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Abstract—Evaluation of organizational performance is among the 

most important measures that help organizations and entities 
continuously improve their efficiency. Organizations can use the 
existing data and results from the comparison of units under 
investigation to obtain an estimation of their performance. The 
Malmquist Productivity Index (MPI) is an important index in the 
evaluation of overall productivity, which considers technological 
developments and technical efficiency at the same time. This article 
proposed a model based on the multistage MPI, considering limited 
data (Grey’s theory). This model can evaluate the performance of 
units using limited and uncertain data in a multistage process. It was 
applied by the electricity market manager to Iran’s electric power 
supply chain (EPSC), which contains uncertain data, to evaluate the 
performance of its actors. Results from solving the model showed an 
improvement in the accuracy of future performance of the units under 
investigation, using the Grey’s system theory. This model can be 
used in all case studies, in which MPI is used and there are limited or 
uncertain data.  

 
Keywords—Malmquist Index, Grey's Theory, Charnes Cooper & 

Rhodes (CCR) Model, network data envelopment analysis, Iran 
electricity power chain.  

I. INTRODUCTION AND LITERATURE REVIEW 

HE evaluation of the organizational performance has a 
significant role in orientation of their future decisions. In 

this regard, organizational efficiency and productivity should 
be evaluated to be able to monitor economic growth in future 
decision making [1]. Productivity improvement is achieved 
through optimal use of the production elements, and plays a 
significant role in achieving a continuous economic growth 
and sustainable production. Today, competition in the arena of 
global production and trade has been changed with the 
diminution of economic boundaries and attempt for 
productivity enhancement, based on economic wisdom, has 
been emphasized. As a result, productivity requires the 
operationalization of potential abilities [1], [2]. Therefore, this 
movement needs a stimulator, and “competition” is the best 
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stimulator in domestic and foreign markets. Productivity 
enhancement results in progress and development. The 
majority of the advanced and developing countries have made 
enormous investments to extend the perception of productivity 
and generalize the use of productivity improvement 
techniques.  Investigation into the performance of countries 
with considerable economic growth in recent decades suggests 
that such achievements were mainly due to productivity 
enhancement [3].  

Productivity is a combination of efficiency and 
effectiveness. In other words, an organization is productive 
only if it performs efficiently and effectively at the same time. 
Organizational efficiency can be evaluated based on 
appropriate use of inputs to produce outputs. We can assess 
effectiveness by evaluating the achievements in the outputs. 
The concept of productivity can be framed by combining 
effectiveness and efficiency, showing the extent to which 
organizational goals are achieved using the inputs.   

Data Envelopment Analysis (DEA) is a suitable and 
efficient tool for productivity assessment [4], [5]. It is a 
nonparametric method to calculate efficiency of decision-
making units. Today, the use of DEA in evaluation of different 
organizations and industries, such as banking, post, hospitals, 
educational centers, power plants, and refineries, is rapidly 
growing. DEA models have undergone many theoretical and 
applied developments; therefore, the identification of different 
DEA dimensions is essential for more precise application of it. 
In addition to the determination of relative efficiency, the use 
of DEA reveals organizational weaknesses in different indices. 
It then devises the organization’s strategy towards efficiency 
and productivity enhancement by providing optimal values of 
those indices [5]. Moreover, the efficient models based on 
which inefficient units are evaluated are introduced to those 
units. Efficient models are units that produce a greater number 
of outputs using the same number of inputs used by inefficient 
units or produce the same number of outputs using fewer 
inputs. This extensive diversity of results has accelerated the 
growth of this technique [6]. As a result, the theoretical 
dimension of this technique also grew significantly and turned 
into an active branch of operations research.  

