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Multiple positive periodic solutions to a
predator-prey system with harvesting terms and
Holling II type functional response

Pan Wang and Yongkun Li

Abstract—In this paper, a periodic predator-prey system with
harvesting terms and Holling II type functional response is consid-
ered. Sufficient criteria for the existence of at least sixteen periodic
solutions are established by using the well known continuation
theorem due to Mawhin. An example is given to illustrate the main
result.
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[. INTRODUCTION

ECENTLY, the existence of positive periodic solutions

for biological models has been widely studied by many
researchers. Models with harvesting terms are often consid-
ered. Generally, the predator-prey model with harvesting terms
is described as follows:

{j}:wf(*%'>y)7h7
¥ =yg(z,y) -k,

where x and y stand for the population of the prey and the
predator, respectively; h and k are harvesting terms standing
for the harvests (see [1]). Particularly, the ratio-dependent type
predator-prey model with harvesting terms is described by the
following system of ordinary differential equations

.i':l'(a*bl'* CZ_ >7h,

my + x
my(—d+ L)k W
y=y my —+ ’

where a,c,d, f,m are the prey intrinsic growth rate, cap-
ture rate, death rate of predator, conversion rate, and half
saturation-parameter, respectively. Moreover, on account of the
biological background of model (1), we always assume that
all of the parameters are positive constants. For the detailed
biological meanings, we refer to [2-5] and the references cited
therein.

Considering the inclusion of the effect of changing en-
vironment, Zhang and Hou [6] investigate the following
ratio-dependent predator-prey system with multiple harvesting
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terms:

o i\
i(0) = o(0) (alt) - b0 (;)@) )(t)y(t)ﬂ(t)) M)
30 = (0 (a0 + T ) 1),

(@)
where the parameter in system (2) are positive continuous w
-periodic functions. By using the coincidence degree theory,
the authors established the existence of at least four positive
periodic solutions.

The main purpose of this paper is by using continuation
theorem to establish new criteria to guarantee the existence of
at least sixteen periodic solutions of the periodic predator-prey
system with harvesting terms and Holling II type functional
response:

1(t) = z1(t) (rl(t) —ag1 (t)z1 (t)
_%) — hi(t),
Z(t) = @2(1) (Tg(t) + %
Z3(t) = x3(t) (r3(t) + % (3)
Ta(t) = za(t) (u(t) 4 9s(WasaBzs(t)

a(t)za(t)+s(t)

—Q44 (t)l’4 (t)) — h4(t),

— hs(t),

where z;(t) stands for the density of the ith species; r;(¢)

represents the ith species intrinsic growth rate; a;;(t) denotes
the intra-specific competition rate of the ith species; 6;(¢),
0(t),05(t) are the nutrition conversion rates for the first
species to the second species, the second species to the third
species, the third species to the fourth species, respectively;
h;(t) is the harvesting term for the ith species. Moreover,
7 (t), aii(t), a12(t), azs(t), asa(t), m(t), n(t),
03(t) are continuous, bounded and strictly positive w-periodic
functions defined on [0,00) (i =1,2,3,4).

a(t), 01(t), 02(1),
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II. EXISTENCE OF MULTIPLE POSITIVE PERIODIC
SOLUTIONS

We recall some basic tools in the framework of Mawhin’s
coincidence degree [7] that will be used to investigate the
existence of periodic solutions.

Let X and Z be two Banach spaces, L : DomL C X — Z
be a linear mapping and NV : X — Z be a continuous mapping.
The mapping L will be called a Fredholm mapping of index
zero if dimker L = codimIm L < +o00 and Im L is closed
in Z. If L is a Fredholm mapping of index zero, then there
exist continuous projectors P : X — X and Q : Z7 — Z
such that In P =ker L and ImL =ker Q =Im(] — Q). It
follows that L|pom Laker p @ (I — P)X — Im L is invertible.
We denote the inverse of the map L|pom Lrker p by Kp. If
) is an open bounded subset of X, the mapping N will be
called L-compact on Q x [0, 1] if (QN)(€22 x [0, 1]) is bounded
and Kp(I — Q)N : Q x [0,1] — X is compact. Since Tm Q
is a isomorphic to ker L, there exists an isomorphism J :
Im Q — ker L.

