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Abstract—Mining sequential patterns from large customer 

transaction databases has been recognized as a key research topic in 

database systems. However, the previous works more focused on 

mining sequential patterns at a single concept level. In this study, we 

introduced concept hierarchies into this problem and present several 

algorithms for discovering multiple-level sequential patterns based 

on the hierarchies. An experiment was conducted to assess the 

performance of the proposed algorithms. The performances of the 

algorithms were measured by the relative time spent on completing 

the mining tasks on two different datasets. The experimental results 

showed that the performance depends on the characteristics of the 

datasets and the pre-defined threshold of minimal support for each 

level of the concept hierarchy. Based on the experimental results, 

some suggestions were also given for how to select appropriate 

algorithm for a certain datasets. 

Keywords—Data Mining, Multiple-Level Sequential Pattern, 

Concept Hierarchy, Customer Transaction Database. 

I. INTRODUCTION

ata Mining, which is also referred to as knowledge 

discovery from databases, means a process of nontrivial 

extraction of implicit, previously unknown and potentially 

useful information from databases. The discovered knowledge 

can be applied to information management, query processing, 

decision making, process control, and many other applications 

[1]. Since association rule mining between items over basket 

databases was first introduced [2], there has been considerable 

work devoted to the development of efficient algorithms for 

mining sequential patterns and association rules [3] [4]. Data 

records often contain customer information (e.g., customer-id, 

transaction-time etc.), particularly when the purchases have 

been made using credit cards or other kinds of customer cards. 

It is useful to find the sequential patterns that most frequently 

occur in a customer transaction databases to find some rules of 

the purchases. For example, in a share market, if many 

customers bought AT&T share, followed by IBM share, and 

followed by DEC share in one month in a share transaction 
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database, then <AT&T, IBM, DEC> is a sequential pattern 

with large possibility. 

A customer transaction database records the items 

purchased by the customers. Usually these items can be 

organized into a concept hierarchy according to a taxonomy. 

Based on the hierarchy, associate patterns can be found not 

only from the leaf nodes (i.e. the items) of the hierarchy, but 

also can be found at any level of the hierarchy. This is called 

multiple-level sequential patterns discovery, or mining 

generalized association patterns. Previous work has been 

focused on mining sequential patterns at a single concept level 

[5]. Now the necessity for mining multiple-level association 

patterns using concept hierarchies has been observed as 

finding sequential patterns at multiple concept levels is useful 

in many applications. The sequential patterns at lower concept 

levels often carry more specific and concrete information and 

those at higher concept levels carry more general information. 

This requires progressively deepening the mining process to 

multiple concept levels. In many cases, concept hierarchies 

over items are available. Given a set of transactions and a 

concept hierarchy over items contained in the transactions, 

association patterns at any level of the hierarchy can be found 

by developing appropriate algorithms. 

In this paper, a method for mining multiple-level sequential 

patterns is proposed. This method includes three major steps:  

(1) Transforming the original customer transaction database 

into a customer-sequence table: This sequence table will be 

used as the data resource for the mining. Each sequence in the 

table consists of all the transactions of a customer while each 

transaction consists of a set of items purchased at one time. 

All the items are encoded based on the hierarchical structure.   

(2) Finding large sequences at each concept level using a 

top-down, progressively deepening process: The identification 

of large sequences depends on the pre-defined threshold of 

minimum support for each level. For a certain level, if the 

number of a certain kind sequence is not less than the 

threshold, this kind sequence is called large sequence.  

(3) Identifying sequential patterns and sequential rules: 

Based on the results from Step 2, sequential patterns and rules 

can be identified. 

Step 2 is crucial. We developed three algorithms for 

identifying large sequences. An experiment has been 

conducted to compare the performances of the algorithms. The 
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performances were measured by the relative time spent on 

completing the mining tasks on two different datasets. The 

experimental results showed that the performance depends on 

the characteristics of the datasets and the pre-defined 

threshold of minimal support for each level of the concept 

hierarchy. Different algorithms may have different 

performances for different datasets.  

