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Abstract—This paper focuses on a critical component of the 

situational awareness (SA), the neural control of depth flight of an 
autonomous underwater vehicle (AUV). Constant depth flight is a 
challenging but important task for AUVs to achieve high level of 
autonomy under adverse conditions. With the SA strategy, we 
proposed a multirate neural control of an AUV trajectory for a 
nontrivial mid-small size AUV “r2D4” stochastic model. This control 
system has been demonstrated and evaluated by simulation of diving 
maneuvers using software package Simulink. From the simulation 
results it can be seen that the chosen AUV model is stable in the 
presence of noises, and also can be concluded that the proposed 
research technique will be useful for fast SA of similar AUV systems 
in real-time search-and-rescue operations. 
 

Keywords—Autonomous underwater vehicles, multirate systems, 
neurocontrollers, situational awareness. 

I. INTRODUCTION 
ITUATION awareness has been formally defined as “the 
perception of elements in the environment within a 

volume of time and space, the comprehension of their 
meaning, and the projection of their status in the near future” 
[1]. As the term implies, situation awareness refers to 
awareness of the situation. Grammatically, situational 
awareness (SA) refers to awareness that only happens 
sometimes in certain situations. 

SA has been recognized as a critical, yet often elusive, 
foundation for successful decision-making across a broad 
range of complex and dynamic systems, including emergency 
response and military command and control operations [2]. 

The term SA have become commonplace for the doctrine 
and tactics, and techniques in the U.S. Army [3]. SA is 
defined as “the ability to maintain a constant, clear mental 
picture of relevant information and the tactical situation 
including friendly and threat situations as well as terrain”. SA 
allows leaders to avoid surprise, make rapid decisions, and 
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choose when and where to conduct engagements, and achieve 
decisive outcomes. 

In [4], a two stage flight control procedure using two 
adaptive neural networks for helicopter as small-scale 
unmanned aerial vehicle (UAV) model was proposed. The 
proposed control strategy has been verified by simulation of 
descending and landing maneuvers of helicopter using 
software package Simulink and demonstrated good 
performance for fast SA. 

This paper concentrates on issues related to the area of [4], 
but demonstrates another field for application of these ideas, 
i.e., research technique using multirate control system 
modeling and simulation on the basis of state-space equations 
of motion of chosen stochastic model of the autonomous 
underwater vehicle (AUV) for fast SA. 

The AUV provides the commander with a number of 
capabilities including: 

• Enhanced SA. 
• Target acquisition. 
• Enhanced management capabilities (assessment of 

surface damage and visualization of blockage far and near). 
Some conditions for conducting underwater reconnaissance 

with AUVs are as follows. 
• Time is limited or information is required quickly. 
• Threat conditions are known; also the risk of collisions 

with a rough-surfaced sea bottom is high. 
• Sea bottom relief restricts approach by large-scale 

underwater vehicles. 
A mid-small size AUV offers many advantages, including 

low cost, the ability to fly at constant depth levels within a 
narrow space and the unique diving characteristics. 

The fundamental requirement for diving control is the 
knowledge of the depth under the sea surface, and a properly 
designed controller to govern the process. 

Optimum values for PID (proportional–integral–derivative) 
controllers are derived via the simulations of an AUV “r2D4” 
motion based on the closed-loop vehicle dynamics [5]. 

The characteristics of an AUV motion depend on mode of 
maneuvering, forward speed, instantaneous attitude, and 
outside appendages such as measuring instruments. In 
addition, it is hard to model the system disturbances, cross-
flow and the coupling effects. Due to these reasons, the neural 
network controllers are needed to control AUV motions. 
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In this paper our research results in the study of depth 
controls of an AUV which make such SA task scenario as 
“go-search-find-return” possible are presented. 

The contribution of the paper is twofold: to develop new 
schemes appropriate for SA enhancement by multirate neural 
control of an AUV trajectory in real-time search-and-rescue 
operations, and to present the results of diving maneuvers for 
chosen stochastic model of the AUV for fast SA in simulation 
form using the MATLAB/Simulink environment. 

