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Multiple positive periodic solutions of a
competitor-competitor-mutualist Lotka-Volterra

system with harvesting terms
Yongkun Li and Erliang Xu

Abstract—In this paper, by using Mawhin’s continuation theorem
of coincidence degree theory, we establish the existence of multi-
ple positive periodic solutions of a competitor-competitor-mutualist
Lotka-Volterra system with harvesting terms. Finally, an example is
given to illustrate our results.
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I. INTRODUCTION

IN nature, three-species system in which first species and
second species compete with each other and cooperate

with the third species occur frequently. For instance two plant
species competing for the same insectile pollinators or two
fungal species competing for the roots of the same three
species to form mycorrhiza form such competitor-competitor-
mutualist systems. These systems are also fundamental for un-
derstanding the evolution of mutualism by natural selection. A
mutant arriving in a mutualistic community will compete with
the resident type of its species. The competitor-competitor-
mutualist systems have been extensively studied by many
authors, see [1-6] and references therein.

In recent years, the existence of periodic solutions in
biological models has been widely studied. Models with
harvesting terms are often considered. Generally, the model
with harvesting terms is described as follows:

ẋ = xf(x, y) − h, ẏ = yg(x, y) − k,

where x and y are functions of two species, respectively;
h and k are harvesting terms standing for the harvests (see
[7,8]). Because of the effect of changing environment such
as the weather, season, food and so on, the number of
species population periodically varies with the time. The rate
of change usually is not a constant. Motivated by this, we
consider the periodic non-autonomous population models.

In this paper, we investigate the following competitor-
competitor-mutualist Lotka-Volterra systems with harvesting
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⎪
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x′1(t) = x1(t)
(

r1(t) − a1(t)x1(t)
−b1(t)x2(t) + c1(t)x3(t)

) − h1(t),
x′2(t) = x2(t)

(

r2(t) − a2(t)x1(t)
−b2(t)x2(t) + c2(t)x3(t)

) − h2(t),
x′3(t) = x3(t)

(

r3(t) + a3(t)x1(t)
+b3(t)x2(t) − c3(t)x3(t)

) − h3(t),

(1)

where x1(t) and x2(t) denote the densities of competing
species at time t, x3(t) denotes the density of cooperating
species at time t. ri(t), ai(t), bi(t), ci(t) and hi(t)(i = 1, 2)
are all positive continuous functions denoting the intrinsic
growth rate, death rate, harvesting rate, respectively.

Since a very basic and important problem in the study of a
population growth model with a periodic environment is the
global existence and stability of a positive periodic solution,
which plays a similar role as a globally stable equilibrium
does in an autonomous model, also, on the existence of
positive periodic solutions to system (1), no results are found
in literatures. This motivates us to investigate the existence
of a positive periodic or multiple positive periodic solutions
for system (1). In fact, it is more likely for some biological
species to take on multiple periodic change regulations and
have multiple local stable periodic phenomena. Therefore, it is
essential for us to investigate the existence of multiple positive
periodic solutions for population models.

Our main purpose of this paper is by using Mawhin’s
continuation theorem of coincidence degree theory [9] to
establish the existence of eight positive periodic solutions for
system (1). For the work concerning the multiple existence of
periodic solutions of periodic population models which was
done by using coincidence degree theory, we refer to [10-13].

The organization of the rest of this paper is as follows.
In Section II, by employing the continuation theorem of
coincidence degree theory, we establish the existence of eight
positive periodic solutions of system (1). In Section III, an
example is given to illustrate the effectiveness of our results.

II. EXISTENCE OF MULTIPLE POSITIVE PERIODIC
SOLUTIONS

In this section, by using Mawhin’s continuation theorem,
we shall show the existence of positive periodic solutions of
system (1). To do so, we need to make some preparations.