This study considered the MPI, used to evaluate the overall 
productivity, within a multistage network model and analyzed 
it with the Grey’s system theory, assuming the presence of 
uncertain data.  There are many articles on the MPI and 
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application of Grey’s theory. Sher et al. [7] proposed a model 
on the Grey Control System. Lin et al. [8] proposed a MPI 
based on common-weights DEA and studied the application of 
the Grey's model for prioritization of technical measures for 
quality improvement. Mao et al. [9] investigated the use of the 
Grey’s model GM (1, 1) to estimate the vehicle breakdown 
risk. Chen et al. [10] developed a model to use DEA, MPI, and 
Grey model to determine productivity performance in the 
wood industry. Deng [24] presented an introduction on the 
Grey’s system theory. Trivedi et al. [11] addressed the use of 
Grey's system theory in the Development of a Runoff 
Prediction Model. Liu et al. [12] investigated the application 
of a relational two-stage DEA model in health care system. 
Mussard et al. [13] developed the multistage MPI. Fernandes 
et al. [14] proposed a multi stage model with Application in 
banking efficiency and financial development. Mavi et al. [15] 
studied the Joint analysis of eco-efficiency and eco-innovation 
with common weights in two-stage network DEA. Amani et 
al. [16] used MPI with carry-overs in power industry. 
Sakthidharan et al. [17] studied about impact of operating cost 
components on airline efficiency in India. None of these 
articles indicated the combination of multistage MPI and 
Grey’s System Theory. As a result, a model capable of 
combining the network DEA with the Grey’s model is needed. 
In other words, the innovation of this paper is to provide a 
hybrid network model with the Grey theory and the Malmquist 
index that is widely used in supply chain models. The case 
studied in this article was Iran’s EPSC. The electricity market 
manager is responsible for electricity distribution based on a 
huge amount of uncertain data on adopting a combination of 
actors in this field at different EPSC levels. After selection a 
series of combinations, the electricity market manager seeks to 
evaluate each combination. This evaluation can be effective in 
future decisions concerning the selection of appropriate 
combinations. 

A. Malmquist Productivity Index (MPI) 

In economic analyses, MPI is among the indices always 
considered in investigating the overall productivity growth. 
This index addresses technological changes and technical 
efficiency at the same time. In this index, the calculated 
overall efficiency is due to technological changes or efficient 
frontier displacement and distance from efficient frontier, i.e. 
technical efficiency [18]. Equations (1)-(3) were used to 
calculate technical efficiency, technological changes, and 
overall efficiency, respectively. 

 
Technical efficiency = Ɵ t+1

t+1 / Ɵ tt    )1(  
 
Technological changes = ((Ɵ t t × Ɵ t+1

t) / (Ɵ 
  t

t+1 × Ɵt+1
t+1)) 

1/2 
)2(  

 
MPI = technological changes * technical efficiency = (Ɵ t+1

t+1 
/ Ɵ tt) × ((Ɵ tt × Ɵ t+1

t) / (Ɵ tt+1 × Ɵ t+1
t+1)) 

1/2                          (3) 
 
Ɵ i

j = efficiency at time i to frontier j. 

B. Grey’s System Theory  

The Grey's system theory is a method to study uncertainty. 
It is based on mathematical equations and has information and 
statistical application. In the lack of complete information, the 
Grey’s system theory can be helpful in the study of problems 
involving small data and poor information [19]. The Grey’s 
system theory is also used for making prediction. In the Grey’s 
system theory, the raw data series can be converted into 
accumulated generating operation (AGO) series. Consider 
Raw Dataset 4: 

 
X(0) = (X1 

(0) X2 
(0) X3 

(0) ….. , Xn 
(0) ) )4(  

AGO (1) = X(1) = (∑1
k=1 Xk 

(0) , ∑2
k=1 Xk 

(0) , ∑3
k=1 Xk 

(0) ….. , 
∑n

k=1 Xk 
(0) )  

. 

. 

. 
AGO (n) = X(n) = (∑1

k=1 Xk 
(n-1) , ∑2

k=1 Xk 
(n-1) , ∑3

k=1 Xk 
(n-1) ….. , 

∑n
k=1 Xk 

(n-1) )
 

Data can be easily expressed in a specific category, known 
as AGO series. Each AGO is obtained from its preceding 
series and calculates data accumulatively and stage-to-stage 
(5). Then, the mean weight of two consecutive data is 
expressed as Z(k). Equation (6) represents the calculation 
mechanism. 
 

