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Abstract—An algorithm is proposed for the order reduction of 

large scale linear dynamic multi variable systems where the reduced 
order model denominator is obtained by using Stability equation 
method and numerator coefficients are obtained by using SRAM. The 
proposed algorithm produces a lower order model for an original 
stable high order multivariable system. The reduction procedure is 
easy to understand, efficient and computer oriented. To highlight the 
advantages of the approach, the algorithm is illustrated with the help 
of a numerical example and the results are compared with the other 
existing techniques in literature. 
 

Keywords—Multi variable systems, order reduction, stability 
equation method, SRAM, time domain characteristics, ISE. 

I. INTRODUCTION 

N general most of the physical systems are complex and 
their transfer function representations are of very high 

orders. The analysis, control and design of those high order 
models are tedious and difficult. So the analysis and design of 
such systems is often carried out by using a low order model 
which retains the dominant characteristics of the original high 
order model. 

In literature, a number of methods are available for order-
reduction of linear time invariant continuous systems in time 
domain as well as in frequency domain [1]-[14]. Further, the 
extension of single-input single-output (SISO) methods to 
reduce multi-input multi-output (MIMO) systems has also 
been carried out in [15]-[30]. It is established in literature that, 
some proposed methods like Pade approximation method [1], 
continued fraction expansion method [2], Markov parameter 
matching method by Jonckheere [3], etc. may generate 
unstable reduced order models for a stable original higher 
order model. Stability guarantee methods like Routh 
approximation method [4], Routh-Pade approximation method 
[5] etc., are proposed; these will generate stable lower order 
reduced models for stable high order original models. Routh 
approximation method has limitations like formulation of two 
separate Routh tables for obtaining numerator and 
denominator polynomials of reduced order models. Some 
mixed methods like [15]-[18], [23]-[25] and [28]-[30] etc. are 
proposed for order reduction of higher order multivariable 
systems. All the proposed methods have their unique pro’s and 
con’s. In this paper the author’s propped a mixed method for 
order reduction of SISO and multi variable systems. The 
method is discussed as follows: Section II includes problem 
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statement, and proposed method. A numerical example is 
presented in Section III; results and ISE are in Section IV and 
conclusion is given in Section V. 

II. PROPOSED REDUCTION PROCEDURE 

Let us consider the general transfer function of a continuous 
time invariant system of order ‘n’ be defined as  
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where )1(  nioBi  and )( nioAi   are scalar quantities. 

Let the corresponding kth (k<n) order reduced model is of the 
form   
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where )1(  kiobi  and )( kioai   are scalar quantities.  

Denominator of Reduced Order Model: Stability Equation 
Method 

For stable original system, G(s), its denominator is 
decomposed into even and odd components in the form of 
stability equations as 
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where 1m  and 2m  are the integer parts of 
2

n  and )
2

1
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As the effect of poles and zeros placed far away from origin 

will be less so discard the factors with large magnitudes of 2
iz  

and 2
ip in (3) and (4), then the stability equations of thk order 

reduced models are 
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where 1m  and 2m  are the integer parts of 
2

k  and )
2

1
(

k  

respectively Combining these reduced stability equations and 

therefore proper normalizing it, the thk  order denominator 

)(sDk of reduced model is  
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Determination of the Numerator of the Reduced Model: 
SRAM 

After obtaining the reduced denominator Dk(s), the 
numerator of the biased model, which will retain the first ‘t’ 
time moments and ‘m’ Markov parameters is found as: 

 
 )()()( skmNsktNskN   with k = t + m            (8) 
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in general       
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with M0=0. Now finally, the kth order Reduced model is given 
by  
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Extension to Multi Variable Systems 

Let the transfer function matrix of original thn order system 
having ‘p’ inputs and ‘q’ outputs as 
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where i=1,2,…q and j=1,2…..p  

Let the transfer function matrix of reduced thk order system 
having ‘p’ inputs and ‘q’ outputs as 
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where i=1,2,…q and j=1,2…..p  

III. NUMERICAL EXAMPLE 

To ascertain the flexibility and effectiveness of the 
proposed method, the following example is considered. 

