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Abstract— The paper describes a self supervised parallel self
organizing neural network (PSONN) architecture for true color image
segmentation. The proposed architecture is a parallel extension of the
standard single self organizing neural network architecture (SONN)
and comprises an input (source) layer of image information, three
single self organizing neural network architectures for segmentation
of the different primary color components in a color image scene
and one final output (sink) layer for fusion of the segmented color
component images. Responses to the different shades of color com-
ponents are induced in each of the three single network architectures
(meant for component level processing) by applying a multilevel
version of the characteristic activation function, which maps the input
color information into different shades of color components, thereby
yielding a processed component color image segmented on the basis
of the different shades of component colors. The number of target
classes in the segmented image corresponds to the number of levels
in the multilevel activation function. Since the multilevel version of
the activation function exhibits several subnormal responses to the
input color image scene information, the system errors of the three
component network architectures are computed from some subnormal
linear index of fuzziness of the component color image scenes at the
individual level. Several multilevel activation functions are employed
for segmentation of the input color image scene using the proposed
network architecture. Results of the application of the multilevel
activation functions to the PSONN architecture are reported on three
real life true color images. The results are substantiated empirically
with the correlation coefficients between the segmented images and
the original images.

Keywords— Color image segmentation, fuzzy set theory, multilevel
activation functions, parallel self organizing neural network

I. INTRODUCTION

Segmentation and classifi cation of images are challenging
propositions in the image processing community owing to the
variety and complexity associated therein. Image segmentation
techniques find wide use in the extraction and localization of
regions of interest for faithful understanding and analysis of
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an image scene. Image segmentation techniques are broadly
categorized into two categories [1][2], viz. edge detection
based [3], which resort to detection of closed regions in an
image scene, and pixel classifi cation based [4][5][6], which
use pixel intensity/co-ordinate information for clustering the
image data. Several classical approaches including stochastic
model based techniques [7][8][9][10][11], morphological wa-
tershed based region growing techniques [12], energy diffusion
techniques [13] and graph partitioning techniques [14] are
reported in the literature.

The problems of image segmentation become more uncertain
and severe when it comes to color image segmentation [15].
This is due to the diversity in the color gamut. A color
image entails information either in the three primary color
components, viz., red, green and blue or their combinations
pure/binary color image) or represents information in all pos-
sible combinations of the three primary color components (true
color image). In a pure/binary color image, the three primary
color components and their combinations appear either with
maximum intensity value (255) or with minimum intensity
value (0). All possible combinations of intensity values from
0 to 255 for each of the primary color components and
their admixtures, form the color spectrum of a true color
image. Thus, processing and understanding of a color image
scene amount to processing of the primary color component
information in a pure color image and processing of all the
combinations of these color components in a true color image.
A score of works for extraction and indexing of color images
can be found in the literature [16][17][18]. Typical color image
processing applications include content-based image retrieval
systems, image mining applications, traffi ¢ sign recognition
systems etc [19][20][21][22][23][24][25][26].

Most of these approaches deal with pure color images and
assume homogeneity in the color content of the image scene,
either explicitly or implicitly. However, real images exhibit a
wide range of heterogeneity in the color content. This diversity
of color information induces varying degrees of uncertainty in
the information content. The vagueness in image information
arising out of the admixtures of the color components has
often been dealt with the soft computing paradigm. In [27]
Chen et al. applied fuzzy set theory for proper analysis of
uncertainty and vagueness in color image information. Color
image segmentation techniques involving fuzzy set theory and
fuzzy logic are also available in the literature [28][29][30][31].
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Neural network architectures have also been employed to deal
with this task of color image processing. Hart et al. used a
four-layer fuzzy-neural algorithm for identifi cation of color
flag images from natural scenes [32]. They resorted to fuzzy
inference engines for segmenting color flag images in HSV
color system. A neural network, trained with the segmented
color values, was fi nally used to infer about the color value of
the pixels in the test flag images.

Extraction of graded color objects by segmenting a true color
image scene has been a major focus of attention in the
computer vision community. Such processing tasks involve
application of object extraction algorithms preceded by seg-
mentation of the true color images based on object centric
features. A single multilayer self organizing neural network
(MLSONN) [33] is efficient in extracting binary objects from
a noisy binary color image scene. A parallel version of such a
network architecture [34] comprising three component single
MLSONN networks (for component level processing) can be
used for extracting pure color objects from a noisy pure color
image scene. Such an architecture when fed with a pure
color noisy image scene, produces extracted pure color noise-
free homogeneous object regions in the output layer of the
architecture. The computational overhead involved in handling
the enormous amount of data arising out of the processing of
the individual color components of a color image scene has
been reduced with the introduction of distributed architectures
as well [35].

