
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

873

Abstract—Mining sequential patterns from large customer

transaction databases has been recognized as a key research topic in

database systems. However, the previous works more focused on

mining sequential patterns at a single concept level. In this study, we

introduced concept hierarchies into this problem and present several

algorithms for discovering multiple-level sequential patterns based

on the hierarchies. An experiment was conducted to assess the

performance of the proposed algorithms. The performances of the

algorithms were measured by the relative time spent on completing

the mining tasks on two different datasets. The experimental results

showed that the performance depends on the characteristics of the

datasets and the pre-defined threshold of minimal support for each

level of the concept hierarchy. Based on the experimental results,

some suggestions were also given for how to select appropriate

algorithm for a certain datasets.

Keywords—Data Mining, Multiple-Level Sequential Pattern,

Concept Hierarchy, Customer Transaction Database.

I. INTRODUCTION

ata Mining, which is also referred to as knowledge

discovery from databases, means a process of nontrivial

extraction of implicit, previously unknown and potentially

useful information from databases. The discovered knowledge

can be applied to information management, query processing,

decision making, process control, and many other applications

[1]. Since association rule mining between items over basket

databases was first introduced [2], there has been considerable

work devoted to the development of efficient algorithms for

mining sequential patterns and association rules [3] [4]. Data

records often contain customer information (e.g., customer-id,

transaction-time etc.), particularly when the purchases have

been made using credit cards or other kinds of customer cards.

It is useful to find the sequential patterns that most frequently

occur in a customer transaction databases to find some rules of

the purchases. For example, in a share market, if many

customers bought AT&T share, followed by IBM share, and

followed by DEC share in one month in a share transaction

Manuscript received October 23, 2003.

Dr. A. Chen is with the Institute of Policy and Management, Chinese

Academy of Sciences, Beijing, 100080, P. R. China and was a visiting scholar

at School of Electrical Engineering and Computer Science, the University of

Newcastle, 2308, Australia (e-mail: anchen@otcaix.iscas.ac.cn)

Dr. H. Ye is with the School of Electrical Engineering and Computer

Science, the University of Newcastle, 2308, Australia (phone: +61 2 4921

6167; fax: +61 2 4921 6929; e-mail: hye@cs.newcastle.edu.au).

database, then <AT&T, IBM, DEC> is a sequential pattern

with large possibility.

A customer transaction database records the items

purchased by the customers. Usually these items can be

organized into a concept hierarchy according to a taxonomy.

Based on the hierarchy, associate patterns can be found not

only from the leaf nodes (i.e. the items) of the hierarchy, but

also can be found at any level of the hierarchy. This is called

multiple-level sequential patterns discovery, or mining

generalized association patterns. Previous work has been

focused on mining sequential patterns at a single concept level

[5]. Now the necessity for mining multiple-level association

patterns using concept hierarchies has been observed as

finding sequential patterns at multiple concept levels is useful

in many applications. The sequential patterns at lower concept

levels often carry more specific and concrete information and

those at higher concept levels carry more general information.

This requires progressively deepening the mining process to

multiple concept levels. In many cases, concept hierarchies

over items are available. Given a set of transactions and a

concept hierarchy over items contained in the transactions,

association patterns at any level of the hierarchy can be found

by developing appropriate algorithms.

In this paper, a method for mining multiple-level sequential

patterns is proposed. This method includes three major steps:

(1) Transforming the original customer transaction database

into a customer-sequence table: This sequence table will be

used as the data resource for the mining. Each sequence in the

table consists of all the transactions of a customer while each

transaction consists of a set of items purchased at one time.

All the items are encoded based on the hierarchical structure.

(2) Finding large sequences at each concept level using a

top-down, progressively deepening process: The identification

of large sequences depends on the pre-defined threshold of

minimum support for each level. For a certain level, if the

number of a certain kind sequence is not less than the

threshold, this kind sequence is called large sequence.

(3) Identifying sequential patterns and sequential rules:

Based on the results from Step 2, sequential patterns and rules

can be identified.

