of 
adverse water quality scenarios in the future. 

II. MATERIALS 

A. Location and Description of the Study Site 

Grahamstown reservoir is a shallow reservoir located 20 
kilometres north of Newcastle, between the townships of 
Raymond Terrace to the west and Medowie to the east, in the 
Hunter Region of New South Wales, Australia. It has an 
average depth of 7 m, maximum depth of 11 m, a total 
capacity of 193,000 ML and surface area of 28 km2. 
Approximately 50% of the inflow volume consists of water 
pumped from the Williams River, which is transferred to the 
northern end of the reservoir through the Balickera Canal (Fig. 
2). The land use of the Williams River catchment is dominated 
by agriculture. The remainder of the inflows comprise runoff 
from the reservoir’s own small catchment on the northern and 
eastern sides, with approximately 75% of total runoff volume 
coming from the northern part of the catchment (Fig. 2).  

The catchment to the north of the reservoir receives a 
mixture of runoff from Seven and Nine Mile Creeks, the latter 
draining through Wallaroo State Forest, although there are 
also some small farm allotments in this part of the catchment. 
The Seven Mile Creek catchment includes some quarrying and 
motor sport activity. The catchment to the east of the reservoir 
also contains some small farm allotments alongside the urban, 
mainly sewered settlement of Medowie. Runoff waters from 
this part of the catchment drain to the reservoir along 
Campvale Canal from which they are ultimately pumped into 
the reservoir (Fig. 2). These drainage waters must be pumped 
into Grahamstown reservoir after rainfall to alleviate flooding 
of low-lying areas as the dam has been constructed over 
natural drainage lines for that area. Water for treatment and 
distribution throughout the city of Newcastle is extracted from 
Grahamstown reservoir via the George Schroder Water 
Pumping Station which is located at the far southern point of 
the dam (Fig. 2) [25]. 

B. Data 

For this study, the focus was on physical and chemical 
analyses at three key water monitoring sites within the 
reservoir. One site is located on the north side of the reservoir 
(NTH) closer to Balickera Canal. It is the most protected and 
shallowest (4-6 m) of the monitoring sites. A second site is 
located in the central part of the reservoir (MID). This is the 
most wind exposed and deepest (9-10 m) of the sites, while 

the third site, which is the most southern of the sites, is close 
to the drinking water off take (STH). The reservoir at this site 
is between 7 and 9 m deep (Fig. 2).  

 

 

Fig. 2 Location of Grahamstown reservoir and location of the three 
monitoring sites within the lake. Solid circles mark approximate 

positions of different monitoring/sampling stations within the 
reservoir [25] 

 
22 physicochemical parameters (Table I) obtained from 

each station were used for analysis. Analysis of water quality 
parameters at the three sampling sites (NTH, MID, STH) was 
carried out from surface water samples collected weekly from 
January to December in 2013. An additional variable, the 
gradient of the change in water temperature with respect to 
depth (°C/m), was also included in the analyses (described in 
Table I as ‘thermal gradient’). Note that this parameter relates 
to difference in water temperature between the bottom and the 
surface, expressed as a gradient, as the limitations of the 
monitoring undertaken precluded any clear identification of 
the occurrence of a sharp thermocline and distinct layering 
within the water column. Discharge data relating to transfers 
from Balickera and Campvale canals, as well as inflows from 
Seven and Nine Mile Creeks, were also included as 
parameters for analysis.  

Data sets from the three sampling stations were organised in 
three data matrices DNTH, DMID, DSTH in which the rows of 
these three matrices were sampling time and the columns were 
the physico-chemical parameters. These three datasets were 
analysed individually and simultaneously in a column-wise 
augmented matrix. The rows in the column-wise augmented 
matrix represent samples taken on different occasions from the 
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different geographical sampling sites, and the columns 
(variables) are the physico-chemical parameters.  