Let X and Z be real normed vector spaces. Let L: DomL ⊂
X → Z be a linear mapping and N : X × [0, 1] → Z be a
continuous mapping. The mapping L will be called a Fredholm
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mapping of index zero if dimKer L = codimIm L <∞ and
Im L is closed in Z. If L is a Fredholm mapping of index
zero, then there exist continuous projectors P : X → X and
Q : Z → Z such that ImP = KerL and Ker Q = Im L =
Im (I−Q); and X = KerL

⊕

KerP and Z = Im L
⊕

ImQ.
It follows that L/Dom L∩Ker P : (I −P ) → ImL is invertible
and its inverse is denoted by KP . If is a bounded open subset
of X , the mapping N is called L-compact on Ω̄× [0, 1], and if
QN(Ω̄×[0, 1]) is bounded and KP (I−Q) : Ω̄×[0, 1] → X is
compact. Because Im Q is isomorphic to Ker L, there exists
an isomorphism J : ImQ→ Ker L.

The Mawhin’s continuous theorem [9, p. 40] is given as
follows.

Lemma 1. (Continuation Theorem). Let L be a Fredholm
mapping of index zero and let N be L-compact on Ω̄× [0, 1].
Suppose

(a) for each λ ∈ (0, 1), every solution x of Lx = λN(x, λ)
is such that x∈̄∂Ω ∩ DomL;

(b) QN(x, 0) �= 0 for each x ∈ ∂Ω ∩ KerL;
(c) deg{JQN(x, 0),Ω ∩ KerL, 0} �= 0.

Then the equation Lx = Nx has at least one solution lying
in DomL ∩ Ω̄.

For the sake of convenience, we introduce some notations

f l = min
t∈[0,w]

f(t), fM = max
t∈[0,w]

f(t), f̄ =
1
ω

∫ ω

0

f(t)dt,

here f is a continuous ω-periodic function.
Throughout this paper, we need the following assumptions:

(H1) cl3a
l
1b

l
2 − aM

3 cM1 bl2 − al
1b

M
3 cM2 > 0;

(H2) rl
1 > 2

√

aM
1 hM

1 , rl
2 > 2

√

bM2 hM
2 , rl

3 > 2
√

cM3 hM
3 ;

(H3) cl1Γ − bM1 Π > 0, cl2Γ − aM
2 Λ > 0,

where

Γ =
hl

3(c
l
3a

l
1b

l
2 − aM

3 cM1 bl2 − al
1b

M
3 cM2 )

cl3(r
M
3 al

1b
l
2 + aM

3 bl2r
M
1 + al

1r
M
2 bM3 )

,

Λ =
rM
1

al
1

+
cM1 (rM

3 al
1b

l
2 + bl2a

M
3 rM

1 + al
1b

M
3 rM

2 )
al
1(c

l
3a

l
1b

l
2 − aM

3 cM1 bl2 − al
1b

M
3 cM2 )

,

Π =
rM
2

bl2
+
cM2 (rM

3 al
1b

l
2 + bl2a

M
3 rM

1 + al
1b

M
3 rM

2 )
bl2(c

l
3a

l
1b

l
2 − aM

3 cM1 bl2 − al
1b

M
3 cM2 )

.

We also introduce six positive numbers as follows.

l± = rl
1±

√
(rl

1)
2−4aM

1 hM
1

2aM
1

,

u± = rl
2±

√
(rl

2)
2−4aM

2 hM
2

2bM
2

,

v± = rl
3±

√
(rl

3)
2−4aM

3 hM
3

2cM
3

.

Theorem 1. Assume that (A1)-(A3) hold. Then system (1)
has at least eight positive ω-periodic solutions.

Proof: Since we are concerned with positive periodic
solutions of system (1), we make the change of variables:

x1(t) = exp(u1(t)), x2(t) = exp(u2(t)), x3(t) = exp(u3(t)).

Then system (1) is rewritten as
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

u′1(t) = r1(t) − a1(t)eu1(t)

−b1(t)eu2(t) + c1(t)eu3(t) − h1(t)e−u1(t),
u′2(t) = r2(t) − a2(t)eu1(t)

−b2(t)eu2(t) + c2(t)eu3(t) − h2(t)e−u2(t),
u′3(t) = r3(t) + a3(t)eu1(t)

+b3(t)eu2(t) − c3(t)eu3(t) − h3(t)e−u3(t).

(2)

Let

X = Z = {u = (u1, u2, u3)T ∈ C(R,R3) : u(t+ ω) = u(t)}
and define

‖u‖ =
3

∑

i=1

max
t∈[0,ω]

|ui(t)|, u ∈ X or Z.