Lemma 1. (Continuation Theorem ([7])) Let L be a Fredholm
mapping of index zero and let N be L -compact on §). Suppose
(1) for each A € (0,1), every solution x of Lx # AN (z,\)
is such that x € 92 N Dom L;
(2) QN (z,0) # 0, for each x € N Nker L;
(3) deg(JQN(z,0),Q2Nker L,0) 0.
Then the equation Lx =
Dom L N 0%

Nx has at least one solution in

For convenience, we denote

T=2 | soae gt = min .

te[0,w]

M= sup f(t),

te(0,w]

where f(t) is a continuous w -periodic function.
We need the following assumptions:
M
a
Hy) b > 2/allhy + 42,
M
Hy) r§ > 2\/adlndl + =2,

aﬁ‘ﬁ
H3) i >2v/adlnl + =22

L [aM M
H4) T 4 > 2 Cl44h
For the sake of convenience, we also introduce some nota-
tions as follows:

o _ it VO TR
1 - )

any
= _ (3 +alf) £ V(! +ad])? — dafyhg
2~ 2al ’
22
N R G R LR
3 — 2aL ’
as3

e (il +adl) £ V(i +ad])? — dafyhy
4 )

L
2a44
L _ ai} L M
o (ry = Z22) £/ (r — 4aMh)
1 M )
2a1]

M M
L _ aj L _ 9339 My M
(ry = 33)+ \/(T2 — )7 —daxzhy
V. =
2 QCL% ’
M M
L Q34 L 434 )2 M, M
L (r3 —(TL)i\/(Tz — or)? —dagzhy
. =
3 2at ’

rk+./(rF)? 4a44hM
2a}!

+ _
vy =

Lemma 2. ([8]) Let x > 0, y > 0, z > 0 and = > 2,/yz,

z+\/22—4yz
—Yo— and g(x,y,2) =

, the following assertions hold.

for the functions f(x,y,z) =

z—/22—4yz

2z

(1) f(z,y,2) and g(x,y,z) are monotonically increasing
and monotonically decreasing on the variable x© €
(0, 00), respectively;

(2) f(z,y,2) and g(x,y,z) are monotonically decreasing
and monotonically increasing on the variable y &
(0, 00), respectively;

(3) f(z,y,2) and g(x,y,z) are monotonically decreasing
and monotonically increasing on the variable z &
(0,00), respectively.

Theorem 1. Assume that (Hy)-(Hy) hold, then system (3)
has at least sixteen w-periodic solutions.

Proof: Since we are concerned with positive solution of
(3), we make the change of variables

zi(t) = e (i=1,2,3,4),

the system (3) is rewritten as

Ul (t) =T (t) — an(t)eul(t>
aqo(t)et2®) —u
_m(t)?“(Z()t)Jreul(t) - hl(t)e 1(07
. 01 (t)aya(t)e 1™ u
tat) = ra(t) + SOT — aga (e

azg(t)e"s —u(t)
—nyenstrenmm — ha(t)e,
(1) = 0 (azs (e"2 ) .
us(t) = 73(t) + st — ass(t )eus®
aza( t)6u4(t)

T a(t)ensDreus® hs(t)e —us(t)

. 03 (t)asy(t)e™3®)
g(t) = ra(t) + ST

—agq(t)e™s () — hy(t)emalt),
Let X = {u = (ur(t),uz(t), us(t), ua(t))” €
C(R,RY) : (t + w) = u(t),t € R} with the norm defined

by [lul = i, maxeqo,.) [ui(t)],u € Z or X, then X and
Z are Banach spaces. Let

1(t) —an(t) Yerr(®)
N(u,A) = (t) W — aga(t)ev2®
ra(t) + Syt pemry — ass(t)erV
ra(t) + %
_m()t\;lffz(figiri(“z(” — hy(t)e~m®)

Aags(t)e®3®) _
_4n<t)cﬁs(<3>ie}‘2)<r> — ha(t)e==2)
Aagq(t)e™a(? — s
_a(t)(z€37f4((‘))e+e“3(") - hS(t)e vst)

*&44(t)6“4(t> - h4(t)€7“'4(t)
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d 1 (¢
Zit), Pu = —/0 u(t)dt, Qz =

w

1 w
—/ z(t) dt, ueXzeZ)\e(Ol) Thus it follows
w

that ker L = R, ImL = {z € Z : [’ (t)dt = 0} is closed
in Z,dimker L =4 = codimIm L, and P () are continuous

projectors such that
ImP =ker L, ImL =kerQ =1Im(I — Q).

