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Multiple positive periodic solutions of a delayed
predatory-prey system with Holling type II

functional response
Kaihong Zhao and Jiuqing Liu

Abstract—In this letter, we considers a delayed predatory-prey
system with Holling type II functional response. Under some suffi-
cient conditions, the existence of multiple positive periodic solutions
is obtained by using Mawhin’s continuation theorem of coincidence
degree theory. An example is given to illustrate the effectiveness of
our results.
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I. INTRODUCTION

IN population dynamics, the functional response of predator
to prey density refers to the change in the density of

prey attacked per unit time per predator as the prey density
changes [1]. In [2], based on experiment, Holling suggested
three kinds of functional response for different species to
model the phenomena of predation, it seems more reasonable
than the standard Lotka-Voltera type predator-prey system.
Many scholars have deeply studied the dynamical behaviors of
these system with constant coefficients (see [3-7]). However,
realistic models require the inclusion of the effect of changing
environment. This motivates us to consider the following
nonautonomous model{

ẋ = a(t)x(t)(1 − x(t)
K ) − α(t)x(t)y(t)

1+d(t)x(t) ,

ẏ = y(t)(b(t) − c(t)y(t) + β(t)x(t−τ(t))
1+d(t)x(t−τ(t)) ),

(1)

where, x(t) and y(t) denote the densities of the prey and
the predator, respectively. a(t) and b(t) denote the intrinsic
growth rate of the prey and the predator. c(t) stands for the
intraspecific competition of the predator. d(t) is interpreted as
a handling time for each prey captured. α(t) and β(t) are the
conversion factor denoting the number of newly born predators
for each captured prey. K represents the carrying capacity
of the prey, which is a positive constant. τ(t) is a time lag.
The term α(t)x(t)y(t)

1+b(t)x(t) denotes the functional response of the
predator, which is termed as Holling type II response function
(see Holling CS [2]). In addition, the effects of a periodically
varying environment are important for evolutionary theory as
the selective forces on systems in a fluctuating environment
differ from those in a stable environment. Therefore, the
assumptions of periodicity of the parameters are a way of
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incorporating the periodicity of the environment (e.g, seasonal
effects of weather, food supplies, mating habits, etc ), which
leads us to assume that a(t), b(t), c(t), d(t), α(t), β(t) and τ(t)
are all positive continuous ω-periodic functions.

Since a very basic and important problem in the study of a
population growth model with a periodic environment is the
global existence and stability of a positive periodic solution,
which plays a similar role as a globally stable equilibrium
does in an autonomous model, also, on the existence of
multiple positive periodic solutions to system (1), few results
are found in literatures. This motivates us to investigate the
existence of multiple positive periodic solutions for system (1).
In fact, it is more likely for some biological species to take on
multiple periodic change regulations and have multiple local
stable periodic phenomena. Therefore it is essential for us to
investigate the existence of multiple positive periodic solutions
for population models. Our main purpose of this paper is by
using Mawhin’s continuation theorem of coincidence degree
theory [8], to establish the existence of two positive periodic
solutions for system (1). For the work concerning the multiple
existence of periodic solutions of periodic population models
which was done using coincidence degree theory, we refer to
[9-14].

The organization of the rest of this paper is as follows. In
section 2, by employing the continuation theorem of coinci-
dence degree theory, we establish the existence of two positive
periodic solutions of system (1). In section 3, an example is
given to illustrate

II. EXISTENCE OF MULTIPLE POSITIVE PERIODIC
SOLUTIONS

In this section, by using Mawhin’s continuation theorem,
we shall show the existence of positive periodic solutions of
(1). To do so, we need to make some preparations.

Let X and Z be real normed vector spaces. Let L :
Dom L ⊂ X → Z be a linear mapping and N : X ×
[0, 1] → Z be a continuous mapping. The mapping L will
be called a Fredholm mapping of index zero if dim ker L
= codim Im L < ∞ and Im L is closed in Z. If L is a
Fredholm mapping of index zero, then there exist continuous
projectors P : X → X and Q : Z → Z such that
Im P = ker L and ker Q = Im L = Im (I − Q), and
X = ker L

⊕
ker P, Z = Im L

⊕
Im Q. It follows that

L|Dom L∩ker P : (I − P )X → Im L is invertible and its
inverse is denoted by KP . If Ω is a bounded open subset
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of X , the mapping N is called L-compact on Ω̄ × [0, 1], if
QN(Ω̄×[0, 1]) is bounded and KP (I−Q)N : Ω̄×[0, 1] → X
is compact. Because Im Q is isomorphic to ker L, there exists
an isomorphism J : Im Q → ker L.