Equipped with the above norm ‖ · ‖, X and Z are Banach
spaces. Let

N(u, λ) =

⎡

⎣

r1(t) − a1(t)eu1(t) − λb1(t)eu2(t)

r2(t) − λa2(t)eu1(t) − b2(t)eu2(t)

r3(t) + λa3(t)eu1(t) + λb3(t)eu2(t)

+λc1(t)eu3(t) − h1(t)e−u1(t)

+λc2(t)eu3(t) − h2(t)e−u2(t)

−c3(t)eu3(t) − h3(t)e−u3(t)

⎤

⎦ , u ∈ X,

Lu = u′ = du(t)
dt . We put Pu = 1

ω

∫ ω

0
u(t)dt, u ∈ X; Qz =

1
ω

∫ ω

0
z(t)dt, z ∈ Z. Thus it follows that kerL = R2, ImL =

{z ∈ Z :
∫ ω

0
uz(t)dt = 0} is closed in Z,dimKerL = 3 =

codimImL and P,Q are continuous projectors such that

ImL = KerL, KerQ = ImL = Im (I −Q).

Hence, L is a Fredholm mapping of index zero. Furthermore,
the generalized inverse (to L) KP : ImL → KerP ∩ DomL
is given by

KP (z) =
∫ t

0

z(s)ds− 1
ω

∫ ω

0

∫ s

0

z(t)dtds.

Then

QN(u, λ) =

⎡

⎣

1
ω

∫ ω

0
F1(s, λ)ds

1
ω

∫ ω

0
F2(s, λ)ds

1
ω

∫ ω

0
F3(s, λ)ds

⎤

⎦

and

KP (I −Q)N(u, λ)

=

⎡

⎢

⎣

∫ t

0
F1(s, λ)ds− 1

ω

∫ ω

0

∫ t

0
F1(s, λ)dsdt

∫ t

0
F2(s, λ)ds− 1

ω

∫ ω

0

∫ t

0
F2(s, λ)dsdt

∫ t

0
F3(s, λ)ds− 1

ω

∫ ω

0

∫ t

0
F3(s, λ)dsdt

+
(

1
2 − t

ω

) ∫ ω

0
F1(s, λ)ds

+
(

1
2 − t

ω

) ∫ ω

0
F2(s, λ)ds

+
(

1
2 − t

ω

) ∫ ω

0
F3(s, λ)ds

⎤

⎦ ,

where

F1(s, λ) = r1(t) − a1(t)eu1(t) − λb1(t)eu2(t)

+λc1(t)eu3(t) − h1(t)e−u1(t),

F2(s, λ) = r2(t) − λa2(t)eu1(t) − b2(t)eu2(t)

+λc2(t)eu3(t) − h2(t)e−u2(t),

F3(s, λ) = r3(t) + λa3(t)eu1(t) + λb3(t)eu2(t)

−c3(t)eu3(t) − h3(t)e−u3(t).



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:1, 2010

127

Obviously, QN and KP (I − Q)N are continuous. It is not
difficult to show that KP (I − Q)N(Ω̄) is compact for any
open bounded set Ω ⊂ X by using the Arzela-Ascoli theorem.
Moreover, QN(Ω̄) is clearly bounded. Thus, N is L-compact
on Ω̄ with any open bounded set Ω ⊂ X .

In order to use Theorem 1, we have to find at least eight
appropriate open bounded subsets in X . Considering to the
operator equation Lx = λN(x, λ), λ ∈ (0, 1), we obtain

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

u′1(t) = λ
(

r1(t) − a1(t)eu1(t) − λb1(t)eu2(t)

+λc1(t)eu3(t) − h1(t)e−u1(t)
)

,
u′2(t) = λ

(

r2(t) − λa2(t)eu1(t) − b2(t)eu2(t)

+λc2(t)eu3(t) − h2(t)e−u2(t)
)

,
u′3(t) = λ

(

r3(t) + λa3(t)eu1(t) + λb3(t)eu2(t)

−c3(t)eu3(t) − h3(t)e−u3(t)
)

.