Step 2 is crucial. We developed three algorithms for

identifying large sequences. An experiment has been

conducted to compare the performances of the algorithms. The

Multiple-Level Sequential Pattern Discovery

from Customer Transaction Databases

An Chen and Huilin Ye

D

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

874

performances were measured by the relative time spent on

completing the mining tasks on two different datasets. The

experimental results showed that the performance depends on

the characteristics of the datasets and the pre-defined

threshold of minimal support for each level of the concept

hierarchy. Different algorithms may have different

performances for different datasets.

The paper is organized as follows. Section II gives the

definitions of the concepts used in mining sequential patterns.

Based on these definitions the problem of mining sequential

patterns can be formally characterized. In Section III, a

method for mining multiple-level sequential patterns is

developed and an example is step-by-step shown to help

understand the procedure. One algorithm for find large

sequences at every concept level, called MLSeq_T2L1, is

presented in pseudo code. Section IV presents two variant

algorithms of MLSeq_T2L1 and the experimental results. The

performances of the three algorithms are compared and

discussed. Finally, Section V concludes this study.

II. CONCEPT DEFINITIONS FOR MINING SEQUENTIAL

PATTERNS

In a given customer transactions database, each transaction

consists of the following fields: customer-id, transaction-time,

and the items purchased in the transaction. No customer has

more than one transaction at the same transaction-time. We

don’t consider quantities of items bought in a transaction;

each item is a binary variable representing whether an item

was bought or not. Let I = {i1, i2, …, in} be a set of literals. An

itemset is a non-empty set of items. A sequence is a non-

empty and ordered list of itemsets. We denote an itemset by

(i1, i2, …, im), where ij is an item. The length of an itemset is

the number of items in it. An itemset of length k is called a k-

itemset. We denote a sequence S by <s1, s2, …, sn>, where sj is

an itemset. The length of a sequence is the number of itemsets

in it. A sequence of length k is called a k-sequence. The

sequence formed by the concatenation of two sequences A and

B is denoted as <A, B>.

Definition 2.1: All the transactions of a customer can

together be viewed as a sequence, where each transaction

corresponds to a set of items, and the list of transactions,

ordered by increasing transaction-time, corresponds to a

sequence. A transaction made at transaction-time Ti can be

denoted as itemset (Ti). Thus, the sequence of the transactions

made by a customer, ordered by increasing transaction-time

T1, T2, …, Tn, can be denoted by <itemset(T1), itemset(T2), …,

itemset(Tn)> which is called customer-sequence.

Definition 2.2: An itemset X is contained in a transaction T

if X T. A sequence A = <a1, a2, …, am> is contained in

another sequence B = <b1, b2, …, bn> (i.e., A is a subsequence

of B) if there exist integers i1 < i2 < … < im such that a1 bi1,

a2 bi2, …, am bim. In a set of sequences, a sequence S is

maximal if S is not contained in any sequences in the set.

Definition 2.3: A customer supports an itemset X if X is

contained in at least one transaction of the customer-sequence

for this customer. The support for X is defined as the fraction

of total customers who support X. The support count for X,

denoted by X.support, is defined as the number of customers

who support X. A customer supports a sequence S if S is

contained in the customer-sequence for this customer. The

support for S is defined as the fraction of total customers who

support S. The support count for S, denoted by S.support, is

defined as the number of customers who support S.

Definition 2.4: A concept hierarchy is a tree describing the

relation of the concepts from the most generalized level

concept to primitive level. Each node in the tree represents a

concept and an edge represents an is-a relationship between

two concepts. The root, called the first level of the tree, is the

most generalized concept and the leaves, called the last level

of the tree, are the most concrete concepts. Let x and y be

nodes in the concept tree. If there is path from x to y, we call x

an ancestor of y or y a descendant of x. If x is the nearest

ancestor of y (i.e., there is an edge directly from x to y), we

call x a parent of y or y a child of x. Concept hierarchies are

given by domain experts and stored in the database or

automatically produced by the system.