The Mawhin’s continuous theorem [8, p.40] is given as
follows:

Lemma 1. [8] Let L be a Fredholm mapping of index zero
and let N be L-compact on Ω̄ × [0, 1]. Assume
(a) for each λ ∈ (0, 1), every solution x of Lx = λN(x, λ)

is such that x /∈ ∂Ω ∩ Dom L;
(b) QN(x, 0)x �= 0 for each x ∈ ∂Ω ∩ KerL;
(c) deg(JQN(x, 0),Ω ∩ Ker L, 0) �= 0.

Then Lx = N(x, 1) has at least one solution in Ω ∩ Dom L.

For the sake of convenience, we denote by f l =
mint∈[0,ω] f(t), fM = maxt∈[0,ω] f(t), f̄ = 1

ω

∫ ω
0

f(t) dt,
respectively, here f(t) is a continuous ω-periodic function.
For simplicity, we also introduce some positive numbers as
follows.

A− =
bl

cM
, A+ =

bM

cl
+

βMK

cl(1 + dlK)
,

l± =
1

2aldl

{
al(Kdl − 1)

±
√

[al(Kdl − 1)]2 − 4aldlK(αMA+ − al)
}

,

L± =
1

2aMdM

{
aM (KdM − 1)

±
√

[aM (KdM − 1)]2 − 4aMdMK(αlA− − aM )
}

Throughout this paper, we need the following assumptions.
(H1) αlA− > aM ;
(H2) al(Kdl − 1) > 2

√
aldlK(αMA+ − al).

Lemma 2. Let x > 0, y > 0 and x > 2
√

y, for the functions

f(x, y) =
x +

√
x2 − 4y

2
and g(x, y) =

x −
√

x2 − 4y

2
, the

following assertions hold.
(1) f(x, y) and g(x, y) are monotonically increasing and

monotonically decreasing on the variable x ∈ (0,∞),
respectively.

(2) f(x, y) and g(x, y) are monotonically decreasing and
monotonically increasing on the variable y ∈ (0,∞),
respectively.

Proof: In fact, for all x > 0, y > 0 we have

∂f

∂x
=

x +
√

x2 − 4y

2
√

x2 − 4y
> 0,

∂f

∂y
=

−1√
x2 − 4y

< 0,

∂g

∂x
=

√
x2 − 4y − x

2
√

x2 − 4y
< 0,

∂g

∂y
=

1√
x2 − 4y

> 0.

By the relationship of the derivative and the monotonicity, the
above assertions obviously hold. The proof of Lemma 2 is
complete.

Lemma 3. Assume that (H1) and (H2) hold, then we have
the following inequalities:

0 < L− < l− < l+ < L+.

Proof: In fact, according to Lemma 2, we have

aM (KdM − 1)
aMdM

= K − 1
dM

> K − 1
dl

=
al(Kdl − 1)

aldl
,

(αMA+ − al)K
aldl

>
(αlA− − aM )K

aMdM
,

which imply that

0 < L− = g

(
aM (KdM − 1)

aMdM
,

(αlA− − aM )K
aMdM

)

< g

(
al(Kdl − 1)

aldl
,

(αMA+ − al)K
aldl

)
= l−

< l+ = f

(
al(Kdl − 1)

aldl
,

(αMA+ − al)K
aldl

)

< f

(
aM (KdM − 1)

aMdM
,

(αlA− − aM )K
aMdM

)
= L+.

This completes the proof.

Theorem 1. Assume that (H1) and (H2) hold. Then system
(1) has at least two positive ω-periodic solutions.