The paper is organized as follows. Section II gives the 

definitions of the concepts used in mining sequential patterns. 

Based on these definitions the problem of mining sequential 

patterns can be formally characterized. In Section III, a 

method for mining multiple-level sequential patterns is 

developed and an example is step-by-step shown to help 

understand the procedure. One algorithm for find large 

sequences at every concept level, called MLSeq_T2L1, is 

presented in pseudo code. Section IV presents two variant 

algorithms of MLSeq_T2L1 and the experimental results. The 

performances of the three algorithms are compared and 

discussed. Finally, Section V concludes this study.  

II. CONCEPT DEFINITIONS FOR MINING SEQUENTIAL 

PATTERNS 

In a given customer transactions database, each transaction 

consists of the following fields: customer-id, transaction-time, 

and the items purchased in the transaction. No customer has 

more than one transaction at the same transaction-time. We 

don’t consider quantities of items bought in a transaction; 

each item is a binary variable representing whether an item 

was bought or not. Let I = {i1, i2, …, in} be a set of literals. An 

itemset is a non-empty set of items. A sequence is a non-

empty and ordered list of itemsets. We denote an itemset by 

(i1, i2, …, im), where ij is an item. The length of an itemset is 

the number of items in it. An itemset of length k is called a k-

itemset. We denote a sequence S by <s1, s2, …, sn>, where sj is

an itemset. The length of a sequence is the number of itemsets 

in it. A sequence of length k is called a k-sequence. The 

sequence formed by the concatenation of two sequences A and 

B is denoted as <A, B>.  

Definition 2.1: All the transactions of a customer can 

together be viewed as a sequence, where each transaction 

corresponds to a set of items, and the list of transactions, 

ordered by increasing transaction-time, corresponds to a 

sequence. A transaction made at transaction-time Ti can be 

denoted as itemset (Ti). Thus, the sequence of the transactions 

made by a customer, ordered by increasing transaction-time 

T1, T2, …, Tn, can be denoted by <itemset(T1), itemset(T2), …,

itemset(Tn)> which is called customer-sequence.  

Definition 2.2: An itemset X is contained in a transaction T

if X T. A sequence A = <a1, a2, …, am> is contained in 

another sequence B = <b1, b2, …, bn> (i.e., A is a subsequence 

of B) if there exist integers i1 < i2 < … < im such that a1 bi1,

a2 bi2, …, am bim. In a set of sequences, a sequence S is 

maximal if S is not contained in any sequences in the set.  

Definition 2.3: A customer supports an itemset X if X is 

contained in at least one transaction of the customer-sequence 

for this customer. The support for X is defined as the fraction 

of total customers who support X. The support count for X,

denoted by X.support, is defined as the number of customers 

who support X. A customer supports a sequence S if S is 

contained in the customer-sequence for this customer. The 

support for S is defined as the fraction of total customers who 

support S. The support count for S, denoted by S.support, is 

defined as the number of customers who support S.

Definition 2.4: A concept hierarchy is a tree describing the 

relation of the concepts from the most generalized level 

concept to primitive level. Each node in the tree represents a 

concept and an edge represents an is-a relationship between 

two concepts. The root, called the first level of the tree, is the 

most generalized concept and the leaves, called the last level 

of the tree, are the most concrete concepts. Let x and y be 

nodes in the concept tree. If there is path from x to y, we call x

an ancestor of y or y a descendant of x. If x is the nearest 

ancestor of y (i.e., there is an edge directly from x to y), we 

call x a parent of y or y a child of x. Concept hierarchies are 

given by domain experts and stored in the database or 

automatically produced by the system.  