Definition 2.5: Different minimum support and confidence

can be specified at different levels for a concept hierarchy to

find multiple-level sequential patterns and rules. Let

minsup[p] be the minimum support count at level p, an itemset

X is large at level p if X.support minsup[p]. Large itemset is

also called Litemset. Similarly, a sequence S is large at level p

if S.support minsup[p]. Since each itemset in a large

sequence must have minimum support, any large sequence

must be a list of Litemsets. A sequence pattern is the maximal

sequences in the set of large sequences.

Definition 2.6: A sequential rule is an implication of the

form A B, where A and B are sequences and the support

count of the rule is <A, B>.support, defined as the number of

customers who support <A, B>. The confidence of the rule is

defined as <A, B>.support / A.support. Confidence denotes the

strength of implication and support indicates the occurring

frequency of the rule. Let minconf[p] be the minimum

confidence at level p. A sequential rule at level p is strong if

the support and confidence of the rule are not less than the

minsup[p] and minconf[p] respectively.

Some concepts of single-level sequential patterns can be

extended to multiple-level sequential patterns.

Definition 2.7: An item x is contained in an itemset X if x

X or x’ X, where x’ is a descendant of x, i.e. x is in X and x

is an ancestor of some items in X. An itemset X is contained in

another itemset Y if every item of X is contained in Y. A

sequence A = <a1, a2,…, am> is contained in another sequence

B = <b1, b2,…, bn>, if there exist a set of integers i1 < i2< …<

im, such that aj contained in bij.

Definition 2.8: An itemset X’ is an ancestor of another

itemset X if we can get X’ from X by replacing one or more

items in X with their ancestors and deleting the identical items.

A sequence S’ = <y1, …, ym> is an ancestor of another

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

875

sequence S=<x1, …, xm> if for k = 1, …, m, yk = xk or yk is an

ancestor of xk and S and S’ have the same length.

Some properties can be reached based on the above

definitions and set theory.

Property 1: If an itemset Y contains another itemset X, then

Y also contains Z where Z is an ancestor of X.

Property 2: If a sequence B contains a sequence A, then B

also contains C where C is an ancestor of A.

Property 3: If X is a large itemset, then its ancestor X’ is

also large.

Property 4: If S is a large sequence, then its ancestor S’ is

also large.

Based on the above concept definitions, the problem of

mining multiple-level sequential patterns can be characterized

as follows:

Problem Statement: Given a customer transaction database

and a concept hierarchy, the problem of mining multiple-level

sequential patterns is to discover all maximal sequences that

have support not less than the user-specified minimum support

and confidence at the corresponding level of the concept

hierarchy. In addition, we can find the sequential rules that

have support and confidence not less than the user-specified

minimum support and minimum confidence at each level of

the hierarchy.

III. AN ALGORITHM FOR MINING MULTIPLE-LEVEL

SEQUENTIAL PATTERNS

In this section, we will present an algorithm of mining

multiple-level sequential patters from large customer

transaction databases. An example will be shown to help

understand the mining procedure.

A. Overview of the Algorithm

The method for mining multiple-level sequential patterns

uses customer-sequence tables encoded by the hierarchy

information rather than the original customer transaction table.

We split the problem of mining multiple-level sequential

patterns into the following steps:

1. Coding a concept hierarchy

A customer transaction database records the items

purchased by the customers. Usually these items can be

organized into a concept hierarchy. Each leaf node in a

hierarchy represents an item and the items can be classified

into categories from more general levels to more specific

levels. We code each node in a concept hierarchy using a top-

down coding method starting from the root and gradually

down to the leaves. The root of a hierarchy is coded first by

being assigned an integer of zero. For a hierarchy of m levels,

any non-root node in the hierarchy can be coded based on the

following formula:

code (p, i) = COP (p, i) x 10 + i

where p (p = 0, 1, …, m-1) represents the level where the

node resides; i (i = 1, 2, …, number of nodes at level p) is the

location number of a node at level p, (a set of contiguous

integers starting from 1 is assigned to the nodes from left to

right as location number); the code (p, i) denotes the code for

the ith node at level p, COP (p, i) is the code of the parent of

the ith node at level p. An example of a hierarchy and the code

for each node are shown in Fig. 1. After the coding, each item

recorded in a customer transaction database will be

represented by its code.