Proof: By making the substitution

x(t) = exp{u1(t)}, y(t) = exp{u2(t)}, (2)

system (1) can be reformulated as⎧⎨
⎩

u̇1(t) = a(t)(1 − eu1(t)

K ) − α(t)eu2(t)

1+d(t)eu1(t) ,

u̇2(t) = b(t) − c(t)eu2(t) + β(t)eu1(t−τ(t))

1+d(t)eu1(t−τ(t)) .
(3)

Let

X = Z =
{

u = (u1, u2)T ∈ C(R,R2) : u(t + ω) = u(t)
}

and define

‖u‖ =
2∑
i=1

max
t∈[0,ω]

|ui(t)|, u ∈ X or Z.

Equipped with the above norm ‖ · ‖, X and Z are Banach
spaces. Let

N(u, λ) =
(

a(t)(1 − eu1(t)

K ) − α(t)eu2(t)

1+d(t)eu1(t)

b(t) − c(t)eu2(t) + λ β(t)eu1(t−τ(t))

1+d(t)eu1(t−τ(t))

)
, u ∈ X,

Lu = u̇ = du(t)
dt . We put Pu = 1

ω

∫ ω
0

u(t)dt, u ∈ X; Qz =
1
ω

∫ ω
0

z(t)dt, z ∈ Z. Thus it follows that ker L = R2, Im L =
{z ∈ Z :

∫ ω
0

z(t)dt = 0} is closed in Z, dim kerL = 2 =
codim Im L, and P,Q are continuous projectors such that

Im P = ker L, ker Q = Im L = Im (I − Q).

Hence, L is a Fredholm mapping of index zero. Furthermore,
the generalized inverse (to L) KP : Im L → ker P

⋂
Dom L

is given by

KP (z) =
∫ t

0

z(s)ds − 1
ω

∫ ω

0

∫ s

0

z(s)ds.
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Then

QN(u, λ) =
(

1
ω

∫ ω
0

F1(s, λ)ds
1
ω

∫ ω
0

F2(s, λ)ds

)

and

KP (I − Q)N(u, λ)

=

⎛
⎜⎜⎝
∫ t
0

F1(s, λ)ds − 1
ω

∫ ω
0

∫ t
0

F1(s, λ)dsdt
+( 1

2 − t
ω )
∫ ω
0

F1(s, λ)ds∫ t
0

F2(s, λ)ds − 1
ω

∫ ω
0

∫ t
0

F2(s, λ)dsdt
+( 1

2 − t
ω )
∫ ω
0

F2(s, λ)ds

⎞
⎟⎟⎠ ,

where

F1(s, λ) = a(s)(1 − eu1(s)

K
) − α(s)eu2(s)

1 + d(s)eu1(s)
,

F2(s, λ) = b(s) − c(s)eu2(s) + λ
β(s)eu1(s−τ(s))

1 + d(s)eu1(s−τ(s)) .

Obviously, QN and KP (I − Q)N are continuous. Similar to
the proof of Theorem 2.1 in [15], it is not difficult to show that
KP (I − Q)N(Ω) is compact for any open bounded set Ω ⊂
X by using the Arzela-Ascoli theorem. Moreover, QN(Ω) is
clearly bounded. Thus, N is L-compact on Ω with any open
bounded set Ω ⊂ X.

In order to use Lemma 1, We have to find at least two
appropriate open bounded subsets in X. Considering the
operator equation Lu = λN(u, λ), λ ∈ (0, 1), we have⎧⎨
⎩

u̇1(t) = λ
(
a(t)(1 − eu1(t)

K ) − α(t)eu2(t)

1+d(t)eu1(t)

)
,

u̇2(t) = λ
(
b(t) − c(t)eu2(t) + λ β(t)eu1(t−τ(t))

1+d(t)eu1(t−τ(t))

)
.

(4)

Assume that u ∈ X is an ω-periodic solution of system (4)
for some λ ∈ (0, 1). Then there exist ξi, ηi ∈ [0, ω] such that

ui(ξi) = max
t∈[0,ω]

ui(t), ui(ηi) = min
t∈[0,ω]

ui(t), i = 1, 2.