Definition 2.5: Different minimum support and confidence 

can be specified at different levels for a concept hierarchy to 

find multiple-level sequential patterns and rules. Let 

minsup[p] be the minimum support count at level p, an itemset 

X is large at level p if X.support minsup[p]. Large itemset is 

also called Litemset. Similarly, a sequence S is large at level p 

if S.support minsup[p]. Since each itemset in a large 

sequence must have minimum support, any large sequence 

must be a list of Litemsets. A sequence pattern is the maximal 

sequences in the set of large sequences. 

Definition 2.6: A sequential rule is an implication of the 

form A B, where A and B are sequences and the support 

count of the rule is <A, B>.support, defined as the number of 

customers who support <A, B>. The confidence of the rule is 

defined as <A, B>.support / A.support. Confidence denotes the 

strength of implication and support indicates the occurring 

frequency of the rule. Let minconf[p] be the minimum 

confidence at level p. A sequential rule at level p is strong if 

the support and confidence of the rule are not less than the 

minsup[p] and minconf[p] respectively.  

Some concepts of single-level sequential patterns can be 

extended to multiple-level sequential patterns.  

Definition 2.7: An item x is contained in an itemset X if x

X or x’ X, where x’ is a descendant of x, i.e. x is in X and x

is an ancestor of some items in X. An itemset X is contained in 

another itemset Y if every item of X is contained in Y. A 

sequence A = <a1, a2,…, am> is contained in another sequence 

B = <b1, b2,…, bn>, if there exist a set of integers i1 < i2< …< 

im, such that aj contained in bij.

Definition 2.8: An itemset X’ is an ancestor of another 

itemset X if we can get X’ from X by replacing one or more 

items in X with their ancestors and deleting the identical items. 

A sequence S’ = <y1, …, ym> is an ancestor of another 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

875

sequence S=<x1, …, xm> if for k = 1, …, m, yk = xk  or yk is an 

ancestor of xk  and S and S’ have the same length. 

Some properties can be reached based on the above 

definitions and set theory. 

Property 1: If an itemset Y contains another itemset X, then 

Y also contains Z where Z is an ancestor of X.

Property 2: If a sequence B contains a sequence A, then B

also contains C where C is an ancestor of A.

Property 3: If X is a large itemset, then its ancestor X’ is 

also large. 

Property 4: If S is a large sequence, then its ancestor S’ is 

also large. 

Based on the above concept definitions, the problem of 

mining multiple-level sequential patterns can be characterized 

as follows: 

Problem Statement: Given a customer transaction database 

and a concept hierarchy, the problem of mining multiple-level 

sequential patterns is to discover all maximal sequences that 

have support not less than the user-specified minimum support 

and confidence at the corresponding level of the concept 

hierarchy. In addition, we can find the sequential rules that 

have support and confidence not less than the user-specified 

minimum support and minimum confidence at each level of 

the hierarchy. 

III. AN ALGORITHM FOR MINING MULTIPLE-LEVEL 

SEQUENTIAL PATTERNS

In this section, we will present an algorithm of mining 

multiple-level sequential patters from large customer 

transaction databases. An example will be shown to help 

understand the mining procedure.  

A. Overview of the Algorithm 

The method for mining multiple-level sequential patterns 

uses customer-sequence tables encoded by the hierarchy 

information rather than the original customer transaction table. 

We split the problem of mining multiple-level sequential 

patterns into the following steps: 

1.  Coding a concept hierarchy  

A customer transaction database records the items 

purchased by the customers. Usually these items can be 

organized into a concept hierarchy. Each leaf node in a 

hierarchy represents an item and the items can be classified 

into categories from more general levels to more specific 

levels. We code each node in a concept hierarchy using a top-

down coding method starting from the root and gradually 

down to the leaves. The root of a hierarchy is coded first by 

being assigned an integer of zero. For a hierarchy of m levels,

any non-root node in the hierarchy can be coded based on the 

following formula: 

code (p, i) = COP (p, i) x 10 + i

where p (p = 0, 1, …, m-1) represents the level where the 

node resides; i (i = 1, 2, …, number of nodes at level p) is the 

location number of a node at level p, (a set of contiguous 

integers starting from 1 is assigned to the nodes from left to 

right as location number); the code (p, i) denotes the code for 

the ith node at level p, COP (p, i) is the code of the parent of 

the ith node at level p. An example of a hierarchy and the code 

for each node are shown in Fig. 1. After the coding, each item 

recorded in a customer transaction database will be 

represented by its code. 