II. AUV MODEL 
Consider the stochastic model using linear model of mid-

small size AUV “r2D4” [5] in terms of a state variable 
representation as follows: 

111111 ν++= uBxAx&                                                       (1) 

1111 wxCy +=                                                                   (2) 

222222 ν++= uBxAx&                                                       (3) 

2222 wxCy +=                                                                   (4) 

where  
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rfm νν
 are numbers of revolutions per 

second of main, fore-vertical and rear-vertical thrusters; 
)(),(),( radnradnradn

lrr eep δδδ  are deflection angles of 

main thruster axis, right and left elevators; 
)(),( radnradn θφ  are roll and pitch displacements; 
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In [6], the derivative of yaw displacement ψ  of an AUV 
could be expressed as 

)cos())cos()sin(( θφφψ rq +=&                                          (5) 

Then, we have 

)0()()(
0

ψψτψ
τ

+= ∫ dtt&                                                         (6) 

III. MULTIRATE SUBSYSTEMS 
Consider the stochastic continuous-time control system 

described by the state and output equations 

)()()()( ττττ vBuAxx ++=&                                           (7) 

)()()( τττ wCxy +=                                                            (8) 

where Pnpmn RwRvRyRuRx ∈∈∈∈∈ )(,)(,)(,)(,)( τττττ  are 
the state, control input, output, noise of excitation of state and 
noise of measurement vectors, respectively. 

In [7] it is offered the approach to design of decomposed 
multirate stochastic linear systems, which consist of naturally 
grouped entrance and target signals that are caused by their 
characteristic frequencies. 

Setting )()( ττ Txq = , where T  is a nonsingular matrix, we 
see that (7)-(8) are transformed into the equations 

)()()()( 11111 ττττ vTuBzz ++Λ=&                                     (9) 

)()()()( 22222 ττττ vTuBzz ++Λ=&                                    (10) 

)()()()( 2211 ττττ wzCzCy ++=                                   (11) 

where 

minmax
)(,)( 21 fs γλγλ 〉Λ〈Λ . 

Definition 1: A function with a large derivative, which is 
quickly decreasing, is said to be the “fast” function, a function 
with a small derivative, which is slowly decreasing, is said to 
be the “slow” function. 
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Consider the first time interval fsf τ≤τ〈0 . According to 

Definition 1, the variable 1z  can be considered as a “slow” 
function on this interval. Hence, assuming that 0)(1 =fz τ& , 

from (9), we see that 

)()()( 1
1

11
1

11 fff vTuBz τττ −− Λ−Λ−= .                                  (12) 

From (10)-(12), we find that the state equations for a “fast” 
subsystem may be written as 

)()()()( fffffffffff vTuBzAz ττττ ++=&                                   (13) 

)()()()( ffffffffff wuDzCy ττττ ++=                                    (14) 

where 
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Consider the second time interval fss τ〉τ . According to 
Definition 1, the variable z2  can be considered as a “fast” 
function of time, achieving on this interval a steady meaning. 
Hence, assuming that 0)(2 =sz τ& , from (10), we find 
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1

22
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From (9), (11) and (15), we find that the state equations for 
a “slow” subsystem may be written as 
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The “fast”-subsystem dynamic (13)-(14) of system (1)-(2) 
is described by 
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The “slow” subsystem (16)-(17) of system (1)-(2) is 
specified by 
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The constant matrices of the “fast” subsystem (13)-(14) of 
system (3)-(4) are given by 
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In terms of (16)-(17) for system (3)-(4), the “slow”-
subsystem matrices are 
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IV. AUV ATTITUDE 
The derivative of attitude vector Tzyx )(  for center of 

mass of an AUV can be described in a common way through 
next expression as indicated in [6] 
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where 

),cos()cos(11 θψ=j  

),sin()sin()cos()cos()sin(12 φθψφψ +−=j  

),sin()cos()cos()sin()sin(13 θφψφψ +=j  

),cos()sin(21 θψ=j  

),sin()sin()sin()cos()cos(22 ψθφφψ +=j  

),cos()sin()sin()sin()cos(23 φψθφψ +−=j  

),sin(31 φ−=j  

),sin()cos(32 φθ=j  
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Then, we have 
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where .0)0(,0)0(,0)0( === zyx  

From (1)-(6), (18)-(19) we can see that the attitude vector 
Tzyx )(  for given model of the AUV can be computed. 