 
TABLE I 

CHEMICAL AND PHYSICAL WATER QUALITY PARAMETERS IN THE WATER 

QUALITY DATA SETS USED IN THE ANALYSES 

Water quality/quantity parameter Abbreviation Unit 

Water temperature (at surface) Temp °C 

Thermal stratification TS °C/m 

pH pH - 

Alkalinity at pH 4.5 ALK mg CaCO3/L 
Dissolved oxygen DO mg/L 

Secchi disk depth Secchi m 

Electrical conductivity EC µS/cm 

Suspended solids SS mg/L 

Turbidity Turbidity NTU 

Total organic carbon TOC mg/L 

Total ammonia NH3 mg N/L 

Total Kjeldahl nitrogen TKN mg N/L 

Nitrate NO3
-
 mg N/L 

Nitrite NO2
-
 mg N/L 

Total phosphorus TP mg P/L 

Soluble reactive phosphorus SRP mg P/L 

Sulfate SO4
2- mg/L 

Silica SiO2 mg/L 

Chlorophyll α Chl-α µg/L 

Balickera transfers - ML 

Campvale transfers - ML 

Seven and Nine Mile Creeks Creeks ML 

 
Constraints used in this work during the MCR-ALS were 

non-negativity, normalisation of loadings to equal height and, 
the trilinearity constraint in the case of simultaneous analysis 
of the multiway data sets via column-wise matrix 
augmentation. To apply non-negativity constraints during the 
alternating least-squares optimisation, the experimental data 
matrices DNTH, DMID, DSTH and Daug were normalized (Min-
Max normalisation) by divided difference between each 
element and the minimum in a column to the difference 
between maximum and minimum of the same column [26], 
[27]. 

III. RESULTS AND DISCUSSION 

Decomposition of the three individual scaled data matrices 
and scaled augmented experimental data matrices Daug, was 
performed using the MCR-ALS method, from which four 
principle components were identified. 

A. MCR-ALS Results of Individual Data Matrices 

MCR-ALS results for three sites that were analysed 
individually are summarized in Fig. 3, which shows the 
loading plots characterizing the main factors in each analysed 
dataset. In these diagrams, the magnitude of the loading (i.e. 
height of the column) indicates the relative significance of the 

variable in relation to the identified factor 
The first resolved composition profile at Fig. 3 exhibited the 

highest contributions of dissolved inorganic nitrogen (NH3, 
NO3

- and NO2
-), SRP, Chl-α, and TOC in comparison with the 

other factors. It was most likely that thermal stratification (or 
at least the existence of a significant temperature gradient) was 
responsible for this observation. Since thermal stratification 
may be frequently interrupted by mixing of the entire water 
column, this may increase nutrient availability in the euphotic 
zone, which may in turn promote phytoplankton growth [28], 
as suggested by the high Chl-α value in this factor.  

The second resolved composition profile was largely 
characterised by variations in water temperature with the three 
monitoring sites exhibiting a relatively similar response in 
relation to this parameter. The third resolved composition 
profile was characterised by large contributions from Chl-α, 
TP, NH3, turbidity, and SiO2 in the northern (NTH) and 
central (MID) zones of the reservoir. Transfers from Balickera 
Canal and inflows from Seven and Nine Mile Creeks appeared 
more prominent in this profile than transfers from Campavle 
Canal, suggesting that pumping from the Williams River and 
other inflows at the northern end, are the main vehicles for 
increases in these parameters within the reservoir. The 
prominence of turbidity, SiO2 and TP in this factor for the 
NTH and MID sampling sites would appear to be consistent 
with the dominance of agricultural land use in the Williams 
River catchment and to a lesser extent the activities within the 
Seven Mile Creek catchment. Turbidity and TP were clearly 
less significant parameters in the profile of the STH sampling 
site, probably reflecting its spatial separation from the 
northern inflows. Conversely, SS was the strongest component 
of the STH and MID site profiles, but not so for the NTH, 
suggesting that this parameter may be more closely linked 
with inflows from Campvale Canal.  

In other hand, the relative significance of N species (NH3, 
NO3

- and NO2
-) in the northern and southern region of the 

reservoir (NTH, STH) could be attributed to contributions 
from all areas of the catchment. This result likely reflects the 
influence of agricultural run-off, especially from the Williams 
River catchment via Balickera canal in the NTH, but with 
regard to the eastern (Campvale Canal) part of the catchment 
area, may be more indicative of sewage leaks or overflows. 