ZK 
(1)  = α XK 

(1) +β XK-1 
(1)   α+β=1 

 
Z 

(1) = (Z1 
(1),……., ZK 

(1) ))   6( ) 
 

Accordingly, (7) was used to calculate x(1). 

 

dx(1) / dt + ax(1) = b   )7(  
 
Based on the Grey's system theory [3], a' =[a, b] was 

calculated after obtaining above AGO values, using (8): 
 

B = 
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⎜
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    a' = ( BT B )-1 BT Yn )8(   

 
 After the calculation of a’, based on the Grey's equation 

developed by [25], next periods were predicted with (9): 
 

𝑥
  

       –     
   k=1,2,3,….   . )9(  
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C. Multistage CCR Model  

The CCR is the first data envelopment model. In this model, 
the base model was proposed to determine the highest ratio of 
efficiency, involving the inputs and outputs of decision-
making units, and also to determine the optimal weight for 
investigated units [20]. CCR Fractional programming model 
is: 
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The above fractional planning model is known as the 

fractional CCR model where, ru  is the weight of rth output, iv  

is the weight of ith input, and o  is the index of decision-

making unit under investigation (  no ,...,2,1 ); roy  and iox  
are respectively the rth and ith output and input of the unit 

under investigation (Unit o), respectively; rjy  and ijx  are 
respectively the rth and ith output and input of the jth unit; S is 
the number of outputs, m is the number of inputs, and n is the 
number of units.  

In the input-oriented DEA models, we sought the ratio of 
technical inefficiency, which should be reduced in the inputs 
to place the unit at efficient frontier without changing the 
number of outputs. In the output-oriented DEA models, we 
intended to make the unit reach efficient frontier by finding 
the ratio of required increase in the output without changing 
the number of inputs. Based on the Charnes and Cooper 
recommendation, the fractional CCR model was converted 
into the linear planning model by application of the constraint 
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This efficiency determination model is known as the input-

oriented CCR model (CCR.I). Another technique can be used 
to convert the fractional CCR into a linear CCR model. In this 
method, the fractional CCR is converted into the linear CCR 

model by applying the constraint 
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represents the multiple output-oriented CCR (CCR.O) [22]. 
Multi-axis output-axis model (CCR.O) is: 
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II. DISCUSSION AND MODELING 

The modeling assumptions are as follows: 
 It is a multiple input-oriented CCR model. 
 There are n units under evaluation. 
 Each unit is comprised of 4 subunits. 
 Each subunit can contain many inputs and outputs. 

 

 

Fig. 1 Assumed multistage DEA diagram with 4 subsystems 
 

Fig. 1 shows a network DEA model. Following equations 
are used to express the multiple input-oriented CCR model, 
whose base model was addressed in Section I: 

Efficiency notation of the 1st-4th and overall systems is as: 
 

e(1)= (α2 u2) / (α1 u1) 
e(2)= (α3 u3 ) / (α2 u2) 
e(3)= (α4 u4) / (α3 u3 ) 
e(4)= (α5 u5) / (α4 u4) 
e(5)= (α5 u5) / (α1 u1) 

Fractional multiple input-oriented CCR model is: 
 

Max  (α5 u5 (p) ) / (α1 u1 (p) ) 
s.t : 

∑ ∀𝑗 (α2 u2(j) ) / ∑ ∀𝑗 (α1 u1(j)) ≤ 1          j=1,...,m1 
∑ ∀𝑗 (α3 u3(j) ) / ∑ ∀𝑗 (α2 u2(j)) ≤ 1         j=1,...,m2 
∑ ∀𝑗 (α4 u4(j) ) / ∑ ∀𝑗 (α3 u3(j)) ≤ 1        j=1,...,m3 
∑ ∀𝑗 (α5u5(j) ) / ∑ ∀𝑗 (α4u4(j)) ≤ 1        j=1,...,m4 
∑ ∀𝑗 (α5u5(j) ) /∑ ∀𝑗 (α1u1(j)) ≤ 1        j=1,...,m5 
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u1, u2, u3, u4, u5 ≥ 0 