V. SIMULATION RESULTS 
Consider the control of the AUV “r2D4” decomposed 

multirate model for the case of hybrid control system with one 
neurocontroller. 

The goal of the following simulations is twofold. First, we 
verify that this neurocontroller is able to control the diving 
trajectory. Second, we observed the effect of enhanced SA 
because the variety of such trajectory parameter as constant 
depth flight easily can be changed the possible diving 
trajectory of an AUV. 

Initial conditions and desired constant depth level for 
multirate control subsystems are chosen to be: 

.25,0)0(,0)0(,0)0( 0 mzmzmymx −====  

Simulation results for the offered block scheme (see Fig. 1) 
are shown in Figs. 3-7. 

In [8], the two approximations to the nonlinear 
autoregressive moving average (NARMA) model called the 
NARMA-L1 and the NARMA-L2 are proposed. From a 
practical stand-point, the NARMA-L2 model is found to be 
simpler to realize than the NARMA-L1 model. The 
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neurocontroller used in this section is based only on the 
NARMA-L2 approximate model. 

The NARMA-L2 neurocontroller from Fig. 1 can be 
implemented in Fig. 2. 
 

 
 

Fig. 1. Block diagram of hybrid control system. 
 
 

 
 

Fig. 2. Structure of a neural network representation for the NARMA-L2 approximate model. 
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Fig. 3. AUV depth trajectory. 
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Fig. 4. X-Y view of AUV trajectory. 
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Fig. 5. X-Z view of AUV trajectory. 
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Fig. 6. Y-Z view of AUV trajectory. 
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Fig. 7. 3-D motion of AUV. 

 
From the simulation studies of diving tests, the following 

can be observed: 
• By following the proposed methodology, the AUV 

“r2D4” model structure (1)-(4) is decomposed into two groups 
of subsystems: the “fast” subsystems used in the initial phase 
of trajectory (downward motion), and the “slow” subsystems 
used in the final phase of trajectory (approach motion). Note 
that the obtained subsystems not only have reduced dimensions 
of state-space matrices, but also various speeds of actuation 
(fast and long response times). Further analysis of the 
decomposed subsystems can be produced separately with the 
help of modern computer-aided control analysis software. 

• Possibility to consider a rough-surfaced sea bottom in a 
place of a constant depth flight. 

• Possibility of lag in the various constant depth levels. 
• Fine and simplified adjustment of chosen adaptive 

neurocontroller for any changes of desired constant depths. 
• The 3-D display forms give a researcher the view of an 

AUV “r2D4” motion with a range of such parameter as 
constant depth flight. This enhances the researcher’s 
understanding of diving maneuvers. 

• The multirate control works more qualitatively than the 
single-rate control. 

These results support the theoretical predictions well and 
demonstrate that this research technique would work in real-
time diving conditions. 

VI. CONCLUSIONS 
The need for accurate and directionally stable diving for 

AUV class autonomous vehicles has increased morbidly for 
critical situations in real-time search-and-rescue operations 
with existence of system disturbances, cross-flow and the 
coupling effects for fast SA. 

A new research technique is presented in this paper for 
enhanced SA in possible AUV missions. The effectiveness of 
this technique has been verified in field of diving simulation 

tests for chosen model of the AUV “r2D4” using software 
package Simulink. 

From the applications viewpoint, we believe that this depth 
multirate neural control using NARMA-L2 neurocontrollers 
furnish a powerful approach for enhancing SA in applications 
to AUV class autonomous vehicles in real-time search-and-
rescue operations. 

Although many of the details inevitably relate with this 
particular AUV model, there is sufficient generality for this 
research technique to be applied to similar AUV models for 
simulation of diving maneuvers. 

Future work will involve further validation of the 
performance of the proposed research technique and exploring 
other relevant and interesting AUV missions. 
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