(3)

Assume that u ∈ X is an ω-periodic solution of system (3)
for some λ ∈ (0, 1). Then there exist ξi, ηi ∈ [0, ω] such that

ui(ξi) = max
t∈[0,ω]

ui(t), ui(ηi) = min
t∈[0,ω]

ui(t), i = 1, 2, 3.

It is clear that u′i(ξi) = 0, u′i(ηi) = 0, i = 1, 2, 3. From this
and (3), we have

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

r1(ξ1) − a1(ξ1)eu1(ξ1) − λb1(ξ1)eu2(ξ1)

+λc1(ξ1)eu3(ξ1) − h1(ξ1)e−u1(ξ1) = 0, (a)
r2(ξ2) − λa2(ξ2)eu1(ξ2) − b2(ξ2)eu2(ξ2)

+λc2(ξ2)eu3(ξ2) − h2(ξ2)e−u2(ξ2) = 0, (b)
r3(ξ3) + λa3(ξ3)eu1(ξ3) + λb3(ξ3)eu2(ξ3)

−c3(ξ3)eu3(ξ3) − h3(ξ3)e−u3(ξ3) = 0 (c)

(4)

and
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

r1(η1) − a1(η1)eu1(η1) − λb1(η1)eu2(η1)

+λc1(η1)eu3(η1) − h1(η1)e−u1(η1) = 0, (a)
r2(η2) − λa2(η2)eu1(η2) − b2(η2)eu2(η2)

+λc2(η2)eu3(η2) − h2(η2)e−u2(η2) = 0, (b)
r3(η3) + λa3(η3)eu1(η3) + λb3(η3)eu2(η3)

−c3(η3)eu3(η3) − h3(η3)e−u3(η3) = 0. (c)

(5)

(4)(a), (b) and (c) give

al
1e

u1(ξ1) < a1(ξ1)eu1(ξ1)

< r1(ξ1) + λc1(ξ1)eu3(ξ1)

< rM
1 + cM1 eu3(ξ3), (6)

bl2e
u2(ξ2) < b2(ξ2)eu2(ξ2)

< r2(ξ2) + λc2(ξ2)eu3(ξ2)

< rM
2 + cM2 eu3(ξ3) (7)

and

cl3e
u3(ξ3) < r3(ξ3) + λa3(η3)eu1(ξ3) + λb3(ξ3)eu2(ξ3)

< rM
3 + aM

3 eu1(ξ1) + bM3 eu2(ξ2). (8)

From (6), (7) and (8), we get

eu3(ξ3) <
rM
3 al

1b
l
2 + bl2a

M
3 rM

1 + al
1b

M
3 rM

2

cl3a
l
1b

l
2 − aM

3 cM1 bl2 − al
1b

M
3 cM2

,

eu1(ξ1) <
rM
1

al
1

+
cM1 (rM

3 al
1b

l
2 + bl2a

M
3 rM

1 + al
1b

M
3 rM

2 )
al
1(c

l
3a

l
1b

l
2 − aM

3 cM1 bl2 − al
1b

M
3 cM2 )

and

eu2(ξ2) <
rM
2

bl2
+
cM2 (rM

3 al
1b

l
2 + bl2a

M
3 rM

1 + al
1b

M
3 rM

2 )
bl2(c

l
3a

l
1b

l
2 − aM

3 cM1 bl2 − al
1b

M
3 cM2 )

.

That is

u1(ξ1) < ln
(

rM
1

al
1

+
cM1 (rM

3 al
1b

l
2 + bl2a

M
3 rM

1 + al
1b

M
3 rM

2 )
al
1(c

l
3a

l
1b

l
2 − aM

3 cM1 bl2 − al
1b

M
3 cM2 )

)

:= H1, (9)

u2(ξ2) < ln
(

rM
2

bl2
+
cM2 (rM

3 al
1b

l
2 + bl2a

M
3 rM

1 + al
1b

M
3 rM

2 )
bl2(c

l
3a

l
1b

l
2 − aM

3 cM1 bl2 − al
1b

M
3 cM2 )

)