 
Linear multiple input-oriented CCR model shows the 

conversion of Model 4 into a linear model after applying 
changes: 
 

Max  (α5u5 (p) ) 
(α1u1(p) ) = 1 

∑ ∀𝑗 (α2u2(j) ) -∑ ∀𝑗 (α1u1(j)) ≤  0        j=1,...,m1 
∑ ∀𝑗 (α3u3(j) ) - ∑ ∀𝑗 (α2u2(j))  ≤  0       j=1,...,m2 
∑ ∀𝑗 (α4u4(j) ) - ∑ ∀𝑗 (α3u3(j))  ≤  0       j=1,...,m3 
∑ ∀𝑗 (α5u5(j) ) -∑ ∀𝑗 (α4u4(j))  ≤  0      j=1,...,m4 
∑ ∀𝑗 (α5u5(j) ) -∑ ∀𝑗 (α1u1(j))  ≤  0     j=1,...,m5 

u1(j) , u2(j) , u3(j) , u4(j), u5(j) ≥ 0 
 

To develop the MPI, above input and output variables 
should be considered in two consecutive time intervals, 
presented by t and t+1, respectively. The weights of subsystem 
variables at t are: u 1(j)(t), u 2(j)(t), u3(j)(t), u 4(j)(t), u 5(j)(t). The weights 
of subsystem variables at t+1 are: u 1(j)(t+1), u 2(j)(t+1), u3(j)(t+1), u 

4(j)(t+1), u 5(j)(t+1) . Below model was rewritten considering the 
defined time intervals. In following four models, efficiency at 
t and t+1 was compared to two efficient frontiers at t and t+1. 
The ratio of efficiency at t to efficient frontier at t was 
calculated according to: 

 
Ɵt (t) = Max  (α5 u 5(p)(t)) 

(α1 u 1(p)(t)) = 1 
∑ ∀𝑗 (α2 u 2(j)(t)) - ∑ ∀𝑗 (α1 u 1(j)(t)) ≤  0            j=1,….,m1 

∑ ∀𝑗 (α2 u 3(j)(t)) - ∑ ∀𝑗 (α1 u 2(j)(t))  ≤  0           j=1,….,m2 
∑ ∀𝑗 (α2 u 4(j)(t)) - ∑ ∀𝑗 (α1 u 3(j)(t))  ≤  0           j=1,….,m3 
∑ ∀𝑗 (α2 u 5(j)(t)) - ∑ ∀𝑗 (α1 u 4(j)(t))  ≤  0           j=1,….,m4 
∑ ∀𝑗 (α2 u 5(j)(t)) - ∑ ∀𝑗 (α1 u 1(j)(t))  ≤  0          j=1,….,m5 

u 1(j)(t), u 2(j)(t), u3(j)(t), u 4(j)(t), u 5(j)(t)  ≥ 0 
 

The ratio of efficiency at t to efficient frontier at t+1 was 
calculated according to: 
 

Ɵt (t) = Max  (α5 u 5(p)(t+1)) 
(α1 u 1(p)(t+1)) = 1 

∑ ∀𝑗 (α2 u 2(j)(t)) - ∑ ∀𝑗 (α1 u 1(j)(t)) ≤ 0            j=1,….,m1 

∑ ∀𝑗 (α2 u 3(j)(t)) - ∑ ∀𝑗 (α1 u 2(j)(t))  ≤  0           j=1,….,m2 
∑ ∀𝑗 (α2 u 4(j)(t)) - ∑ ∀𝑗 (α1 u 3(j)(t))  ≤  0           j=1,….,m3 
∑ ∀𝑗 (α2 u 5(j)(t)) - ∑ ∀𝑗 (α1 u 4(j)(t))  ≤  0           j=1,….,m4 
∑ ∀𝑗 (α2 u 5(j)(t)) - ∑ ∀𝑗 (α1 u 1(j)(t))  ≤  0          j=1,….,m5 
u 1(j)(t), u 2(j)(t), u3(j)(t), u 4(j)(t), u 5(j)(t) , u 1(j)(t+1), u 5(j)(t+1)  ≥ 0 