The fourth resolved composition profile, was characterised 
largely by variation in DO, pH and Secchi depth for the three 
monitoring sites, suggesting the possible influence of elevated 
algal abundance and activity. A marked increase in pH in 
association with algal blooms is not uncommon, as a result of 
super saturation of DO during the day due to elevated algal 
photosynthesis, with rapid concurrent consumption of carbon 
dioxide [29]. 

 



International Journal of Earth, Energy and Environmental Sciences

ISSN: 2517-942X

Vol:12, No:3, 2018

267

 

 

 

Fig. 3 Four factors were resolved for the NTH, MID and STH sites within the reservoir. Variables are displayed on the x-axis while the y-axis 
indicates their contribution to the identified factors 

 
Although the composition profiles resolved by classic 

MCR-ALS provided for meaningful interpretation, further 
interpretation of the geographical and temporal distribution of 
some factors (first and third) resolved by this method revealed 
some inconsistencies. It is likely that these inconsistencies, 
and the consequent difficulty with interpretation of the 
geographical and temporal profiles, were likely due to the 
effects of rotational ambiguities inherent to the classic MCR-
ALS method. In order to eliminate these ambiguities, MCR-
ALS analysis was subsequently applied to the column-wise 
augmented matrix in the presence of a trilinearity constraint, 
with results described below. 

B. MCR-ALS Results of Columnwise Augmented Data 
Matrix 

By applying matrix augmentation MCR-ALS methods, it 
was possible to compare water quality at the three sites 
simultaneously, providing an easier interpretation of 
correlation between variables and their geographical and 
temporal distributions within the water quality variables. The 
four composition profiles extracted from the MCR-ALS 
application to Daug are displayed in Fig. 4.  

The first resolved composition profile exhibited the highest 
contributions of NH3, NO2

-, Chl-α, SRP, TOC holding some 
similarities with the first factor obtained of individual data 
matrix studies. These results suggested that thermal 

stratification or other processes such as internal water column 
recycling [30] (bacterial loop or zooplankton excretion) may 
play an important role in relation to the nutrient released from 
the sediments. Since TOC values are high in this factor, this 
result may reflect high dissolved oxygen consumption due to 
microbial degradation of organic matter in bottom waters, 
resulting in anoxia and potential increase in nutrient release. 
This scenario can be facilitated by periods of stratification 
leading to accumulation of dissolved inorganic nutrients in 
bottom waters, which can subsequently be released during 
unstable weather conditions. 

The second resolved composition profile had the highest 
contributions of temperature, aligning it most closely with the 
second factor obtained by separate analysis of individual sites. 
The third resolved composition profile had large contributions 
of TP, turbidity, Chl-α and SiO2, similar to the third factor 
obtained in the individual data matrix studies. This likely 
reflected the quality of the water from Williams River (via 
Balickera Canal) where the land use of the river’s catchment is 
dominated by agriculture. Compared to the other identified 
factors, the relative significance of NO3

- value in this factor, is 
perhaps also reflective of the contributions of run-off from 
agricultural activity. While Balickera transfers stand out as the 
dominant factor in this profile, the relative significance of 
inflows from Seven and Nine Mile Creeks as well as transfers 
from Campvale Canal, suggests that the distribution of 
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nitrogenous nutrient levels within the reservoir is a function of 
contributions from all areas of the catchment. Similar to the 
final factor obtained by individual site studies, the fourth 
factor was characterised largely by variation in DO, pH and 

Secchi depth, suggesting the possible influence of elevated 
algal photosynthesis as it might increase DO levels with rapid 
uptake of carbon dioxide, which usually produces a marked 
increase in pH. 

 

 

Fig. 4 MCR-ALS composition profiles for the column-wise augmented data matrix. Variables are displayed on the x-axis and the y-axis 
indicates the contribution of each of the variables for each identified factor 

 
Fig. 5 illustrates the averaging MCR-ALS unfolded resolved scores, which were plotted in two different ways, the temporal 

and geographical distributions for four environmental factors. As can be observed in Fig. 5 (a), in terms of the temporal 
distributions the first factor was closely linked to variation in TOC; the second factor appeared to be closely aligned with 
seasonal temperature variation; the pattern of fluctuations in the Balickera transfers profile resembled that of the third factor; and 
the pattern of fluctuations in the dissolved oxygen profile resembled the temporal distributions of the fourth factor. 