:= H2 (10)

and

u3(ξ3) < ln
rM
3 al

1b
l
2 + bl2a

M
3 rM

1 + al
1b

M
3 rM

2

cl3a
l
1b

l
2 − aM

3 cM1 bl2 − al
1b

M
3 cM2

:= H3. (11)

It follows from (5)(a), (b) and (c) that

hl
1e

−u1(η1) < h1(η1)e−u1(η1)

< r1(η1) + λc1(η1)eu3(η1)

< rM
1 + cM1 eu3(ξ3),

hl
2e

−u2(η2) < h2(η2)e−u2(η2)

< r2(η2) + λc2(η2)eu3(η2)

< rM
2 + cM2 eu3(ξ3)

and

hl
3e

−u3(η3) < r3(η3) + λa3(η3)eu1(η3) + λb3(η3)eu2(η3)

< rM
3 + aM

3 eu1(ξ1) + bM3 eu2(ξ2),

which imply that

eu1(η1)

>
hl

1(c
l
3a

l
1b

l
2 − aM

3 cM1 bl2 − al
1b

M
3 cM2 )

rM
1 (cl3a

l
1b

l
2 − al

1b
M
3 cM2 ) + cM1 (rM

3 al
1b

l
2 + bM3 al

1r
M
2 )

,

eu2(η2)

>
hl

2(c
l
3a

l
1b

l
2 − aM

3 cM1 bl2 − al
1b

M
3 cM2 )

rM
2 (cl3a

l
1b

l
2 − bl2a

M
3 cM1 ) + cM2 (rM

2 al
1b

l
2 + aM

3 bl2r
M
1 )

and

eu3(η3) >
hl

3(c
l
3a

l
1b

l
2 − aM

3 cM1 bl2 − al
1b

M
3 cM2 )

cl3(r
M
3 al

1b
l
2 + aM

3 bl2r
M
1 + al

1r
M
2 bM3 )

.

That is

u1(η1)

> ln
hl

1(c
l
3a

l
1b

l
2 − aM

3 cM1 bl2 − al
1b

M
3 cM2 )

rM
1 (cl3a

l
1b

l
2 − al

1b
M
3 cM2 ) + cM1 (rM

3 al
1b

l
2 + bM3 al

1r
M
2 )

:= H4, (12)
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u2(η2)

> ln
hl

2(c
l
3a

l
1b

l
2 − aM

3 cM1 bl2 − al
1b

M
3 cM2 )

rM
2 (cl3a

l
1b

l
2 − bl2a

M
3 cM1 ) + cM2 (rM

2 al
1b

l
2 + aM

3 bl2r
M
1 )

:= H5 (13)

and

u3(η3)

> ln
hl

3(c
l
3a

l
1b

l
2 − aM

3 cM1 bl2 − al
1b

M
3 cM2 )

cl3(r
M
3 al

1b
l
2 + aM

3 bl2r
M
1 + al

1r
M
2 bM3 )

:= H6. (14)

From (4)(a), we obtain

a1(ξ1)e2u1(ξ1) − r1(ξ1)eu1(ξ1) + h1(ξ1)
= λ(c1(ξ1)eu3(ξ1) − b1(ξ1)eu2(ξ1))eu1(ξ1),

from (H3), we have

aM
1 e2u1(ξ1) − rl

1e
u1(ξ1) + hM

1 > 0,

that is

u1(ξ1) > ln l+ or u1(ξ1) < ln l−. (15)

Similarly, from (5)(a), we get

u1(η1) > ln l+ or u1(η1) < ln l−. (16)

From (4)(b), we obtain

b2(ξ2)e2u2(ξ2) − r2(ξ2)eu2(ξ2) + h2(ξ2)
= λ(c2(ξ2)eu3(ξ2) − a2(ξ2)eu1(ξ2))eu2(ξ2),

from (H3), we have

bM2 e2u2(ξ2) − rl
2e

u2(ξ2) + hM
2 > 0,

that is

u2(ξ2) > lnu+ or u2(ξ2) < lnu−. (17)

Similarly, from (5)(b), we get

u2(η2) > lnu+ or u2(η1) < lnu−. (18)