A parallel version of the self organizing neural network archi-
tecture (PSONN) [34], in the present form, is unable to extract
graded color objects from a true color image scene. This
is due to the fact each of the component single MLSONNSs
employs the standard bilevel sigmoidal activation function
as the characteristic activation function. Since the bilevel
sigmoidal activation function produces only binary responses,
these component MLSONNSs can generate only binary color
outputs. So, either an architectural or a functional extension
to the existing PSONN architecture is required for producing
multiple color responses.

In this article, a functional modifi cation to the PSONN neural
network architecture, comprising a source network layer for
accepting inputs from the external world, three single three-
layer self organizing neural networks for color component
level processing and a sink network layer for producing fused
component outputs, is proposed. The proposed functional
amendment is achieved by introducing a multilevel version
of the characteristic activation functions of the three-layer
self organizing neural network architectures. A multilevel
activation, as the name suggests, is capable of producing
multilevel/multipolar outputs corresponding to the inputs. This
multipolar feature is incorporated by replicating the functional
form of the activation function to form a series of transition
lobes, which would respond to the graded and varied intensity
inputs to the function. To be precise, varying degrees of
intensity level corresponding to varying color values of the
inputs, would be handled by the different lobes of the function.
The resultant function, thereby, would yield multiple color
shades corresponding to the gradation in the color values
and induce multiscaling capability to the different component

three-layer self organizing neural network architectures. Sev-
eral forms of the multilevel activation functions depending
on the standard functional form and the number of target
classes in the output image scene, and effi cient in extracting
gray scale objects from a multiscale image scene, can be
designed [36][37][38][39][40][41][42]. In the present work,
the application of the multilevel activation functions in effect-
ing graded color object extraction through segmentation of a
true color image scene by a parallel self supervised three-
layer self organizing neural network (PSONN) architecture,
has been presented with three different multilevel activation
functions, viz. a multilevel sigmoidal (MUSIG) activation
function, a multilevel tan hyperbolic (MUTANH) activation
and a multilevel tan hyperbolic 15 (MUTANH15) activation.
Since the individual component three-layer self organizing
neural network architectures operate in self supervision on
subnormal fuzzy subsets of color intensity levels, the system
errors have been computed using the subnormal linear indices
of fuzziness [42] in the color image scene. Results of the
proposed segmentation approach are demonstrated using three
real life true color image scenes. The standard correlation
coeffi cients between the segmented and the original true color
image scenes are used as a fi gure of merit of the proposed
system.

The paper is organized as follows. Section Il introduces the
basic concepts about fuzzy set theory and fuzzy measures
relevant to the task of operation of the PSONN architec-
ture. Section Il discusses the dynamics and operation of
the PSONN architecture. The different forms of multilevel
activation functions used in this article are detailed in Section
IV. Section V gives an overview of the proposed true color
image segmentation procedure. The results of segmentation of
color images are shown in Section VI. Section VII concludes
the paper with future directions of research.

Il. MATHEMATICAL PREREQUISITES

In this section, a brief overview of fuzzy set theory and the
linear index of fuzziness is presented.

A. Fuzzy set theoretic concepts

Fuzzy set theory was introduced by L .A. Zadeh to explain
uncertainty in real life situations. A fuzzy set A comprises
a collection of elements z;,i = 1,2,3,...,n (wWhere n is the
number of elements), each of which appearing in the set with
a certain degree of membership, pa(z;) [43][44][45], defined
by a membership function p 4 (x;). The support of a fuzzy set
comprising n such elements is given by

S(A) = {zi|z; € X and pa(z;) >0,i=1,2,3,..,n} (1)

where X is the universe of discourse. The membership value
of the elements, defi ned by pa (), assumes all possible values
€ [0,1]. The closer the membership value of an element is to
unity, the greater is the degree of containment of the element
in the fuzzy set A, while a lower membership value implies a
weaker degree of containment of the element in the set. The
maximum membership value of all the elements of a fuzzy set
A is referred to as the height (hgt4) of the fuzzy set [45]. If
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hgt 4=1, then the fuzzy set A is known as a normal fuzzy set,
otherwise, it is a subnormal fuzzy set.