Hence, L is a Fredholm mapping of index zero. Furthermore,
the generalized inverse (to L) Kp : ImL — Dom L Nker P

is given by
KP(Z):/ s—f/ / 5) dsdt.
Then
{% fi(s) dsdt
_ fa(s) dsdt
QN{u.A) = f% f3(s)dsdt
0 fa(s)dsdt
and
Kp(I = Q)N(u, A)
Otfl(s s — ; (;u Otfl(S)det
| Sy () ds = 5 Jy fy Fals) dsdt
Jg fa(s)ds = 1y  J3(5) dsde
Jo fa(s)ds = & [i" Jy fa(s) dsdt
(3= ) Jy fi(s)ds
+E =) (s as
+(z =) Jy fa(s)ds |7
+(z3 =2 Jo fa(s)ds
where
fi(s) = ri(s) — a11(s)eu1(8) >‘“12(3)€u2(s)

m(s)eu2(s) 4 eur(s)

_ A, (s)aga(s)er ()
fa(s) = ra(s) + m(s)euz(s) + eui(s)
Aags(s)e"s(®)

_ _ —uz(s)
n(s)eus(s) + eua(s) ha(s)e ’

— @99 (S)euz(s)

Aby(s)ags(s)e2(*)

_ us(s)
f3(s) = r3(s) + n(3)em ) 1 e — azz(s)e
Aagy(s)es() N o—us(s)
_a( )eu4(-s) n eu;;(s) — }Lg(é)e 3 )
B A3(s)azs(s)evs(®) wa(s)
fals) = rals) + a(s)eua(s) 4 eusls) — aaa(s)e™
—hy(s)e "4(),

Obviously, QN and Kp(I—-Q)N are continuous, and K p(I—
Q)N () is compact for any open bounded set  C X by

using the Arzela-Ascoli theorem. Moreover, QN (Q) is clearly
bounded. Thus, N is L-compact on { with any open bounded
set  C X.

In order to use Lemma 1, we have to find at least sixteen
appropriate open bounded subsets in X. Corresponding to the
operator equation Lu = AN (u, A), A € (0, 1), we have

uy (1) = Afi(t),
ua(t) = Afa(t),
us(t) = Afs(t),
ug(t) = Afa(t).
Assume that v € X is an w-periodic solution of the system

(4) for some A € (0,1), then, there exist &,n; € [0,w] such
that

“

wln) = i

It is clear that ;(&;) = 0, u;(n;) = 0(¢ = 1,2,3,4). From
this and (4), we have

u;(&;) = max

i=1,2,3,4.
te0,w]

jor g
e =0, () ®)
fa(&4) =0, (d)

and
hom =0 ()
2\n2) =Y,
) =0, (o) ©
fa(na) = 0. (d)

According to (5) (a), we have

aLleul(ﬁl) + hfeful(ﬁl)

< aueul(fl) + hle—ul(él)
Aa ev2 (&)
_ Tl(gl) o 12(51)
m(gl)euz(fl) + eu1(é1)
<M,

that is, afye?"1(&) —pMeui(&) 4 pL < 0, which implies that

Inly <wup (&) < Inlif, 7
similarly, by (6) (a), we get
Inly <wup(m) <Inlf. ®)

By the same method, according to (5) (b), we obtain
aLQGUZ(Ez) + hgefuz(ﬁz)
< ag(£2)e"282) 4 hy(&r)e

< 7“2(52) + a12(&2)
<yt + a7,

—u2(§2)

that is, afye?"2(&2) — (#)1
implies that

+ all)e*2(&2) £ pl < 0, which

Inly < wug(&) < Inlf, (O
similarly, by (6) (b), we get
Inly < ug(ne) <Inlg. (10
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From (5) (c), we obtain
aLgeus(Es) + h?%e*us(ﬁs)
< az3(€3)e" ) 4 hy(&3)e