Consider the 4th order system transfer function given by 
[12], [13]. 
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It is proposed to obtain a second order model for the given 

original high order system using the proposed reduction 
method 

By decomposing the denominator into even and odd parts, 
the stability equations are 
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Now by discarding the factors with large magnitudes of 2
iz  

and 2
ip in )(sDe and )(sDo  then the stability equations of 

second order reduced model is  
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Combining and normalizing (12), (13) and from (7) the 
reduced denominator is 

 

6997.045771.1)( 2
2  sssD  

 
The second order reduced model numerator using SRAM 

which retain ‘t’ time moments from G(s) where t+m=2, are 
given by:  
 

For t=2, m=0    6997.06997.0)(1
2  ssN  

 
Then the reduced 2nd order model by using proposed 

method is obtained as   
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Fig. 1 Comparison of Step Responses of Original, Proposed and Other Existing Reduced Models of SISO System 
 

TABLE I 
COMPARISON OF TIME DOMAIN SPECIFICATIONS, INTEGRAL 

SQUARE ERROR (ISE) OF SISO SYSTEM 

System/Method tr (sec) ts (sec) ISE 

Original 2.26 3.93  

Proposed 2.3 3.41 0.00458 

Safonov et al. [22] 3.8 8.84 0.045161 

Shieh et al. [25] 4.95 6.75 0.14256 

Gautam et al. [26] 1.54 2.73 0.045593 

Pal et al. [21] 15.4 27.4 1.5342 

Parmar et al. [27] 2.19 3.23 0.00164 

 
The proposed method is also applied for multi variable 

systems by taking some examples from the literature:  

Numerical Example 

Consider a two input two output system is given by transfer 
function matrix [10]-[17] 
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The common denominator D(s) is 
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The proposed algorithm is successively applied to the given 

multivariable system and the reduced order models )(srij  are 

obtained as 
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where 6181.034952.1)( 2

2  sssD  and 

6181.079323.0)(11  ssb , 24724.042855.0)(12  ssb , 

3091.038116.0)(21  ssb , 6181.093745.0)(22  ssb  for all 

t=2 and m=0. 
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IV. RESULTS 

A. Comparison of Step Responses, Time Domain 
Characteristics and Integral Square Error 
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Fig. 2 Comparison of Step Responses G11(s), Proposed Reduced and 
Other Existing Methods 
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Fig. 3 Comparison of Step Responses G12(s), Proposed Reduced and 
Other Existing Reduced Models 

 
TABLE II 

COMPARISON OF TIME DOMAIN SPECIFICATIONS, ISE OF G11(S), PROPOSED 

AND OTHER EXISTING METHODS 

System/Method tr (sec) ts (sec) ISE 

Original G11(s) 2.12 3.8  

Proposed 2.02 5.56 0.01248 

Sudhir et al. [22] 2.16 4.91 0.011517 

Parmar et al. [20] 1.86 5.82 0.014498 
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Fig. 4 Comparison of Step Responses of G21(s), Proposed Reduced 
and Other Existing Methods 
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Fig. 5 Comparison of Step Responses of G22(s), Proposed Reduced 
and Other Existing Methods 

 
TABLE III 

COMPARISON OF TIME DOMAIN SPECIFICATIONS, ISE OF G12(S), PROPOSED 

AND OTHER EXISTING METHODS 

System/Method tr (sec) ts (sec) ISE 

Original G12(s) 1.02 1.87  

Proposed 1.39 6.28 0.008129 

Sudhir et al. [22] 1.34 6.31 0.007521 

Parmar et al. [20] 1.24 6.39 0.008744 

 
TABLE IV 

COMPARISON OF TIME DOMAIN SPECIFICATIONS, ISE OF G21(S), PROPOSED 

AND OTHER EXISTING METHODS 

System/Method tr (sec) ts (sec) ISE 

Original G21(s) 2.18 3.86  

Proposed 2.21 3.18 0.002098 

Sudhir et al. [22] 2.14 5.11 0.002106 

Parmar et al. [20] 1.94 5.69 0.002538 

 
 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:11, No:6, 2017

246

 

 

TABLE V 
COMPARISON OF TIME DOMAIN SPECIFICATIONS, ISE OF G22(S), PROPOSED 

AND OTHER EXISTING METHODS 

System/Method tr (sec) ts (sec) ISE 

Original G22(s) 1.34 2.28  

Proposed 1.66 6.05 0.016569 

Sudhir et al. [22] 1.39 6.28 0.017903 

Parmar et al. [20] 1.53 6.17 0.015741 

V. CONCLUSIONS 

The proposed algorithm combines the advantages of the 
Stability equation method and the SRAM to generate stable 
reduced order models for linear time invariant dynamic 
systems. The poles are determined by the stability equation 
method and the zeros are by simplified Routh approximation 
method by matching first ‘t’ time moments. The algorithm has 
also been extended for the order reduction of linear 
multivariable systems. The proposed algorithm is simple, 
computer oriented and approximates the time domain 
specifications of original system compared to other existing 
methods in the literature, and the proposed algorithm improves 
steady state performance of the system. A numerical example 
was illustrated and compared with other existing methods in 
literature. 
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