It is clear that u̇i(ξi) = 0, u̇i(ηi) = 0, i = 1, 2. From this and
(4), we have⎧⎨
⎩

a(ξ1)(1 − eu1(ξ1)

K ) − α(ξ1)e
u2(ξ1)

1+d(ξ1)eu1(ξ1) = 0,

b(ξ2) − c(ξ2)eu2(ξ2) + λ β(ξ2)e
u1(ξ2−τ(ξ2))

1+d(ξ2)eu1(ξ2−τ(ξ2)) = 0,
(5)

and⎧⎨
⎩

a(η1)(1 − eu1(η1)

K ) − α(η1)e
u2(η1)

1+d(η1)eu1(η1) = 0,

b(η2) − c(η2)eu2(η2) + λ β(η2)e
u1(η2−τ(η2))

1+d(η2)eu1(η2−τ(η2)) = 0.

(6)
Noting that 0 < eu1(t) ≤ K, according to the second equation
of (5), we have

cleu2(ξ2) ≤ c(ξ2)eu2(ξ2) = b(ξ2)

+λ
β(ξ2)eu1(ξ2−τ(ξ2))

1 + d(ξ2)eu1(ξ2−τ(ξ2)) < bM +
βMK

1 + dlK

and

cMeu2(ξ2) ≥ c(ξ2)eu2(ξ2) = b(ξ2)

+λ
β(ξ2)eu1(ξ2−τ(ξ2))

1 + d(ξ2)eu1(ξ2−τ(ξ2)) > bl,

which imply that

lnA− = ln
bl

cM
< u2(ξ2)

< ln(
bM

cl
+

βMK

cl(1 + dlK)
) = lnA+. (7)

Similarly, by the second equation of (6), we obtain

lnA− = ln
bl

cM
< u2(η2)

< ln(
bM

cl
+

βMK

cl(1 + dlK)
) = lnA+. (8)

The first equation of (5) give

αMA+ > αMeu2(ξ2) ≥ α(ξ1)eu2(ξ1)

= a(ξ1)(1 − eu1(ξ1)

K
)(1 + d(ξ1)eu1(ξ1))

≥ al(1 − eu1(ξ1)

K
)(1 + dleu1(ξ1))

and

αlA− < αleu2(η2) ≤ α(ξ1)eu2(ξ1)

= a(ξ1)(1 − eu1(ξ1)

K
)(1 + d(ξ1)eu1(ξ1))

≤ aM (1 − eu1(ξ1)

K
)(1 + dMeu1(ξ1)),

that is

aldle2u1(ξ1) − al(Kdl − 1)eu1(ξ1) + (αMA+ − al)K > 0,

and

0 > aMdMe2u1(ξ1) − aM (KdM − 1)eu1(ξ1)

+(αlA− − aM )K,

which imply that

u1(ξ1) > ln l+ or u1(ξ1) < ln l− (9)

and

lnL− < u1(ξ1) < lnL+. (10)

Similarly, by the first equation of (6), we get

u1(η1) > ln l+ or u1(η1) < ln l− (11)

and

lnL− < u1(η1) < lnL+. (12)

From (7)-(12) and Lemma 3, we obtain for all t ∈ R,

lnL− < u1(t) < ln l− or ln l+ < u1(t) < lnL+ (13)

and

lnA− < u2(t) < lnA+. (14)

Clearly, ln l±, lnL± and lnA± are independent of λ. Now
let

Ω1 =
{

u = (u1, u2)T ∈ X : lnL− < u1(t) < ln l−,

lnA− < u2(t) < lnA+

}
,
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and

Ω2 =
{

u = (u1, u2)T ∈ X : ln l+ < u1(t) < lnL+,

lnA− < u2(t) < lnA+

}
.

Then Ω1 and Ω2 are bounded open subsets of X, Ω1∩Ω2 = φ.
Thus Ωi(i = 1, 2) satisfies the requirement (a) in Lemma 1.

Now we show that (b) of Lemma 1 holds, i.e., we prove
when u ∈ ∂Ωi ∩ ker L = ∂Ωi ∩ R2, QN(u, 0) �= (0, 0)T , i =
1, 2. If it is not true, then when u ∈ ∂Ωi ∩ ker L = ∂Ωi ∩
R2, i = 1, 2, constant vector u = (u1, u2)T with u ∈ ∂Ωi, i =
1, 2 satisfies{ ∫ ω

0
a(t)(1 − eu1

K )dt − ∫ ω
0

α(t)eu2

1+d(t)eu1 dt = 0,∫ ω
0

b(t)dt − ∫ ω
0

c(t)eu2dt = 0.