< 73(&3) + az3(&s)
< réw +a%,

—u3(£3)

that is, afze?vs(&) — (rM 4 adl)eus(&) 4 pk < 0, which
implies that
Inl; <ug(é) <Inlf, (11)
similarly, by (6) (c), we get
Inl; < us(ng) <Inli. (12)
From (5) (d), we obtain
(1411446“4(54) + hﬁ/e—w(&)
< aga(€a)e" 1) + hy(&a)e
< r4(&4) + aza(&a)
< ri” + aﬁ ,

—uq(€a)

that is, af e (&) — (rM 4 ad)es(€) 4 L < 0, which
implies that
Inly < ug(&y) <Inif, (13)

similarly, by (6) (d), we get
Inly < wug(ng) <Inlf. (14)
On the other hand, from (5) (a), we have

M
a ,
aMeu(&) _ (pb _ —mli)eul(&) +rM >0,

which implies that
ur(&) > oy or wi(&) <Inop, (15)

similarly, by (6) (a), we get

up(m) >Invy or wy(m) <Invp. (16)
We claim that Inl; > Invf” and Inl; < Inv;. In fact, by
Lemma 2, we have
nif = f(ri’, bt aty) > f(rf a12 ,hi'salf) = o,
, aM
iy =g(ri’, hy',a1y) < g(ry — — 2. h',a1]) = Invy .

From (7), (8), (15) and (16), we can get
Inly <wui(m) <wi(é) <lnwy

or
vl <wui(m) <wui(&) < Indf,
so, forallt € R
Inly <wuy(t) <Imovy or Invf <wui(t) <Inif. (A7)

According to (5) (b), we obtain

e _ (k

ads (&2) M
u2(§2

L Je + hy' >0,

which implies

us (&) > lnvgr or uz(&2) <lnwvy, (18)

similarly, by (6) (b), we get
u2(772) < lnvz_. (19)

We claim that Inly > Invy and Inly
view of Lemma 2, we have

uz(n2) > Invy  or

< Inwv,. In fact, in

a% hM M)

M, ML L L
Inly = f(ry" +aly, hy,ay) > f(ry — 5 ay) = vy,

B aM
1nl2 :g(ré\J +a’{\g7h§7a§2) < g(?”% - 25 h2 ) é\g)
From (9), (10), (18) and (19), we can get

Inly < wugz(n2) < uz(&2) < lnwy

or
lnv2+ < ug(me) < uz(&) < lnlgr,

so, for all t € R,

Inly <us(t) <lnwvy, or Invd <wus(t)<lInly.
By (5) (c), we obtain

adle?us&s) _ (pk _ %\5)6“3(53) +hi >0,
which implies
uz(§3) >Invy  or wug(é3) <Inwvy, (20

similarly, by (6) (c), we get
ug(n3) < Ilnvg. 21)

We claim that Inlj > Invj and Ini;
view of Lemma 2, we have

uz(nz) > In v; or
< Inw; . In fact, in

M
M M L L L %34 M M
hll;:f(% + ags, by, azy) > f(r3 T oL sh3'azz) = hwaﬂ

34 M My _
L,h3,a33)—

From (11), (12), (2.19) and (2.20), we can get

lnl?: :g(ré\/[—l—a%,hg,agg) <g(7”§“—

Inly < us(ns) < ug(&s) <Inwvg

" Invy < uz(nz) < uz(&3) < Inly,
so, forall t € R,
Inly <wuz(t) <lnwy or Invi <ws(t)<Inlf.
By (5) (d), we obtain
a}fe?ual&) _ pLeual&a) 4 pM
which implies
ug(&q) > Inv  or wy(éy) <Inwvy,
similarly, by (6) (d), we get
ug(ng) >Invy or ug(ng) <Invy. (22)

We claim that Inl] > Inv) and Inily
Lemma 2, we have

< Inwvy . In fact, by

hllj{ :f(7’4 +a34,h4,a44) >f(7“4ah£/[7aﬁ)

Inly = g(ri" + adf, b, afy) < g(ri, hy", al}) =

Invjf,

Inv, .

Inv, .