From (4)(c), we obtain

c3(ξ3)e2u3(ξ3) − r3(ξ3)eu3(ξ3) + h3(ξ3)
= λ(a3(ξ3)eu1(ξ3) + b3(ξ3)eu2(ξ3))eu3(ξ3),

hence

cM3 e2u3(ξ3) − rl
3e

u3(ξ3) + hM
3 > 0,

that is

u3(ξ3) > ln v+ or u3(ξ3) < ln v−. (19)

Similarly, from (5)(c), we get

u3(η3) > ln v+ or u3(η3) < ln v−. (20)

From (9), (12), (15), (16), we obtain

H4 < u1(t) < ln l− (21)

or

ln l+ < u1(t) < H1. (22)

From (10), (13), (17), (18), we obtain

H5 < u2(t) < lnu− (23)

or

lnu+ < u2(t) < H2. (24)

From (11), (14), (19) and (20) it follows that

H6 < u3(t) < ln v− (25)

or

ln v+ < u3(t) < H3. (26)

Obviously, ln l±, lnu±, ln v±, H1, H2, H3, H4, H5 and H6

are independent of λ. Now let

Ω1 =
{

u = (u1, u2, u3)T ∈ X

/ u1(t) ∈ (H4, ln l−)
u2(t) ∈ (H5, lnu−)
u3(t) ∈ (H6, ln v−)

}

,

Ω2 =
{

u = (u1, u2, u3)T ∈ X

/ u1(t) ∈ (H4, ln l−)
u2(t) ∈ (lnu+,H2)
u3(t) ∈ (H6, ln v−)

}

,

Ω3 =
{

u = (u1, u2, u3)T ∈ X

/ u1(t) ∈ (H4, ln l−)
u2(t) ∈ (H5, lnu−)
u3(t) ∈ (ln v+,H3)

}

,

Ω4 =
{

u = (u1, u2, u3)T ∈ X

/ u1(t) ∈ (H4, ln l−)
u2(t) ∈ (lnu+,H2)
u3(t) ∈ (ln v+,H3)

}

,

Ω5 =
{

u = (u1, u2, u3)T ∈ X

/

u1(t) ∈ (ln l+,H1)
u2(t) ∈ (H5, lnu−)
u3(t) ∈ (H6, ln v−)

}

,

Ω6 =
{

u = (u1, u2, u3)T ∈ X

/ u1(t) ∈ (ln l+,H1)
u2(t) ∈ (lnu+,H2)
u3(t) ∈ (H6, ln v−)

}

,

Ω7 =
{

u = (u1, u2, u3)T ∈ X

/ u1(t) ∈ (ln l+,H1)
u2(t) ∈ (H5, lnu−)
u3(t) ∈ (ln v+,H3)

}

and

Ω8 =
{

u = (u1, u2, u3)T ∈ X

/ u1(t) ∈ (ln l+,H1)
u2(t) ∈ (lnu+,H2)
u3(t) ∈ (ln v+,H3)

}

.

Then Ωi(i = 1, 2, 3, 4, 5, 6, 7, 8) are bounded open subsets of
X , Ωi ∩Ωj = ∅, i �= j, i, j = 1, 2, 3, 4, 5, 6, 7, 8. Thus Ωi(i =
1, 2, 3, 4, 5, 6, 7, 8) satisfies the requirement (a) in Lemma 1.

Now we show that (b) of Lemma 1 holds, i.e., we prove
when u ∈ ∂Ωi ∩ KerL = ∂Ωi ∩R3, QN(u, 0) �= (0, 0)T , i =
1, 2, 3, 4, 5, 6, 7, 8. If it is not true, then when u ∈ ∂Ωi ∩
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KerL = ∂Ωi ∩ R3, i = 1, 2, 3, 4, 5, 6, 7, 8, constant vector u
with u ∈ ∂Ωi, i = 1, 2, 3, satisfies
⎧

⎨

⎩

∫ ω

0
r1(t)dt−

∫ ω

0
a1(t)eu1(t)d − ∫ ω

0
h1(t)e−u1(t)dt = 0,

∫ ω

0
r2(t)dt−

∫ ω

0
b2(t)eu2(t)dt− ∫ ω

0
h2(t)e−u2(t)dt = 0,

∫ ω

0
r3(t)dt−

∫ ω

0
c3(t)eu3(t)dt− ∫ ω

0
h3(t)e−u3(t)dt = 0.