 
The ratio of efficiency at t+1 to efficient frontier at t+1 was 

calculated according to: 
 

Ɵt (t) = Max  (α5 u 5(p)(t+1)) 
(α1 u 1(p)(t+1)) = 1 

∑ ∀𝑗 (α2 u 2(j)(t+1)) - ∑ ∀𝑗 (α1 u 1(j)(t+1)) ≤ 0            j=1,….,m1 

∑ ∀𝑗 (α2 u 3(j)(t+1)) - ∑ ∀𝑗 (α1 u 2(j)(t+1))  ≤  0           j=1,….,m2 
∑ ∀𝑗 (α2 u 4(j)(t+1)) - ∑ ∀𝑗 (α1 u 3(j)(t+1))  ≤  0           j=1,….,m3 
∑ ∀𝑗 (α2 u 5(j)(t+1)) - ∑ ∀𝑗 (α1 u 4(j)(t+1))  ≤  0           j=1,….,m4 
∑ ∀𝑗 (α2 u 5(j)(t+1)) - ∑ ∀𝑗 (α1 u 1(j)(t+1))  ≤  0          j=1,….,m5 

u 1(j)(t+1), u 2(j)(t+1), u3(j)(t+1), u 4(j)(t+1), u 5(j)(t+1)    ≥ 0 
 

The ratio of efficiency at t+1 to efficient frontier at t was 
calculated according to: 

 
Ɵt (t) = Max  (α5 u 5(p)(t)) 

(α1 u 1(p)(t)) = 1 
∑ ∀𝑗 (α2 u 2(j)(t+1)) - ∑ ∀𝑗 (α1 u 1(j)(t+1)) ≤ 0            j=1,….,m1 

∑ ∀𝑗 (α2 u 3(j)(t+1)) - ∑ ∀𝑗 (α1 u 2(j)(t+1))  ≤  0           j=1,….,m2 
∑ ∀𝑗 (α2 u 4(j)(t+1)) - ∑ ∀𝑗 (α1 u 3(j)(t+1))  ≤  0           j=1,….,m3 
∑ ∀𝑗 (α2 u 5(j)(t+1)) - ∑ ∀𝑗 (α1 u 4(j)(t+1))  ≤  0           j=1,….,m4 
∑ ∀𝑗 (α2 u 5(j)(t+1)) - ∑ ∀𝑗 (α1 u 1(j)(t+1))  ≤  0          j=1,….,m5 
u 1(j)(t),u 5(j)(t) , u 1(j)(t+1), u 2(j)(t+1), u3(j)(t+1), u 4(j)(t+1), u 5(j)(t+1)    ≥ 0 

 
The MPI criterion with network diagram is as (10): 

 
Mp = (Ɵt (t+1) × Ɵt+1 (t+1)) / (Ɵ t (t) × Ɵt+1 (t) ) )10(  

 
According to previous sections, the Grey’s system theory is 

applicable when data are not adequately large and/or there are 
data uncertainties [23]. This theory can predict the following 
periods by creating a series of cumulative data. To combine 
the multistage Malmquist model, the next period should be 
first predicted and the obtained results should be then 
considered as the development frontier of the new technology, 
based on the Wang’s theory [3]. With the placement of it in 
the multistage Malmquist model, the Grey’s prediction for the 
next period can be calculated: 

 

𝑢 ́  𝑋
  

      –    
    

  𝐾 1.2. …     𝑛 1.2. … .5   (11) 
 

The four-fold Malmquist models were then rewritten 
considering the values predicted by the Grey's theory for the 
new period (year). Linear multiple input-oriented CCR model 
between K and K+1 is: 

 
β t (t) = Max  (α5 u 5(p)(t)) 

(α1 u 1(p)(t)) = 1 
∑ ∀𝑗 (α2 u 2(j)(t)) - ∑ ∀𝑗 (α1 u 1(j)(t)) ≤  0            j=1,….,m1 