Invs .
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From (13), (1

or

4), (2.22) and (22), we can get

Inly <wug(ng) <ug(€a) <lnvg

Invl < ug(ng) < ug(&y) <Inlf,

so, forall t € R,

Inly <ug(t) <Ilnvy or Invf < ug(t) <Inif.

Clearly, In lli

s lnlzi, lnlgjf, lnlf, lnvfc, lnvéc, lnvg.—L, lnvjlt

are independent of A. Now, let

Qg = {u: (w1, ug, us,ug)T € X :
up € (Inlf, Invf),us € (Inly,Invy),
uz € (Inly,Invy ), uq € (Inly, Invy)},

QlO = {u: (Ul,UQ,U37U4)T cX:
up € (Inlf, Invf),us € (Inly,Invy),
uz € (Inly,Invy),us € (Inlf,Inv})},

_ _ T .
O = {u = (u17u2au37u4) €X: O = {u = (u17uz,u37u4)T c X
w1 € (Inly,Invy),ue € (Inly,Invy ), wp € (Inlf, Inv),us € (Inly, Invy ),
us € (Inly,Invy),us € (Inly,Invy )}, uz € (Inlf, Invy),us € (Inlg, Invy)},
Q= {u= (uy, ug, uz,us)’ € X : Qg = {u = (u1, ug, ug,ug)’ € X :
up € (Inly,Invy ), ug € (Inly,Invy ), up € (Inlf, Invf),uz € (Inly,Invy),
uz € (Inly,Invy),us € (Inl},Invy)}, us € (Inl3,Invf),ug € (Inl],Invy)},
Q3 = {u=(u1,uz,u3,us)" € X : Mg = {u= (U1,+uzvu347ru4)T €X 5+ )
uy € (Inly,Invy ), up € (Inly,Invy), ur € (Inlf, Inv]),ue € (Inl3,Invy),
uz € (Inlf,Invy),us € (Inly,Invy)}, uz € (Inly,Invg), ug € (Inly, Invy)},
Oy = = Tex:
Qy = {U = (U17U2,u37u4)T €eX: - {u (u17+u2,U3J;U4) N + +
_ _ _ _ ur € (Inlf, Inv]),ue € (Inl3,Invy),
ur € (Inly,Invy ), ug € (Inily,Invy), ws € (Il vy ), us € (nlF,Inv)
us € (Inlf, Invy), us € (Inlf,lnvf)}, s EA R b
. Q5 = {u=(u1,uz,u3,us)” € X :
Q5 = {u= (u1,uz,u3,u4)" € X : wi € (Il nvt),us € (Inly, Invy),
N N 1 1 2 2
ur € (Inly, Inwp) ug € (Inly’, Inwy), uz € (Inlf,Invy),us € (Inly,Invy )},
uz € (Inly,Invy ), ug € (Inly, Invy)},
Qe = {u= (u,ug, uz,uqg)’ € X
Qe = {u = (uy,ug,us,us)’ € X : uy € (Inlf,Inv}"),ug € (Inl3, Invy),
uy € (Inly,Invy),uz € (Inly, Invy), us € (Inlf, Invf),ug € (Inlf, Inv])}.
- - + +
ug € (Inly, nvy),ug € (Inly, nvp)}, Then Q;(: = 1,2,...,16) are bounded open subsets of
X, 0uNQ = ¢ i £ 4. (i,j = 1,2,...,16), thus
Q;(i = 1,2,...,16) satisfy the requirement (1) in Lemma
Q7 = {uz(ul,ug,ug,w)TGX: 1. N .
up € (Inly,Invy), up € (In 13-7 In U;-)’ Now, we show that andluon (2) of Lemma 1 holds, ﬂlat. s,
i Inod),ug € (g, Inv;)} QN (u,0) # (0,0,0,0)* for u € 9Q; Nker L = 0Q; NR*(i =
u € (Inlg, Invy), ug 42T TS 1,2,...,16). If it is not true, then there exists constant vector
u = (u1, uz, uz, ug)? € O satisfies
_ T . Jo mdt — [ an(t)errdt — [ ha(t)e "1 dt =0,
s = {u - (ul,_UQ,U3_,U4) €X '+ N f& ro(t)dt — f% aga(t)e“2dt — fQu ha(t)e"1dt = 0,
ur € (Inly,Invy ), uz € (Inly,Invy ), f% ra(t)dt — fQu ass(t)esdt — f% hs(t)e~w1dt = 0,
uz € (Inly,Invy),us € (Inlf,Invf)}, o Ta(t)dt — [ aga(t)erdt — [ ha(t)e™"1dt = 0.
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In view of differential mean value theorem, there exist four _ r3(t3) £ \/ (r3(t3))? — dass(t3)hs(ts)
points #; € [0,w](j = 1,2,3,4) such that 2a33(t3) '