FIGURE 1 AN EXAMPLE OF CONCEPT HIERARCHY

2. Sorting customer transaction databases

A customer transaction database D can be sorted with

customer-id as the major key and transaction-time as the

minor key. After the sorting, all the records having the same

customer-id and increased transaction-time can be converted

to a customer-sequence. Thus the original customer

transaction database can be converted to a customer sequence

table. Table I is an example of such customer sequence tables

and we will take this example to demonstrate the remaining

steps of the mining process.

TABLE I

CUSTOMER-SEQUENCE TABLE T[1]

3. Finding large sequences at all levels:

A top-down, progressively deepening process which

collects large sequences from level 1 to max_level (the

maximal level of a concept hierarchy) based on a customer-

sequence table, called T[1] and a set of pre-defined minimum

support called minsup[p].

(i) Finding large sequences at level 1

To find large sequences at level 1, first we must fine all the

large itemsets at level 1, denoted by L[1] by scanning T[1].

For each generalized candidate itemset at this level, such as

1**, 2**, …, if T[1] contains such an item, the support count

for this itemset will be increased by 1. Those itemsets whose

accumulated support count is greater than or equal to

minsup[1] will be selected as large itemsets. Those items

whose corresponding 1-itemset’s support count is less than

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

876

minsup[1] will be removed from T[1]. After the removal, if

any customer sequence becomes empty, it will be removed

from T[1] too. This results in a filtered transaction table T[2]

(shown in Table II) that will be used later for finding large

sequences at level 2.

Let’s look at the example shown in Table I. The customer

number in this example is 8 and the minimal support at level 1

minsup[1] is set to 4. Based on the T[1] shown in Table I, the

following results can be derived:

Filtered table T[2] is shown in Table II.

Large 1-itemsets at level 1 L[1, 1] = {(1**), (2**), (3**),

(4**)}

Large 2-itemsets at level 1 L[1, 2] = {(1**, 2**), (2**,

3**)}

Large 3-itemsets at level 1 L[1, 3] =

Large itemsets at level 1 L[1]=

3

1k

L[1, k] = {(1**), (2**),

(3**), (4**), (1**, 2**), (2**, 3**)};

L[1] is shown in Table III where each large itemset is

assigned an index starting from 1.

TABLE II

T[2] (FILTERED TABLE FROM T[1])

TABLE III

L[1] (LARGE ITEMSETS AT LEVEL 1)

Based on L[1], large 1-sequence at level 1 LL[1,1] ={<iset>

| iset L[1]} can be identified as:

LL[1,1] = {<(1**)>, <(2**)>, <(3**)>, <(4**)>, <(1**,

2**)>, <(2**, 3**)>}.

Next, we try to find large 2-sequences at level 1. An

intermediate table T’ is derived from T[2] by replacing each

itemset in each customer-sequence contained in T[2] with a

set of large itemsets represented by their index in L[1]

contained in it. For example, an itemset (111, 211) contains

large itemsets (111), (211) and (111, 211) which are indexed

as 1, 2, 3 respectively in L[1] (see Table III). It can then be

transformed to an indexed representation (1, 2, 3). The

transformed table T’ is shown in Table IV. Then the set of

large 2-sequence at level 1 LL [1, 2] (see Table V) is

generated using the similar method to AprioriAll algorithm by

scanning T’.

TABLE IV

TRANSFORMED TABLE T’ AT LEVEL1

TABLE V

LL[1, 2] (LARGE 2-SEQUENCES AT LEVEL 1)

There is no large 3-sequences at level 1, thus LL[1,3]= ;

All the large sequences at level 1 LL[1] =

3

1k

LL[1, k] =

{<(1**)>, <(2**)>, <(3**)>, <(4**)>, <(1**, 2**)>, <(2**,

3**)>, <(1**), (2**)>, <(2**), (4**)>};

(ii) Finding large sequences at level 2

The minimum support at level 2, minsup[2], is set to 3 for

the example. Similar to finding large sequences at level 1, a

filtered table T[3] generated from T[2] (shown in Table VI)

and the large itemsets at level 2 L[2] (shown in Table VII) can

be derived.