FIGURE 1 AN EXAMPLE OF CONCEPT HIERARCHY 

2.  Sorting customer transaction databases 

A customer transaction database D can be sorted with 

customer-id as the major key and transaction-time as the 

minor key. After the sorting, all the records having the same 

customer-id and increased transaction-time can be converted 

to a customer-sequence. Thus the original customer 

transaction database can be converted to a customer sequence 

table. Table I is an example of such customer sequence tables 

and we will take this example to demonstrate the remaining 

steps of the mining process. 

TABLE I

CUSTOMER-SEQUENCE TABLE  T[1] 

3. Finding large sequences at all levels:  

A top-down, progressively deepening process which 

collects large sequences from level 1 to max_level (the 

maximal level of a concept hierarchy) based on a customer-

sequence table, called T[1] and a set of pre-defined minimum 

support called minsup[p].

(i) Finding large sequences at level 1 

To find large sequences at level 1, first we must fine all the 

large itemsets at level 1, denoted by L[1] by scanning T[1]. 

For each generalized candidate itemset at this level, such as 

1**, 2**, …, if T[1] contains such an item, the support count 

for this itemset will be increased by 1. Those itemsets whose 

accumulated support count is greater than or equal to 

minsup[1] will be selected as large itemsets. Those items 

whose corresponding 1-itemset’s support count is less than 
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minsup[1] will be removed from T[1]. After the removal, if 

any customer sequence becomes empty, it will be removed 

from T[1] too. This results in a filtered transaction table T[2] 

(shown in Table II) that will be used later for finding large 

sequences at level 2.   

Let’s look at the example shown in Table I. The customer 

number in this example is 8 and the minimal support at level 1 

minsup[1] is set to 4. Based on the T[1] shown in Table I, the 

following results can be derived: 

Filtered table T[2] is shown in Table II. 

Large 1-itemsets at level 1 L[1, 1] = {(1**), (2**), (3**), 

(4**)} 

Large 2-itemsets at level 1 L[1, 2] = {(1**, 2**), (2**, 

3**)} 

Large 3-itemsets at level 1 L[1, 3] = 

Large itemsets at level 1 L[1]=

3

1k

L[1, k] = {(1**), (2**), 

(3**), (4**), (1**, 2**), (2**, 3**)};  

L[1] is shown in Table III where each large itemset is 

assigned an index starting from 1.   

TABLE II 

T[2] (FILTERED TABLE FROM T[1]) 

TABLE III

L[1] (LARGE ITEMSETS AT LEVEL 1)

Based on L[1], large 1-sequence at level 1 LL[1,1] ={<iset>

| iset  L[1]} can be identified as: 

LL[1,1] = {<(1**)>, <(2**)>, <(3**)>, <(4**)>, <(1**, 

2**)>, <(2**, 3**)>}.    

Next, we try to find large 2-sequences at level 1. An 

intermediate table T’ is derived from T[2] by replacing each 

itemset in each customer-sequence contained in T[2] with a 

set of large itemsets represented by their index in L[1] 

contained in it. For example, an itemset (111, 211) contains 

large itemsets (111), (211) and (111, 211) which are indexed 

as 1, 2, 3 respectively in L[1] (see Table III). It can then be 

transformed to an indexed representation (1, 2, 3). The 

transformed table T’ is shown in Table IV. Then the set of 

large 2-sequence at level 1 LL [1, 2] (see Table V) is 

generated using the similar method to AprioriAll algorithm by 

scanning T’. 