ri(t1) —apr(t)e™ — hi(ty)e™™ =0,  ra(ts) &1/ (ra(ta))? — daa(ta) ha(ts)
ra(tz) — aa(tz)e™® — ha(tz)e 2 =0, bx= 2a44(t4) ’
T3(t3) — a33(t3)e“3 — h3(t3)€7u3 =0, . .
ra(t) — ana(fa)e™ — ha(ts)e=" =0, by Lemma 2, it easy to verify that
therefore, we have Inly <lnz_ <lnvy <lnv] <lnz; <Inlf,
- - + +
iy <wui(t) <lnwy or Inof <wui(t) <Inlf, Inly <Iny_ <lnvy <lnvy <lnyy <Inly,

Inly <lnz_ <lnvy <lnvf <Ilnzy <Inif,
Inly; <wus(t) <lnwy or Invf <wus(t) <Inlf,

Iniy <lnp_ <lnv; < lnv4+ <lnp; < lnli7

Inly <wus(t) <lnwvy or Invd <wus(t)<Inlyf, therefore
Inl; <wug(t) <lnvy or Invf <wug(t) <Inlf, (@1, 1,21, 1) € 1, (25,93,23, p3) € (o,
which imply u € €; N R, it contradicts the fact that u € (23, ¥3,23,p3) € Q3, (24, Y1, 21,P4) € Qa,
0Q; N R*(i = 1,2,...,16). The condition (2) of Lemma 1 - X% % x
. ’ .. . . r,y,z,p 6957 L6y Yes 265D 6967
holds. Finally, we show that condition (3) of Lemma 1 is valid. (5,45, %, 5) (5, %526 P5)
Noting that the system of algebraic equations (27,97, 27,p7) € Q7, (5,98, 25,P5) € s,
7"1(t1) - all(tl)ew - h‘l(tl) U= 07 (1'37937237103) S 997 (wTO7yTO7zT07pTO) S QlO7
Tg(tg) — agg(tg)ey — hg(tg) v =0
r3(t3) — a33(t3)ez — hs(ts)e : (9511,?/;172?1,]17){1) € O, (xylﬁ27yi<2azif27pi2) € g,
ra(te) = asa(t)e? = halte)e™ = (#13,Yi: 24, i) € Qus, (@14, 410, 2100 Pia) € Qs

has sixteen distinct solutions: % _x ok ok %k
(715, Y15, 215, P15) € D5, (16, Y16, 216, P16) € S6-

(21,91, 21,p1) = (Inz—, Iny_, Inz_,Inp_), Since ker L = Im P, we take J = I, a direct computation
(23,95,23,p5) = (Inz_,Iny_,Inz_,Inp), yields that
(x 7y3’z3’p§) = (ln;p_ylny ]nz+71np )’ ng(JQN(l’ 0) Q kaI‘L (0770,0,0)T)
B hl(tl
(3,95, 25,p3) = (Inz_,Iny_,Inzy Inp,), all(tl)f) " (t )0* 4 halta)
— o —agz2(12)Yy g
(t; y57257p:) = (lnm_,lny+,lnz_,lnp )7 - sign 0 0 Y
(.I'g y67z67p2) = (1 lny+,1nz_,lnp+), 0 0
. 0 0
(.Z' y77z7ap7) :(1 lny+,lnz+,lnp )7 0 0
(x y87287p8) = (hl.’E lny+,lnz+,lnp+), *a33(t3)2 + h3(t3 0
_ % o ha(ta)
(x5,95,24,p8) = (Inzy,Iny_,Inz_,Inp_), 0 ag(ta)p” + =2
. o, M) ., hal(t2)
1o, Y10+ #10- Plo) = (Inzy,Iny_ Inz_ Inp,), = sign| | —an(t)r” + T — az(ta)y” + v