TABLE VI

T[3] (FILTERED TABLE FROM T[2])

TABLE VII

L[2] (LARGE ITEMSETS AT LEVEL 2)

Based on L[2], large 1-sequences at level 2 LL [2, 1] can be

obtained based on the following formula:

LL[2,1] ={<iset> | iset L[2]} = {<(11*)>, <(21*)>,

<(11*, 21*)>, <(22*)>, <(32*)>}

Based on T[2] and the L[2], the transformed table T’ for

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

877

level 2 (shown in Table VIII) and the large 2-sequences at

level 2, LL [2, 2] (shown in Table IX), can be derived.

There is no large 3-sequences at level 2, thus LL[2,3]= .

All the large sequences at level 2 LL[2] = LL[2, k] =

{<(11*)>, <(21*)>, <(22*)>, <(32*)>, <(11*, 21*)>, <(11*),

(22*)>, <(21*), (22*)>, <(21*), (32*)>, <(11*, 21*), (22*)>}.

TABLE VIII

TRANSFORMED TABLE T’ AT LEVEL 2

TABLE IX

LL[2, 2] (LARGE 2-SEQUENCES AT LEVEL 2)

(iii) Finding large sequences at level 3

The processes of finding large sequences at level 3, level 4,

…, max_level are similar. For the above example, max_level =

3 and the minimum support at level 3, minsup[3], is set to 3.

The following tables, a filtered table T[4] generated from T[3]

(shown in Table X), large 1-itemsets at level 3 LL[3, 1]

(shown in Table XI), the transformed table T’ at level 3

(shown in Table XII), and large 2-sequences LL[3,2] (shown

in Table XIII) can be derived.

TABLE X

T[4] (FILTERED TABLE FROM T[3])

TABLE XI

L[3] (LARGE ITEMSETS AT LEVEL 3)

Based on L[3], large 1-sequences at level 3 LL [3, 1] can be

obtained based on the following formula:

LL[3,1] ={<iset> | iset L[3]} = {< (111) >, < (211) >, <

(111, 211) >, < (222) >}.

TABLE XII

TRANSFORMED TABLE T’ AT LEVEL 3

TABLE XIII

LL[3, 2] (LARGE 2-SEQUENCES AT LEVEL 3)

There is no large 3-sequences at level 3, thus LL[3, 3]= ;

All the large sequences at level 3 LL[3] =

3

1k

LL[3, k] = {<

(111) >, < (211) >, < (222) >, < (111, 211) >, < (111), (222) >,

< (211), (222) >, < (111, 211), (222) >}.

4. Identifying sequential patterns and sequential rules

(i) Sequential patterns (maximal sequences of large

sequences)

Having found the set of all large sequences LL[p] (p = 1, 2,

…, max-level) in Step 3, we use the following algorithm

(shown in Fig. 2) to identify maximal sequences from the set

of large sequences. Let the length of the longest sequence of

LL[p] is n. The following function will delete the non-

maximal sequences that are contained in other sequence of

LL[p]

FIGURE 2 MAXIMAL_SEQ () FUNCTION

Data structure and algorithm to quickly identify all the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

878

subsequences for a given sequence can be found in [6].

(ii) Sequential rules:

We can also use the identified large sequences to generate

the desired sequential rules. For every large sequence S at

level p, find all non-empty prefix subsequences of S. For

every such subsequence A, a rule of the form A B (<A, B> =

S) can be identified if S.support / A.support is great than or

equal to minconf[p].

B. Algorithm MLSeq_T2L1: (An algorithm for finding

multiple-level large sequences)

Based on the steps presented in the preceding section, the

most crucial step of mining multiple level sequential patters

and rules is Step 3, i.e. finding large sequences at all levels.

The previous discussion leads to the following algorithm

MLSeq_T2L1 for mining multiple-level large sequences. This

algorithm is an extension of ML_T2L1 algorithm [7]. The

major variables used in the algorithm and their semantics are

listed in Table XIV.