TABLE IV 

TRANSFORMED TABLE T’ AT LEVEL1

TABLE V

LL[1, 2] (LARGE 2-SEQUENCES AT LEVEL 1)

There is no large 3-sequences at level 1, thus LL[1,3]= ;

All the large sequences at level 1 LL[1] =

3

1k

LL[1, k] = 

{<(1**)>, <(2**)>, <(3**)>, <(4**)>, <(1**, 2**)>, <(2**, 

3**)>, <(1**), (2**)>, <(2**), (4**)>}; 

(ii) Finding large sequences at level 2 

The minimum support at level 2, minsup[2], is set to 3 for 

the example. Similar to finding large sequences at level 1, a 

filtered table T[3] generated from T[2] (shown in Table VI) 

and the large itemsets at level 2 L[2] (shown in Table VII) can 

be derived. 

TABLE VI 

T[3] (FILTERED TABLE FROM T[2]) 

TABLE VII

L[2] (LARGE ITEMSETS AT LEVEL 2)

Based on L[2], large 1-sequences at level 2 LL [2, 1] can be 

obtained based on the following formula: 

LL[2,1] ={<iset> | iset  L[2]} = {<(11*)>, <(21*)>, 

<(11*, 21*)>, <(22*)>, <(32*)>}   

Based on T[2] and the L[2], the transformed table T’ for 
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level 2 (shown in Table VIII) and the large 2-sequences at 

level 2, LL [2, 2] (shown in Table IX), can be derived. 

There is no large 3-sequences at level 2, thus LL[2,3]= .

All the large sequences at level 2 LL[2] = LL[2, k] = 

{<(11*)>, <(21*)>, <(22*)>, <(32*)>, <(11*, 21*)>, <(11*), 

(22*)>, <(21*), (22*)>, <(21*), (32*)>, <(11*, 21*), (22*)>}. 

TABLE VIII 

TRANSFORMED TABLE T’ AT LEVEL 2 

TABLE IX 

LL[2, 2] (LARGE 2-SEQUENCES AT LEVEL 2)

(iii) Finding large sequences at level 3 

The processes of finding large sequences at level 3, level 4, 

…, max_level are similar. For the above example, max_level = 

3 and the minimum support at level 3, minsup[3], is set to 3. 

The following tables, a filtered table T[4] generated from T[3] 

(shown in Table X), large 1-itemsets at level 3 LL[3, 1] 

(shown in Table XI), the transformed table T’ at level 3 

(shown in Table XII), and large 2-sequences LL[3,2] (shown 

in Table XIII) can be derived.  

TABLE X

T[4] (FILTERED TABLE FROM T[3]) 

TABLE XI

L[3] (LARGE ITEMSETS AT LEVEL 3)

Based on L[3], large 1-sequences at level 3 LL [3, 1] can be 

obtained based on the following formula: 

LL[3,1] ={<iset> | iset  L[3]} = {< (111) >, < (211) >, < 

(111, 211) >, < (222) >}. 

TABLE XII

TRANSFORMED TABLE T’ AT LEVEL 3 

TABLE XIII 

LL[3, 2] (LARGE 2-SEQUENCES AT LEVEL 3)

There is no large 3-sequences at level 3, thus LL[3, 3]= ;

All the large sequences at level 3 LL[3] =

3

1k

LL[3, k] = {< 

(111) >, < (211) >, < (222) >, < (111, 211) >, < (111), (222) >, 

< (211), (222) >, < (111, 211), (222) >}. 