*

* *
T115 Y115 %115 P11 Inzy,Iny ,Inzy,Inp_

(et B0 (g 1400

Inzy,Iny_,Inzy, Inpy),

*

T1a, Y12, #12: P12
together with the fact

*

* *
T145 Y145 %145 P14

Inzy,Iny;,Inz_,Inpy),

*

* *
T155 Y155 2155 P15

)
( )
( )
(Inzy,Inyy,Inz_,Inp_),
( )
(Inzy,Iny;,Inzy,lnp_)
( )

(z] )=
(z] )=
(=] ) =
(213, Y13, 213, P13) = |
(v : (t2)

(2 ) = ; rs(ts) — ass(ts
(a7 ) = (ta)

* *
T16s Y16 2161 P16 Inzy,Inyy,Inzy, Inpy), ra(ta

e
where then
vy = ) £/ (r1(t1))? — daq1 (t1)ha (t1) deg(JQN(z,0),9Q; Nker L, (0,,0,0,0)")
2a11(t1) ’ = sign[(r1(t1) — 2a11(t1) ") (ra(ta) — 2a02(t2)y*)
) £/ (ra(t2))? — daga(t2)ha(ts) x(r3(ts) — 2as3(ts)z")(ra(ts) — 2a44(ta)p")];
== 2a22(t2) ’ i=1,2,...,16.
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Thus
deg(JQN(z,0), 21 Nker L, (0, ,0,0,0)7) deg(JQN(z,0), Q9 Nker L, (0,,0,0,0)T)
= sign[(r1(t1) — 2a11 (t1)2_) (ra(ts) — 2ass(ts)y-) = sign((r1(t1) — 2a11(t1)z4)(r2(t2) — 2a22(t2)y-)
x(r3(ts) — 2as3(ts)z_ ) (ra(ts) — 2a44(ts)p_)] x(r3(ts) — 2as3(ts)z-)(ra(ta) — 2aa4(ta)p-)]

=1, =1,

deg(JQN(z,0), Q19 Nker L, (0,,0,0,0)T)

deg(JQN(z,0), 9 Nker L, (0,,0,0,0)7) = sign[(r1(t1) — 2a11(t1)z 1) (r2(t2) — 2a22(t2)y-)

= sign[(rl(tl) — 2a11(t1)x_)(r2(t2) — 2a22(t2)y_) X(Ts(ts) _ 2&33(t3)2_)<7‘4(t4) _ 2a44(t4)p+)]
x(r3(ts) — 2a33(ts)z—)(ra(ts) — 2a44(ts)p+)] =1,
= 717

deg(JQN(z,0), 1 Nker L, (0,,0,0,0)T)

deg(JQN(z,0), Q3 Nker L, (0,,0,0,0)7) = sign[(r1(t1) — 2a11(t1)z4)(ra(t2) — 2a22(t2)y-)
= sign[(r1(t1) — 2a11 (t1)z_ ) (ra(t2) — 2a22(t2)y_) x(r3(ts) — 2as3(ts)z4)(ra(ts) — 2a4a(ta)p-)]

x(r3(ts) — 2as3(ts)z4)(ra(ta) — 2a44(ta)p-)] =1

-1,

deg(JQN(z,0), 212 Nker L, (0,,0,0,0)T)
= sign[(r1(t1) — 2a11(t1) 24 ) (r2(t2) — 2a22(t2)y-)

deg(JQN(z,0), Q4 Nker L, (0,,0,0,0)T) X (ra(ts) — 2ass(ts) 2 ) (ra(ts) — 2a4a(t)ps)]

= sign[(r1(t1) — 2a11(t1)x—-)(r2(t2) — 2a22(t2)y—) — 1,

x(r3(ts) — 2a3s(ts)24)(ra(ts) — 2a44(ta)p4)]

-t deg(JQN(z,0), 213 Nker L, (0,,0,0,0)T)

= sign[(ry(t1) — 2a11(t1)z4) (r2(t2) — 2a22(t2)y+)

deg(JQN(z,0), Q5 Nker L, (0,,0,0,0)7) x(r3(ts) — 2ass(ts)z—)(ra(ts) — 2a44(ta)p-)]
= sign[(r1(t1) — 2a11(t1)2-)(ra(t2) — 2a22(t2)y+) =1

x(ra(ts) — 2a3s(ts)2—)(ra(ts) — 2a44(ts)p-)]