The temporal distributions (Stemp) resolved by MCR-ALS clearly identify differences between factors across the sampling 
period, while the contribution of sampling stations was relatively similar for all factors due to highly overlapped patterns of 
factors (see the pattern of dotted lines in Fig. 5). It can be observed from Fig. 5 (b), that NTH and STH showed the same 
contribution of the first factor for which an obvious interpretation was not evident, as these sites are most likely to be influenced 
by inflows from different regions of the catchment. Further investigation of sediment characteristics and the complexity of 
interplay between physical, chemical and biological processes in these parts of the reservoir, may be required before firm 
conclusions can be drawn. Since the second factor was driven largely by broad climatic conditions, as characterised by variations 
in water temperature, the three monitoring sites exhibited a similar response. The third factor was found to be closely aligned 
with transfers from Balickera Canal, and as such the contribution was clearly greatest at NTH, the most proximal site to the 
Balickera inlet. The final factor, characterised largely by variation in DO, was slightly more prominent in the central part of the 
reservoir, possibly reflecting the extended fetch and therefore greater potential for wind-induced mixing at the surface in this 
region of the reservoir.  
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(a) 
 

 

(b) 
 

 

Fig. 5 Temporal (a) and geographical (b) distribution of MCR-ALS resolved scores for scaled augmented data matrix after refolding 
arrangement described in Fig. 1. Sampling time in the score plots are displayed on the x-axis for the three consecutively years. The y-axis 

indicates the contribution of the identified factors. Temporal distributions of TOC, Temp, Balickera transfers, and DO are presented as dotted 
lines, which follow the pattern of the resolved factors most closely 

 
This study has illustrated the usefulness of MCR-ALS 

technique for analysing and interpreting environmental data 
studies. Based on the results of this method, it is concluded 
that while similar patterns for four factors were found for both 
individual and augmented data sets, variations between the 
two analyses were noted. Similar temporal patterns for the 
second and fourth factors were separately identified by both 
classical MCR-ALS and matrix augmentation MCR-ALS, 
with the remaining two patterns appearing to be more clearly 
resolved by matrix augmentation MCR-ALS. It is likely that 

these differences reflect the effect of rotational ambiguities in 
classical MCR-ALS. This suggests that matrix augmentation 
MCR-ALS may be more flexible and adaptable to 
environmental studies where a trilinearity constraint can be 
used. 

IV. CONCLUSIONS 

The use of MCR-ALS to provide an insight into water 
quality in Grahamstown reservoir showed the usefulness of 
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such multivariate analysis for analysing and interpreting 
environmental data sets.  

In terms of water quality assessment, this work has assisted 
in the identification pollution sources/factors and an 
understanding of the temporal/geographical variations in water 
quality of Grahamstown reservoir which may be used to assist 
with improved water quality management. The result of 
applying MCR-ALS has confirmed that the influence of inputs 
from the reservoir’s own catchment area, via Campvale 
Drainage Canal and Seven and Nine Mile Creeks, was 
different from that exerted by inputs from the Williams River 
catchment via Balickera Canal. While all inflows were 
implicated in elevating levels of nitrogenous nutrients (mostly 
in the form of NO3

-) within the reservoir, SiO2 and TP levels 
appeared to be influenced more by transfers from the Williams 
River catchment (via Balickera Canal) at the northern end of 
the reservoir. SRP, NO2

- levels appeared to be influenced by 
thermal gradient within the water column, most likely linked 
to release from the sediment as a result of either periods of 
anoxia or microbiologically mediated processes. However, 
clarification of the likely occurrence and significance of 
stratification to water quality at the northern and southern ends 
of the reservoir, as indicated by the existence of a significant 
thermal gradient within the water column at these locations, 
requires further investigation. 

The results derived from the MCR-ALS of the individual 
data sets were in good agreement with those from MA-MCR-
ALS. However, use of matrix augmentation MCR-ALS 
appeared to yield an interpretation of geographical and 
temporal information which is more flexible and adaptable to 
environmental studies than classic MCR-ALS. 
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