∑ ∀𝑗 (α2 u 3(j)(t)) - ∑ ∀𝑗 (α1 u 2(j)(t))  ≤  0           j=1,….,m2 
∑ ∀𝑗 (α2 u 4(j)(t)) - ∑ ∀𝑗 (α1 u 3(j)(t))  ≤  0           j=1,….,m3 
∑ ∀𝑗 (α2 u 5(j)(t)) - ∑ ∀𝑗 (α1 u 4(j)(t))  ≤  0           j=1,….,m4 
∑ ∀𝑗 (α2 u 5(j)(t)) - ∑ ∀𝑗 (α1 u 1(j)(t))  ≤  0          j=1,….,m5 

u 1(j)(t), u 2(j)(t), u3(j)(t), u 4(j)(t), u 5(j)(t)  ≥ 0 
 

Linear multiple input-oriented CCR model at K+1 relative 
to efficient frontier at K+1 with Grey's predicted values is: 

 
β t (t) = Max  (α5 ú 5(p)(t+1)) 

(α1 ú 1(p)(t+1)) = 1 
∑ ∀𝑗 (α2 u 2(j)(t)) - ∑ ∀𝑗 (α1 u 1(j)(t)) ≤ 0            j=1,….,m1 

∑ ∀𝑗 (α2 u 3(j)(t)) - ∑ ∀𝑗 (α1 u 2(j)(t))  ≤  0           j=1,….,m2 
∑ ∀𝑗 (α2 u 4(j)(t)) - ∑ ∀𝑗 (α1 u 3(j)(t))  ≤  0           j=1,….,m3 
∑ ∀𝑗 (α2 u 5(j)(t)) - ∑ ∀𝑗 (α1 u 4(j)(t))  ≤  0           j=1,….,m4 
∑ ∀𝑗 (α2 u 5(j)(t)) - ∑ ∀𝑗 (α1 u 1(j)(t))  ≤  0          j=1,….,m5 
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u 1(j)(t), u 2(j)(t), u3(j)(t), u 4(j)(t), u 5(j)(t) , u 1(j)(t+1), u 5(j)(t+1)  ≥ 0 
 

Linear multiple input-oriented CCR model at K+1 relative 
to efficient frontier at K with Grey's predicted values is: 

 
β t (t) = Max   (α5 ú 5(p)(t+1)) 

(α1 ú 1(p)(t+1)) = 1 
∑ ∀𝑗 (α2 ú 2(j)(t+1)) - ∑ ∀𝑗 (α1 ú 1(j)(t+1))  ≤  0            j=1,….,m1 

∑ ∀𝑗 (α2 ú 3(j)(t+1)) - ∑ ∀𝑗 (α1 ú 2(j)(t+1))  ≤  0           j=1,….,m2 
∑ ∀𝑗 (α2 ú 4(j)(t+1)) - ∑ ∀𝑗 (α1 ú 3(j)(t+1))  ≤  0           j=1,….,m3 
∑ ∀𝑗 (α2 ú 5(j)(t+1)) - ∑ ∀𝑗 (α1 ú 4(j)(t+1))  ≤  0           j=1,….,m4 
∑ ∀𝑗 (α2 ú 5(j)(t+1)) - ∑ ∀𝑗 (α1 ú 1(j)(t+1))  ≤  0          j=1,….,m5 

ú 1(j)(t+1), ú 2(j)(t+1), ú3(j)(t+1), ú 4(j)(t+1), ú 5(j)(t+1)    ≥ 0 
 
and Linear multiple input-oriented CCR model at K relative to 
efficient frontier at K with Grey's predicted values is: 