TABLE XIV

NOTATIONS USED IN MLSEQ_T2L1

The Inputs of the algorithm are:

(1) T[1]: a customer-sequence table (encoded based on a

concept hierarchy) and

(2) minimum support thresholds minsup[p] for each

concept level p.

The output of the algorithm will be the large sequences

LL[p] at every level p. Fig. 3 presents the algorithm

describing the process of how to generate the large sequences

LL[p] for all levels (p =1, 2, …, max_level).

FIGURE 3 ALGORITHM MLSEQ_T2L1

This algorithm consists of two parts: (a) generating large

itemsets, and (b) generating large sequences based on the

identified large itemsets. During this process, some

intermediate tables will also be derived.

At any level p, large k-itemsets (k=1, 2, …, n) L[p] is

derived from T[p] by invoking get_large_itemset(T[p],

p) function (see Statement (1) and (3) in Fig.3). The filtered

customer-sequence table T[p+1] can be derived by invoking

get_filtered_table (T[p], L[p, 1]) function, which

uses L[p, 1] as a filter to filter any small items from customer-

sequences and to remove the sequences that contain only

small items from T[p] (see Statement (2)).

In Statement (4), an intermediate table T’ at level p is

generated from the transformation from the filtered table

T[p+1]. This intermediate table will be used to derive large

sequences.

Large 1-sequences at any level LL[p, 1] can be generated

based on Statement (5) while large k-sequences (k>1) at level

p are derived in two steps (see Statement (6) and its Sub-

statements (6.1)- (6.6)):

(a) The candidates of k-sequences are generated from LL[p,

k-1] by invoking get_candidate_set (LL[p, k-1])

function. The function takes LL[p, k-1] as a parameter and

returns a superset of the set of all large k-sequences at level p,

CL[p, k].

(b) For each customer-sequence t in T’, increment the

support count of S CL[p, k] if S is contained in t. Then

LL[p, k] can be derived from those sequences in CL[p, k]

whose support is not less than minsup[p].

Finally, the large sequences at any level p, LL[p], is the

union of LL[p, k] for all k (see Statement (7)).

This algorithm uses several functions,

get_large_itemset(), get_filtered_table(),

transform_table(), and get_candidate_set(). We

will give details for one of the functions,

get_large_itemset (), in Fig. 4 (the algorithms for other

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

879

functions can be derived based on the corresponding

description presented in Subsection A):

FIGURE 4 get_large_itemset() FUNCTION

The apriori_gen() function used in the function was

borrowed from [8]. This functions takes L[p, k-1] as an

parameter and returns a superset of the set of all large k-

itemsets.

IV. SOME VARIANT ALGORITHMS AND PERFORMANCE

COMPARISON

Based on the algorithm presented in preceding section, we

can derive several variant algorithms by exploring different

ways to share the data structures and intermediate results. The

performance of the algorithms will be discussed based on the

results from an experiment.

A. Algorithm MLSeq_TML1

The major difference between MLSeq_T2L1 and

MLSeq_TML1 is that MLSeq_TML1 only derive the filtered

table T[2] at level 1 rather than generating all the filtered

tables T[p+1] at any other level p (p>1) as did MLSeq_T2L1.

T[2] is repeatedly used as a filtered table for all the processing

at lower levels. The algorithm for MLSeq_TML1 can be

obtained by slightly modifying the MLSeq_T2L1 algorithm; In

Fig. 3 Statement (2) will be removed and the following

statement will be inserted between the original Statements (1)

and (2).
T[2] = get_filtered_table (T[1], L[1, 1]);

Statement (3) and (4) will be replaced by the following new

statements:
(3) if (p>1) then

 (3.1) L[p] = get_large_itemset (T[2], p);

(4) T’ = transform_table (T[2]);

This algorithm only generates filtered time T[2] and saves

the effort of generating all the other filtered tables. However,

as the T[2] is only filtered once the processing effort at lower

level p (p>1) may be larger than using the filtered table T[p].