=-1 deg(JQN(z,0), Q14 Nker L, (0,,0,0,0)7)

= sign[(ry(t1) — 2a11(t1)z4) (r2(t2) — 2a22(t2)y+)
x(r3(ts) — 2ass(ts)z—)(ra(ts) — 2a4a(ta)p+)]

deg(JQN(z,0), Qs Nker L, (0,,0,0,0)7) — 1

= sign[(r1(t1) — 2a11(t1)w-)(r2(t2) — 2a22(t2)y+)

x(r3(ts) — 2ass(ts)z—)(ra(ts) — 2a4a(ts)p+)]
-1, deg(JQN(z,0), 25 Nker L, (0,,0,0,0)T)

= sign[(r1(t1) — 2a11(t1)w 1) (r2(t2) — 2a22(t2)y+)
x(r3(ts) — 2a33(t3)z4)(ra(ta) — 2a44(ts)p-)]

deg(JQN(z,0), Q7 Nker L, (0,,0,0,0)”) =-1

= sign[(r1(t1) — 2an1(t1)x—)(ra(t2) — 2a22(t2)y+)
x(r3(ts) — 2a33(t3)zy)(ra(ts) — 2a44(ts)p-)] deg(JQN(z,0), 216 Nker L, (0,,0,0,0)T)
-1,

= sign[(r1(t1) — 2a11(t1)2+)(r2(t2) — 2a22(t2)y+)
X(r3(ts) — 2a3s(ts)z4)(ra(ta) — 2a14(ta)p+)]
=1.
deg(JQN(z,0), Qs Nker L, (0,,0,0,0)7) .
— sign[(r1(t1) — 2a11 ()7 ) (ra(t2) — 2asa(t2)ys) So far, we have proved that ;(i = 1,2,...,16) satisfies (1)-
= siehliriii @11t ){r2lt2 @22\t2)Y+ (3) of Lemma 1. Hence, system (3) has at least sixteen positive

x(r3(ts) — 2ass(ts)z4 ) (ra(ts) — 2a4a(ts)p+)] w-periodic solutions. The proof of Theorem 2.1 is complete.
= —]_7 | ]
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III. AN EXAMPLE

Consider the following four-species predator-prey with har-
vesting terms:

1
o : _ 44-cost _ T5fcost L2
Ty = x1( 3 +sint 10 1 (2+cost)z2+zl>
_ 9+cost
20
2isint 1. 64-cos t
s . 10 THfcost _ cos
T2 = T2 3+sint + (24-cost)zo+x1 10 T
1
o Titsint L3 _ 2+cost
(4+cost)zz+a2 9
24sint 1
o 5 X Tifsmi®2 _ 4+sint
T3 = T3 (3 +cost + (44-cost)zs+wo 10 *3
_ 10+lsint'r4 _ 4+cost
(3+sint)za+xs3 10 >
24sint 1
I T2 X T0fsmit3 4+cost
Ty = 24( 3+ cost + (34cost)zatws 10 T4
_ 24cost
10 -

In this case, r1(t) = 3 + sint, a11(t) = dtcost a12(t) =

10 =
Erosys M) = 24 cost, ha(t) = 2ESL ry(t) = 3 +sint,

01(t) = 25, agy(t) = S5, ags(t) = iy n(t) =
4+ cost, hy(t) = ZELSL py(t) = 3+ cost, by(t) = 2L,
23_3(?) = 4+156nt, a34(t) = m, Ol(Q =3 +sint, hg(t)‘:
sty (t) = 3+ cost, O5(t) = 2‘*‘%15“’5, a4(t) = AFgost,
hy(t) = w Since rlL =2, a{‘/{ =1 a{\g _ ﬁ’ mk =1,
M =1 vl :2,a%:11,a%:1i0,n13:3,]131_%’
ry =2 ag =3 a5 = g5 o =2 h =307 =2
ayt = 3. hi" = 1, then

1 1 /

According to Theorem 1, it is easy to see the above system
has at least sixteen positive 2m-periodic solutions.
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