β t (t) = Max  (α5 u 5(p)(t)) 
(α1 u 1(p)(t)) = 1 

∑ ∀𝑗 (α2 ú 2(j)(t+1)) - ∑ ∀𝑗 (α1 ú 1(j)(t+1)) ≤ 0            j=1,….,m1 

∑ ∀𝑗 (α2 ú 3(j)(t+1)) - ∑ ∀𝑗 (α1 ú 2(j)(t+1))  ≤  0           j=1,….,m2 
∑ ∀𝑗 (α2 ú 4(j)(t+1)) - ∑ ∀𝑗 (α1 ú 3(j)(t+1))  ≤  0           j=1,….,m3 
∑ ∀𝑗 (α2 ú 5(j)(t+1)) - ∑ ∀𝑗 (α1 ú 4(j)(t+1))  ≤  0           j=1,….,m4 
∑ ∀𝑗 (α2 ú 5(j)(t+1)) - ∑ ∀𝑗 (α1 ú 1(j)(t+1))  ≤  0          j=1,….,m5 
u 1(j)(t),u 5(j)(t) , ú 1(j)(t+1), ú 2(j)(t+1), ú3(j)(t+1), ú 4(j)(t+1), ú 5(j)(t+1)    ≥ 0 

 
Considering the Grey's theory prediction for k following 

periods, the MPI is as (12): 
 

𝑀 ́     

     
 ∀𝑝𝜖1, … ,5    (12) 

 

 

 

Fig. 2 (a) EPSC diagram 
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Fig. 2 (b) DMU selection 

III. CASE STUDY: ELECTRICITY POWER SUPPLY CHAIN 

The Iran electricity market has started operating since 2002. 
It is responsible for the management of electricity generation, 
distribution and sale within the EPSC, which resulted in the 
emergence of an independent entity, called electricity market 
management or the Independent System Operator (ISO), in the 
new structure of the electric power industry to control the 

interactions between purchasers and sellers. The prerequisite 
of a competitive market is the separation of the network 
ownership from network management. As a result, a new 
entity independent of producers, distributors, and owners is 
needed for pricing, maintaining the system safety, planning for 
maintenance, and monitoring the performance data of each 
actor in the electricity market. The market management 
regulates the mechanism of the selection of market actors 
based on cost minimization. Each set of actors selected by the 
electricity market manager is laid out as the electricity 
transmission criterion. In this study, each combination of 
electricity generation, transition, and distribution was 
considered as a DMU (Fig. 2) and then evaluated. These 
evaluations were based on previous data and predicted for 
future periods, and may be associated with error. As a result, 
the Grey’s theory was used because of data uncertainty. These 
evaluations can be effective in setting restraints and/or 
providing facilities for electricity transmission using 
combinations with the highest efficiency. Fig. 2 presents the 
EPSC diagram and mechanism of DMU selection. 

Using the Grey's system theory and equations addressed in 
Section III, we predicted the next period (2017) through the 
accumulation of three consecutive years. The raw data are 
summarized in Table I. 

The new prediction was considered as the new efficient 
frontier using the Grey's theory. The technological changes 
were made with predicted values for the new year. The 
calculated MPI values from solving the model using the 
metaheuristic genetic method in MATLAB 2016 for 365 units 
under investigation are presented in Fig. 3. The mean, 
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minimum and maximum MPI were 0.79, 0.48, and 1 in 2017, 
respectively. Among the investigated units, Units 23, 104, 
121, 142, 181, and 227 had the highest efficiency with the 

MPI of 1 (Fig. 3). These predictions were for 2014, 2015, and 
2016, using data of preceding years. Fig. 4 presents their box 
diagram.  

 
TABLE I 

RAW INPUT AND OUTPUT DATA OF EPSC IN DIFFERENT YEARS 

DMU Year 

Unit 1(input & output) Unit 2(output) Unit 3 (output) Unit 4 (output) 