B. Algorithm MLSeq_T1LA

MLSeq_T1LA uses only T[1] and no other filtered table is

generated. All large 1-itemsets L[p, 1] for every level p can be

generated in parallel in one scan of T[1]. Then each item in

L[p, 1] (p>1) whose parent is not large in the higher level

large 1-itemsets, or whose support is lower than minsup[p],

will be removed from L[p, 1]. Large k-itemsets L[p, k] (k>1)

for each level is generated in parallel by scanning T[1]. After

all large itemsets at each level have been identified, T[1] is

transformed into T’ according to L[p]. All large sequences

LL[p] can then be ientified by scanning T’ at every level p.

MLSeq_T1LA generates large k-itemsets for each level in

parallel, which save the effort for repeat scans of T[1].

However, it has to spend time on examining small itemsets

and small items in T[1].

C. Performance Comparison

An experiment was conducted to assess the performance of

the proposed three algorithms. Two customer transaction

datasets coded by a pre-defined concept hierarchy were

generated by using the method specified in [9] [10]. The

relevant parameters for the experiment are listed below:

|C|=Average number of transactions per customer

|T|=Average number of items per transaction

|S|=Average length of maximal potentially large sequences

|I|=Average size of itemsets in maximal potentially large

sequences

We changed the value of the average items per transaction

to generate two datasets and defined two different minimum

support thresholds for the two datasets. The three algorithms

were applied to the datasets and the experiment run on a

personal computer (Pentium-II 866MHz, 64MB). The

performances of the three algorithms based on the two

datasets are compared in Figure 5 and Figure 6 in terms of the

relative time spent for the execution of the algorithms. Both

figures show that the execution times increase almost linearly

along with the customer transaction number increased from

25,000 to 200,000. As we set different values for the average

number of items per transaction and different minimum

support thresholds, we will discuss how these two parameters

influence the corresponding performances of the algorithms.

In Figure 5 (|C| = 10, |T|=5, |S|= 4, |I|= 1.25,

minsup[p]=0.25), MLSeq_T1LA achieved the best

performance, while MLSeq_T2L1 had the worst performance.

In this dataset, as the average number of items per transaction

|T| and the minimum support threshold are relatively small,

not many items have been filtered out at each level. Therefore,

the effort devoted to generating the filtered tables is not

compensated by the reduced effort for processing the filtered

tables at lower levels because the filtered tables are mot

significantly smaller than T[1] at all. As MLSeq_T1LA did not

generate any filtered table and used the T[1] for all the levels,

it saved the time for generating the filtered tables and

completed the task in the shortest time. MLSeq_T2L1

generated filtered tables for all levels. Thus, its performance is

worse than MLSeq_TML1 who only generated one filtered

table at level 1.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

880

FIGURE 5 PERFORMANCE COMPARISON

In Figure 6 (|C| = 10, |T| = 10, |S|= 4, |I|= 1.25,

minsup[p]=0.5), MLSeq_TML1 achieved the best

performance, while MLSeq_T1LA has the worst performance.

In this dataset, as the average number of items per transaction

|T| and the minimum support threshold are larger than the first

dataset, a relatively large amount of items may be filtered out

at each level. Therefore, the effort devoted to generating the

filtered tables is compensated by the reduced effort for

processing the much smaller filtered tables at lower levels. As

MLSeq_T1LA did not generate any filtered table and used the

T[1] for all level’s processing and T[1] is much larger than the

filtered tables, it took the longest time to complete the task..

The performances of MLSeq_T2L1 and MLSeq_TML1 are

very similar. This may indicate that the effect of the filtration

at level 1 is more significant in comparison with the filtration

at other levels. As MLSeq_T2L1 spent some time to generate

filtered table for all the levels, its performance is slightly

worse than that of MLSeq_TML1.

FIGURE 6 PERFORMANCE COMPARISON

Based on the above discussion, some suggestions may be

given to the selection of appropriate algorithm for a specific

dataset:

• If minimal support for each level is small,

MLSeq_T1LA may be a good choice. As the number of

filtered items is relatively small and the effort for

generating the filtered tables is saved, using T[1] for all

levels may be more efficient than using the filtered

tables.

• MLSeq_TML1 suits best for the datasets where a large

number of items can be filtered at level 1. It is a good

idea to check how many items have been filtered out at

level 1 and then decide which algorithm should be

selected. If the number is relatively large,

MLSeq_TML1 is a good choice. Otherwise, further

filtrations may be required for the lower levels, i.e.