4.  Identifying sequential patterns and sequential rules  

(i) Sequential patterns (maximal sequences of large 

sequences) 

Having found the set of all large sequences LL[p] (p = 1, 2, 

…, max-level) in Step 3, we use the following algorithm 

(shown in Fig. 2) to identify maximal sequences from the set 

of large sequences. Let the length of the longest sequence of 

LL[p] is n. The following function will delete the non-

maximal sequences that are contained in other sequence of 

LL[p]  

FIGURE 2 MAXIMAL_SEQ ( ) FUNCTION 

Data structure and algorithm to quickly identify all the 
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subsequences for a given sequence can be found in [6]. 

(ii) Sequential rules: 

We can also use the identified large sequences to generate 

the desired sequential rules. For every large sequence S at

level p, find all non-empty prefix subsequences of S. For 

every such subsequence A, a rule of the form A B (<A, B> = 

S) can be identified if S.support / A.support is great than or 

equal to minconf[p].

B.  Algorithm MLSeq_T2L1: (An algorithm for finding 

multiple-level large sequences) 

Based on the steps presented in the preceding section, the 

most crucial step of mining multiple level sequential patters 

and rules is Step 3, i.e. finding large sequences at all levels. 

The previous discussion leads to the following algorithm 

MLSeq_T2L1 for mining multiple-level large sequences. This 

algorithm is an extension of ML_T2L1 algorithm [7]. The 

major variables used in the algorithm and their semantics are 

listed in Table XIV. 

TABLE XIV

NOTATIONS USED IN MLSEQ_T2L1 

The Inputs of the algorithm are: 

(1) T[1]: a customer-sequence table (encoded based on a 

concept hierarchy) and 

(2) minimum support thresholds minsup[p] for each 

concept level p.

The output of the algorithm will be the large sequences 

LL[p] at every level p. Fig. 3 presents the algorithm 

describing the process of how to generate the large sequences 

LL[p] for all levels (p =1, 2, …, max_level).

FIGURE 3 ALGORITHM MLSEQ_T2L1 

This algorithm consists of two parts: (a) generating large 

itemsets, and (b) generating large sequences based on the 

identified large itemsets. During this process, some 

intermediate tables will also be derived. 

At any level p, large k-itemsets (k=1, 2, …, n) L[p] is 

derived from T[p] by invoking get_large_itemset(T[p], 

p) function (see Statement (1) and (3) in Fig.3). The filtered 

customer-sequence table T[p+1] can be derived by invoking 

get_filtered_table (T[p], L[p, 1]) function, which 

uses L[p, 1] as a filter to filter any small items from  customer-

sequences and to remove the sequences that contain only 

small items from T[p] (see Statement (2)).  

In Statement (4), an intermediate table T’ at level p is 

generated from the transformation from the filtered table 

T[p+1]. This intermediate table will be used to derive large 

sequences. 

Large 1-sequences at any level LL[p, 1] can be generated 

based on Statement (5) while large k-sequences (k>1) at level 

p are derived in two steps (see Statement (6) and its Sub-

statements (6.1)- (6.6)): 

(a) The candidates of k-sequences are generated from LL[p,

k-1] by invoking get_candidate_set (LL[p, k-1])

function. The function takes LL[p, k-1] as a parameter and 

returns a superset of the set of all large k-sequences at level p,

CL[p, k].   

(b) For each customer-sequence t in T’, increment the 

support count of S CL[p, k] if S is contained in t. Then 

LL[p, k] can be derived from those sequences in CL[p, k]

whose support is not less than minsup[p].

Finally, the large sequences at any level p, LL[p], is the 

union of LL[p, k] for all k (see Statement (7)). 

This algorithm uses several functions, 

get_large_itemset(), get_filtered_table(),

transform_table(), and get_candidate_set(). We 

will give details for one of the functions, 

get_large_itemset (), in Fig. 4 (the algorithms for other 
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functions can be derived based on the corresponding 

description presented in Subsection A): 

FIGURE 4 get_large_itemset() FUNCTION 

The apriori_gen() function used in the function was 

borrowed from [8]. This functions takes L[p, k-1] as an 

parameter and returns a superset of the set of all large k-

itemsets.