Fossil    
Fuels  

High-voltage 
electricity 

)MWH( 

Electricity 
sales rate  

)dollar( 

High-voltage 
electricity 

)MWH( 

Electricity 
sales rate  

)dollar( 

High-voltage 
electricity 

)MWH( 

Electricity 
sales rate  

)dollar( 

Amount of 
consumption 

)MWH   

1 

2014 88000 2306 12.7 1890 14.3 250 23.2 198.9 

2015 86990 2660 18.7 19970 13.8 234 24.5 203.6 

2016 85980 2456 14.3 2309 13.9 231 25.6 216.6 

Gray Forcast  2017 84679 25679 15.3 22340 13.5 242 23.8 217.4 

2 

2014 76780 3290 15.4 3129 14.5 270 25.2 256.6 

2015 84500 4350 18.2 4270 16.8 239 27.3 230.7 

2016 75349 4560 16.7 4500 18.8 245 28.3 241.4 

Gray Forcast 2017 80430 46539 17.3 4650 19.2 248 29.3 245.6 

3 

2014 83450 3456 16.7 3467 19.3 230 27.5 228.8 

2015 82560 4007 15.8 4000 17.8 260 26.6 256.6 

2016 86540 3877 16.7 86500 20.5 210 25.6 207.8 

Gray Forcast 2017 85340 3978 16.9 48600 19.3 250 26.6 232.2 

4 

2014 80540 3400 14.3 3380 23.2 240 26.5 238.8 

2015 89970 3280 17.5 32100 24.4 240 24.4 238.9 

2016 87770 3456 18.9 3450 23.2 280 24.8 276.6 

Gray Forcast 2017 88670 34222 18.6 3500 23.7 291 25.4 279.5 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

356 

2014 85540 4378 12.4 4230 24.3 310 29.1 307.8 

2015 86780 4320 16.5 4300 28.3 320 29.4 315.6 

2016 79880 4367 17.7 3980 26.3 310 25.5 308,6 

Gray Forcast 2017 82340 43560 17.7 4090 26.6 315 27.6 309.8 

 

 
Fig. 3 Prediction of efficiency changes for 356 units under 

investigation in four periods 

IV. CONCLUSION AND RECOMMENDATIONS 

a. Conclusion  

There are different methods for prediction of future data, 
out of which the Grey’s system theory can provide better 
predictions using fewer data [9]. The combination of the 
Grey's system theory and MPI can calculate one of the most 
important productivity indices and specify the future position 
of the units based on their previous performance by predicting 

the future changes. In this article, the MPI was rewritten using 
the Grey's theory. In addition, an applied example of the status 
of the Iran’s EPSC and different combinations of its actors in 
the electricity transmission network was evaluated using this 
theory (Fig. 5). 

 

 

Fig. 4 Prediction of efficiency changes for 356 units under 
investigation in four periods 
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Fig. 5 Technical efficiency in 2014 
 

 

Fig. 6 Technological changes in 2014 
 

 

Fig. 7 MPI in 2014 
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Fig. 8 Technical efficiency in 2015 
 

 

Fig. 9 Technological changes in 2015 
 

 

Fig. 10 MPI in 2015 
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Fig. 11 Technical efficiency in 2016 
 

 

Fig. 12 Technological changes in 2106 
 

 

Fig. 13 MPI in 2016 
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Fig. 14 Technical efficiency in 2017 
 

 

Fig. 15 Technological changes in 2017 
 

 

Fig. 16MPI in 2017 
 

Prediction of productivity changes, as a system feedback, 
can inform managers for making appropriate changes to obtain 
better results in the future. Despite the presence of uncertain 
data and the use of Malmquist method, the calculated MPI 
values were compared to the results from another prediction 

technique (moving average). Results from comparing actual 
data and prediction data of MPI showed that despite limited 
data, an improvement was observed in data predicted by the 
Grey’s theory. According to Figs. 17-20, the MPI prediction 
improved by 1.9% on average in four consecutive years.  
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Fig. 17 Prediction of efficiency changes for 356 units under investigation in 2014 
 

 

Fig. 18 Prediction of efficiency changes for 356 units under investigation in 2015 
 

 

Fig. 19 Prediction of efficiency changes for 356 units under investigation in 2016 
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Fig. 20 Prediction of efficiency changes for 356 units under investigation in 2017 
 

b. Recommendations  

Following recommendations are made for the model 
development: 
1. Applying the Grey's theory to other network DEA models  
2. Using statistical methods to set upper and lower limits for 

predicted values (distance estimation) 
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