MLSeq_T2L1 may be better.

• When using MLSeq_T2L1, especially in the case that

the value of minimum support for higher levels are

larger than that at lower levels, some items that should

be retained at lower level may already be filtered out at

higher level. Thus, some associate pattern at lower

level may be missed.

• If the values of minimum support increase from high

level to low level, MLSeq_T2L1 is a good choice. As a

number of items will be filtered out at each level, the

effort used for processing the filtered table at each level

will be reduced.

V. CONCLUSIONS

Sequential patterns mined from large customer transaction

databases can discover implicit and potential useful

knowledge. Multiple-level sequential patterns provide this

kind of knowledge at different concept levels, from general

levels to more specific levels. Therefore multiple-level

sequential patterns are more helpful than the single level

sequential patterns for the decision-makers in sale

management. In this study, we characterized the problem of

mining multiple-level sequential patterns by formally defining

a set of concepts used in the mining process and developed

three algorithms to solve the problem.

An experiment was conducted to assess the performance of

the proposed three algorithms. Two customer transaction

datasets coded by a pre-defined concept hierarchy were

generated and applied to the algorithms. The performances of

the algorithms were measured by the relative time spent on the

mining tasks based on the two datasets. The experimental

results showed that the performance depends on the

characteristics of the datasets and the pre-defined threshold of

minimal support for each level of the concept hierarchy. Based

on the experimental results, some suggestions were given for

how to select appropriate algorithm for a certain dataset.

Applying the algorithms to large, real customer transaction

databases to further test the algorithms may be required in

future.

REFERENCES

[1] Chen, M.S., Han, J. and Yu, P.S., “Data Mining: An Overview from a

Database Perspective,” IEEE Transactions on Knowledge and Data

Engineering, Vol. 8, No. 6, Dec, 1996, pp. 866-883.

[2] Rakesh, A., Tomasz, I. and Arun, S., “Mining Association Rules

Between Sets of Items in Large Databases,” ACM SIGMOD, May 1993,

pp. 207-216.

[3] Park, J.S., Chen, M.S., and Yu, P.S., “An Effective Hash Bashed

Algorithm for Mining Association Rules,” in Proceedings of ACM

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

881

SIGMOD, May 1995, pp. 175-186.

[4] Rakesh, A. and Ramakrishnan, S., “Fast Algorithm for Mining

Association Rules,” in Proceedings of 20th VLDB Conference, Santiago,

Chile, 1994, pp. 487-499.

[5] Chen, N. and Chen, A., “Discovery of Multiple-Level Sequential

Patterns from Large Databases,” in Proceedings of the 4th International

Symposium On Future Software Technology (ISFST-1999), Oct. 27-29,

1999, Nanjing, P. R. China, pp. 169-174.

[6] Rakesh, A. and Ramakrishnan, S., “Mining Sequential Patterns,”

Research Report, RJ 9910, IBM Almaden Research Center, San Jose,

California, October 1994.

[7] Han, J., and Fu, Y., “Discovery of Multiple-Level Association Rules

from Large Databases,” in Proceedings of 21st VLDB Conference,

Zurich, Switzerland, 1995, pp. 420-431.

[8] Ramakrishnan, S. and Rakesh, A., “Mining Generalized Association

Rules,” in Proceedings of 21st VLDB Conference, Zurich, Switzerland,

1995, pp. 407-419.

[9] Rakesh, A. and Ramakrishnan, S., “Mining Sequential Patterns,” in

Proceedings of the 11th International Conference on Data Engineering,

March 1995, Taipei, Taiwan, IEEE Computer Society, pp. 3-14.

[10] Chen, R.S., Tzeng, G.H., Chen, C.C. and Hu, Y.C., “Discovery of Fuzzy

Sequential Patterns for Fuzzy Partitions in Quantitative Attributes,” in

Proceedings of ACS/IEEE International Conference on Computer

Systems and Applications (AICCSA'01), June, 2001, Beirut, Lebanon,

pp. 144-150.