IV. SOME VARIANT ALGORITHMS AND PERFORMANCE 

COMPARISON

Based on the algorithm presented in preceding section, we 

can derive several variant algorithms by exploring different 

ways to share the data structures and intermediate results. The 

performance of the algorithms will be discussed based on the 

results from an experiment. 

A. Algorithm MLSeq_TML1 

The major difference between MLSeq_T2L1 and 

MLSeq_TML1 is that MLSeq_TML1 only derive the filtered 

table T[2] at level 1 rather than generating all the filtered 

tables T[p+1] at any other level p (p>1) as did MLSeq_T2L1.

T[2] is repeatedly used as a filtered table for all the processing 

at lower levels. The algorithm for MLSeq_TML1 can be 

obtained by slightly modifying the MLSeq_T2L1 algorithm; In 

Fig. 3 Statement (2) will be removed and the following 

statement will be inserted between the original Statements (1) 

and (2).  
T[2] = get_filtered_table (T[1], L[1, 1]);  

Statement (3) and (4) will be replaced by the following new 

statements:
(3) if (p>1) then  

 (3.1) L[p] = get_large_itemset (T[2], p); 

(4) T’ = transform_table (T[2]); 

This algorithm only generates filtered time T[2] and saves 

the effort of generating all the other filtered tables. However, 

as the T[2] is only filtered once the processing effort at lower 

level p (p>1) may be larger than using the filtered table T[p].

B. Algorithm  MLSeq_T1LA 

MLSeq_T1LA uses only T[1] and no other filtered table is 

generated. All large 1-itemsets L[p, 1] for every level p can be 

generated in parallel in one scan of T[1]. Then each item in 

L[p, 1] (p>1) whose parent is not large in the higher level 

large 1-itemsets, or whose support is lower than minsup[p], 

will be removed from L[p, 1]. Large k-itemsets L[p, k] (k>1)

for each level is generated in parallel by scanning T[1]. After 

all large itemsets at each level have been identified, T[1] is 

transformed into T’ according to L[p]. All large sequences 

LL[p] can then be ientified by scanning T’ at every level p.

MLSeq_T1LA generates large k-itemsets for each level in 

parallel, which save the effort for repeat scans of T[1].  

However, it has to spend time on examining small itemsets 

and small items in T[1].   

C. Performance Comparison 

An experiment was conducted to assess the performance of 

the proposed three algorithms. Two customer transaction 

datasets coded by a pre-defined concept hierarchy were 

generated by using the method specified in [9] [10]. The 

relevant parameters for the experiment are listed below:   

|C|=Average number of transactions per customer 

|T|=Average number of items per transaction 

|S|=Average length of maximal potentially large sequences 

|I|=Average size of itemsets in maximal potentially large 

sequences 

We changed the value of the average items per transaction 

to generate two datasets and defined two different minimum 

support thresholds for the two datasets. The three algorithms 

were applied to the datasets and the experiment run on a 

personal computer (Pentium-II 866MHz, 64MB). The 

performances of the three algorithms based on the two 

datasets are compared in Figure 5 and Figure 6 in terms of the 

relative time spent for the execution of the algorithms. Both 

figures show that the execution times increase almost linearly 

along with the customer transaction number increased from 

25,000 to 200,000. As we set different values for the average 

number of items per transaction and different minimum 

support thresholds, we will discuss how these two parameters 

influence the corresponding performances of the algorithms. 

In Figure 5 (|C| = 10, |T|=5, |S|= 4, |I|= 1.25, 

minsup[p]=0.25), MLSeq_T1LA achieved the best 

performance, while MLSeq_T2L1 had the worst performance. 