Thus there exist three points ti(i = 1, 2, 3) such that

r1(t1) − a1(t1)eu1(t1) − h1(t1)e−u1(t1) = 0,
r2(t2) − b2(t2)eu2(t2) − h2(t2)e−u2(t2) = 0,
r3(t3) − c3(t3)eu3(t3) − h3(t3)e−u3(t3) = 0.

Following the arguments of (21)-(26), we have

H4 < u1(t) < ln l− or ln l+ < u1(t) < H1;
H5 < u2(t) < lnu− or lnu+ < u2(t) < H2;
H6 < u3(t) < ln v− or ln v+ < u3(t) < H3.

Then u ∈ Ω1 ∩ R3 or u ∈ Ω2 ∩ R3 or u ∈ Ω3 ∩ R3 or
u ∈ Ω4 ∩R3 or u ∈ Ω5 ∩R3 or u ∈ Ω6 ∩R3 or u ∈ Ω7 ∩R3

or u ∈ Ω8 ∩ R3. This contradicts the fact that u ∈ Ωi ∩ R3,
i = 1, 2, 3, 4, 5, 6, 7, 8. This proves that (b) in Lemma 1 holds.

Finally, we show that (c) in Lemma 1 holds. Note that the
system of algebraic equations:

⎧

⎨

⎩

r1(t1) − a1(t1)ex − h1(t1)e−x = 0,
r2(t2) − b2(t2)ey − h2(t2)e−y = 0,
r3(t3) − c3(t3)ez − h3(t3)e−z = 0,

has eight distinct solutions since rl
1 > 2

√

aM
1 hM

1 , rl
2 >

2
√

bM2 hM
2 and rl

1 > 2
√

cM3 hM
3 ;

(x∗1, y
∗
1 , z

∗
1) = (lnx−, ln y−, ln z−),

(x∗2, y
∗
2 , z

∗
2) = (lnx−, ln y−, ln z+),

(x∗3, y
∗
3 , z

∗
3) = (lnx−, ln y+, ln z−),

(x∗4, y
∗
4 , z

∗
4) = (lnx−, ln y+, ln z+),

(x∗5, y
∗
5 , z

∗
5) = (lnx+, ln y−, ln z−),

(x∗6, y
∗
6 , z

∗
6) = (lnx+, ln y+, ln z−),

(x∗7, y
∗
7 , z

∗
7) = (lnx+, ln y−, ln z+),

(x∗8, y
∗
8 , z

∗
8) = (lnx+, ln y+, ln z+),

where

x± =
r1(t1) ±

√

(r1(t1))2 − 4a1(t1)h1(t1)
2a1(t1)

,

y± =
r2(t2) ±

√

(r2(t2))2 − 4a2(t2)h2(t2)
2b2(t2)

,

z± =
r3(t3) ±

√

(r3(t3))2 − 4a3(t3)h3(t3)
2c3(t3)

.

It is easy to verify that

H4 < lnx− < ln l− < ln l+ < lnx+ < H1,

H5 < ln y− < lnu− < lnu+ < ln y+ < H2

and

H6 < ln z− < ln v− < ln v+ < ln z+ < H3.

Therefore

(x∗1, y
∗
1 , z

∗
1) ∈ Ω1, (x∗2, y

∗
2 , z

∗
2) ∈ Ω2,

(x∗3, y
∗
3 , z

∗
3) ∈ Ω3, (x∗4, y

∗
4 , z

∗
4) ∈ Ω4,

(x∗5, y
∗
5 , z

∗
5) ∈ Ω5, (x∗6, y

∗
6 , z

∗
6) ∈ Ω6,

(x∗7, y
∗
7 , z

∗
7) ∈ Ω7, (x∗8, y

∗
8 , z

∗
8) ∈ Ω8.