In terms of differential mean value theorem, there exist two
points ti(i = 1, 2) such that

a(t1)(1 − eu1

K
) − α(t1)eu2

1 + d(t1)eu1
= 0, (15)

b(t2) − c(t2)eu2 = 0. (16)

Following the arguments of (7)-(12), we have

lnL− < u1 < ln l− or ln l+ < u1 < lnL+ (17)

and

lnA− < u2 < lnA+. (18)

Then u ∈ Ω1 ∩ R2 or u ∈ Ω2 ∩ R2. This contradicts the fact
that u ∈ ∂Ωi ∩ R2, i = 1, 2. This proves (b) in Lemma 1
holds.

Finally, we show that (c) in Lemma 1 holds. Note that the
system of algebraic equations:{

a(t1)(1 − ex

K ) − α(t1)e
y

1+d(t1)ex = 0,

b(t2) − c(t2)ey = 0

has two distinct solutions since (H1) and (H2) hold,

(x∗
1, y

∗
1) = (lnx−, ln ȳ), (x∗

2, y
∗
2) = (lnx+, ln ȳ),

where
ȳ =

b(t2)
c(t2)

,

x± =
1

2a(t1)d(t1)

{
a(t1)(Kd(t1) − 1) ±

(
[a(t1)(Kd(t1)

−1)]2 − 4a(t1)d(t1)K(α(t1)ȳ − a(t1))
) 1

2
}

.

It is easy to verify that

lnL−
1 < lnx− < ln l− < ln l+ < lnx+ < lnL+

and

lnA− < ln ȳ < lnA+.

Therefore, (x∗
1, y

∗
1) ∈ Ω1, (x∗

2, y
∗
2) ∈ Ω2. Since ker L =

Im Q, we can take J = I. In the light of the definition of

the Leray-Schauder degree, a direct computation gives, for
i = 1, 2,

deg
{

JQN(u, 0), Ωi ∩ ker L, (0, 0)T
}

= sign

∣∣∣∣∣−
a(t1)
K + α(t1)d(t1)y

∗

(1+d(t1)x∗)2
α(t1)

1+d(t1)x∗

0 −c(t2)

∣∣∣∣∣
= −sign

[
− a(t1)

K
+

α(t1)d(t1)y∗

(1 + d(t1)x∗)2

]
.

Since

a(t1)(1 − x∗

K
) − α(t1)y∗

1 + d(t1)x∗ = 0,

then

deg
{

JQN(u, 0),Ωi ∩ ker L, (0, 0)T
}

= −sign

[
d(t1)K − 2d(t1)x∗ − 1

]
, i = 1, 2.

Thus

deg
{

JQN(u, 0),Ω1 ∩ ker L, (0, 0)T
}

= −1

deg
{

JQN(u, 0),Ω2 ∩ ker L, (0, 0)T
}

= 1

So far, we have prove that Ωi(i = 1, 2) satisfies all the
assumptions in Lemma 1. Hence, system (3) has at least
two different ω-periodic solutions. Thus by (2) system (1)
has at least two different positive ω-periodic solutions. This
completes the proof of Theorem 1.

III. AN EXAMPLE

Consider the following prey-predator system:⎧⎪⎨
⎪⎩

ẋ(t) = a(t)x(t)(1 − x(t)
K ) − α(t)x(t)y(t)

1+d(t)x(t) ,

ẏ(t) = y(t)(b(t) − c(t)y(t) + β(t)x(t−τ(t))
1+d(t)x(t−τ(t)) ),

(19)

where, a(t) = 2 + sin t, b(t) = 2 + cos t, c(t) =
7+cos t

30 , d(t) = 2+sin 2t, α(t) = 2+sin 3t, β(t) = 2+cos 3t
and K = 200. By the simple calculation, we have

alA− =
15
4

> 3 = aM ,

al(Kdl − 1) = 199 > 2
√

200 × 90

> 2

√
200[15(1 +

200
201

) − 1] = 2
√

aldlK(αMA+ − al).

Hence, all conditions of Theorem 1 are satisfied. By Theorem
1, system (19) has at least two positive 2π-periodic solutions.
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