In this dataset, as the average number of items per transaction 

|T| and the minimum support threshold are relatively small, 

not many items have been filtered out at each level. Therefore, 

the effort devoted to generating the filtered tables is not 

compensated by the reduced effort for processing the filtered 

tables at lower levels because the filtered tables are mot 

significantly smaller than T[1] at all. As MLSeq_T1LA did not 

generate any filtered table and used the T[1] for all the levels, 

it saved the time for generating the filtered tables and 

completed the task in the shortest time. MLSeq_T2L1

generated filtered tables for all levels. Thus, its performance is 

worse than MLSeq_TML1 who only generated one filtered 

table at level 1. 
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FIGURE 5 PERFORMANCE COMPARISON 

In Figure 6 (|C| = 10, |T| = 10, |S|= 4, |I|= 1.25, 

minsup[p]=0.5), MLSeq_TML1 achieved the best 

performance, while MLSeq_T1LA has the worst performance. 

In this dataset, as the average number of items per transaction 

|T| and the minimum support threshold are larger than the first 

dataset, a relatively large amount of items may be filtered out 

at each level. Therefore, the effort devoted to generating the 

filtered tables is compensated by the reduced effort for 

processing the much smaller filtered tables at lower levels. As 

MLSeq_T1LA did not generate any filtered table and used the 

T[1] for all level’s processing and T[1] is much larger than the 

filtered tables, it took the longest time to complete the task.. 

The performances of MLSeq_T2L1 and MLSeq_TML1 are 

very similar. This may indicate that the effect of the filtration 

at level 1 is more significant in comparison with the filtration 

at other levels. As MLSeq_T2L1 spent some time to generate 

filtered table for all the levels, its performance is slightly 

worse than that of MLSeq_TML1.

FIGURE 6 PERFORMANCE COMPARISON 

Based on the above discussion, some suggestions may be 

given to the selection of appropriate algorithm for a specific 

dataset:

• If minimal support for each level is small, 

MLSeq_T1LA may be a good choice. As the number of 

filtered items is relatively small and the effort for 

generating the filtered tables is saved, using T[1] for all 

levels may be more efficient than using the filtered 

tables. 

• MLSeq_TML1 suits best for the datasets where a large 

number of items can be filtered at level 1. It is a good 

idea to check how many items have been filtered out at 

level 1 and then decide which algorithm should be 

selected. If the number is relatively large, 

MLSeq_TML1 is a good choice. Otherwise, further 

filtrations may be required for the lower levels, i.e. 

MLSeq_T2L1 may be better. 

• When using MLSeq_T2L1, especially in the case that 

the value of minimum support for higher levels are 

larger than that at lower levels, some items that should 

be retained at lower level may already be filtered out at 

higher level. Thus, some associate pattern at lower 

level may be missed. 

• If the values of minimum support increase from high 

level to low level, MLSeq_T2L1 is a good choice. As a 

number of items will be filtered out at each level, the 

effort used for processing the filtered table at each level 

will be reduced. 

V. CONCLUSIONS

Sequential patterns mined from large customer transaction 

databases can discover implicit and potential useful 

knowledge. Multiple-level sequential patterns provide this 

kind of knowledge at different concept levels, from general 

levels to more specific levels. Therefore multiple-level 

sequential patterns are more helpful than the single level 

sequential patterns for the decision-makers in sale 

management. In this study, we characterized the problem of 

mining multiple-level sequential patterns by formally defining 

a set of concepts used in the mining process and developed 

three algorithms to solve the problem. 

An experiment was conducted to assess the performance of 

the proposed three algorithms. Two customer transaction 

datasets coded by a pre-defined concept hierarchy were 

generated and applied to the algorithms. The performances of 

the algorithms were measured by the relative time spent on the 

mining tasks based on the two datasets. The experimental 

results showed that the performance depends on the 

characteristics of the datasets and the pre-defined threshold of 

minimal support for each level of the concept hierarchy. Based 

on the experimental results, some suggestions were given for 

how to select appropriate algorithm for a certain dataset. 

Applying the algorithms to large, real customer transaction 

databases to further test the algorithms may be required in 

future. 
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