Since KerL = ImQ, by putting J = I , then a direct
computation gives for i = 1, 2, 3, 4, 5, 6, 7, 8,

deg{JQN(u, 0),Ωi ∩ KerL, (0, 0)T }

= sign

∣

∣

∣

∣

∣

∣

∣

−a1(t1)x∗ + h1(t1)
x∗ 0 0

0 − b2(t2)y∗ + h2(t2)
y∗ 0

0 0 − c3(t3)z∗ + h3(t3)
z∗

∣

∣

∣

∣

∣

∣

∣

.

Since

r1(t1) − a1(t1)x∗ − h1(t1)
x∗

= 0,

r2(t2) − b2(t2)y∗ − h2(t2)
y∗

= 0,

r3(t3) − c3(t3)z∗ − h3(t3)
z∗

= 0,

then

deg{JQN(u, 0),Ωi ∩ KerL, (0, 0)T }
= sign[(r1(t1) − 2a1(t1)x∗)(r2(t2)

−2b2(t2)y∗)(r3(t3) − 2c3(t3)z∗)].

Thus

deg{JQN(u, 0),Ωi ∩ KerL, (0, 0)T } = −1 or 1,

where i = 1, 2, 3, 4, 5, 6, 7, 8. So far, we have proved that
Ωi(i = 1, 2, 3, 4, 5, 6, 7, 8) satisfies all the assumptions in
Lemma 1. Hence, system (2) has at least eight different ω-
periodic solutions. Thus system (2) has at least eight different
ω-periodic solutions. This completes the proof of Theorem 1.

Remark 1. From the proof of Theorem 1, we can see that if the
harvesting terms h1(t) = h2(t) = h3(t) = 0, system (1) has at
least one positive periodic solution, but we could not conclude
that system (1) has at least eight positive periodic solutions
because we could not construct Ωi, i = 1, 2, 3, 4, 5, 6, 7, 8
satisfying Ωi∩Ωj = ∅. Therefore, adding the harvesting terms
to population models can make biological species to take on
multiple periodic change regulations and have multiple local
stable periodic phenomena.
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III. AN EXAMPLE

Example 1. Consider the following competitor-competitor-
mutualist Lotka-Volterra system with harvesting terms:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x′1(t) = x1(t)
[

3+sin(t)
103 − 2+sin(t)

10 x1(t)

− 2+sin(t)
106 x2(t) + 8+cos(t)

10 x3(t)
]

− 2+sin(t)
106 ,

x′2(t) = x2(t)
[

3+cos(t)
103 − 2+cos(t)

106 x1(t)

− 2+cos(t)
10 x2(t) + 8+sin(t)

10 x3(t)
]

− 2+cos(t)
106 ,

x′3(t) = x3(t)
[

8+sin(t)
10 + 2+sin(t)

100 x1(t)

+ 3+sin(t)
100 x2(t) − 8+sin(t)

10 x3(t)
]

− 9+sin(t)
100 .

(27)

Then system (3.1) has at least eight positive periodic solutions.

Proof: In this case, al
1 = 1

10 , a
M
1 = 3

10 , a
M
2 = 3

106 , a
M
3 =

3
100 , b

M
1 = 3

106 , b
l
2 = 1

10 , b
M
2 = 3

10 , b
M
3 = 4

100 , c
M
1 = 9

10 , c
l
1 =

7
10 , c

M
2 = 9

10 , c
l
2 = 7

10 , c
M
3 = 9

10 , c
l
3 = 7

10 , r
l
1 = 2

103 , r
l
2 =

2
103 , r

l
3 = 7

10 , h
M
1 = 3

106 , h
M
2 = 3

106 , h
M
1 = 1

10 . By a simple
calculation, we have

cl3a
l
1b

l
2 − aM

3 cM1 bl2 − al
1b

M
3 cM2 =

7
104

> 0;

rl
1 > 2

√

aM
1 hM

1 , rl
2 > 2

√

bM2 hM
2 , rl

3 > 2
√

cM3 hM
3 ;

Γ ≈ 7
103

, Λ ≈ 1.3 × 103, Π ≈ 1.3 × 103,

cl1Γ − bM1 Π ≈ 4.2 × 103 > 0, cl2Γ − aM
2 Λ ≈ 4.2 × 103 > 0.

Hence, all conditions in Theorem 1 are satisfied. By Theorem
1, system (27) has at least eight positive 2π-periodic solutions.
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