A subnormal fuzzy set A, can be normalized to its normalized
equivalent using the normalization operation defi ned as

HA,
2
hata. @)

where p 4, are the membership values of the elements of the
subnormal fuzzy set A,. The corresponding denormalization
operation is given by

Norma, =

DeNorma, = hgta, x Norma, 3)

In general, for a subnormal fuzzy set A; with support
[L,U],0 < L < 1, the normalization and the denormalization
operations take the forms as

_ba L - L
N 4
orma, = (4)
DeNorma, =L+ (U— L)Norma, (5)

B. Measures of a fuzzy set

A fuzzy measure is an indicative measure of the fuzziness
of a fuzzy set. It determines the relationship between a fuzzy
set and its nearest crisp/ordinary counterpart. The index of
fuzziness v(A) [33], of a fuzzy set A having n elements is a
distance metric between the set A and its nearest ordinary set
A, defined as

[0 ifpa(z) <05
pa(w) = { 1 if Zj(i) >0.5 ©)

The linear index of fuzziness, v;(A), of a fuzzy set A is the
Hamming distance version of the index of fuzziness distance
metric. It is given by

= % Z [min{pa(z;),1 — pa(z;)}] @)

In the subnormal domain, the subnormal linear index of
fuzziness for a subnormal fuzzy set A, is defined as

n

Z [min{pa, (z;)

z=1

—L,U-pa,(z:)}] (8)

I11. PARALLEL SELF ORGANIZING NEURAL NETWORK
(PSONN) ARCHITECTURE

A single three-layer self organizing neural network [33] is a
self supervised neural network architecture, which comprises
an input layer, a hidden layer and an output layer of neurons.
The input layer neurons accept inputs from the external world
and propagate the inputs to the hidden layer through some
input-hidden layer interconnection weights (“’mp hid, ). The
hidden layer neurons similarly process the propagated infor-
mation and pass it to the output layer neurons via the hidden-
output layer interconnection weights (wpjq, out) Both the
input-hidden layer and hidden-output layer interconnections
follow a second order neighborhood based interconnection
topology. If Iinpi are the inputs to each of the input layer

neurons, the net information, Ihld propagated to each of the
hidden layer neurons is given by

Thid, = _ Tinp, inp, hid, ©)

where, the summation is over the i neighboring input layer
neurons. The hidden layer neurons process the input informa-
tion and the processed information, Oyjq at the 4" neuron,
propagated to the output layer neurons is glven by

Ohid, = fsig(Zhid,) (10)
where, fgjq is the standard characteristic bilevel sigmoidal
activation function (Fig. 1) given by

1

Isig = 132w

The parameters, A and 6, control the shape and slope of the

(11

Lo

fix)

Fig. 1. Bilevel sigmoidal activation function

function.
Keeping in mind the neighborhood topology based intercon-
nection, the inputs to the kth output layer neurons, Ioyt, is

given by
Tout; = ) Ohid, “hid,out, (12)

The processed outputs at the kth output layer neurons are given
by
Oout, = fsig(Tout,.) (13)

where, fgjq is the standard characteristic bilevel sigmoidal
activation function.

Since the network operates in a self supervised mode and there
are no target outputs to compare with, the system error at
the output layer neurons are evaluated from the linear indices
of fuzziness in the outputs obtained therein. These errors are
used to adjust both the hidden-output layer and input-hidden
layer weights using the standard backpropagation algorithm.
After the weights are adjusted, the outputs obtained at the
output layer of the network are fed back to the input layer
via the output-input layer neuron-to-neuron interconnection
weights for further processing. This processing of the initial
input information is carried on until the network system errors
fall below some tolerable limit, whereby, segmented outputs
are obtained.

A parallel version of the network architecture (PSONN) (Fig.
2), comprising three independent single three-layer self or-
ganizing neural network architectures (for component level
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Source Layer

Ouiput Layer

Fig. 2. PSONN architecture comprising a source layer, three independent three-layer self organizing neural network architectures in parallel and a sink layer

processing) apart from a source layer for inputs to the network
and a sink layer for generating the final network outputs,
can be similarly used for extracting pure color/binary color
objects from a pure color image scene [34]. The source layer
distributes the primary color component information of the
pure color image scene to the three parallel self organizing
neural network architectures. Processing at the component
level takes place at these three self organizing neural network
architectures. Since the three parallel self organizing neural
network architectures operate in a self supervised mode on
multiple shades of color component information, the system
errors are computed from the linear indices of fuzziness of
these subnormal color component information obtained at the
respective output layers. These subnormal linear indices of
fuzziness are obtained by normalizing the subnormal color
component information into their equivalent normalized values
so as to determine their Hamming distances with the nearest
ordinary sets. These distance metrics are then denormalized
back to the subnormal domain to result in the system errors.
These system errors are used to adjust the respective interlayer
interconnection weights using the standard backpropagation
algorithm. This method of self supervision is carried on until
the system errors at the output layers of the three independent
three-layer self organizing neural networks fall below some
tolerable limits. At this point, the output layer outputs of the
three independent three-layer self organizing neural networks
signify segmented color component outputs. These segmented
component outputs are finally fused at the sink layer of the
PSONN network architecture to produce the fi nal segmented
true color output image.

The main drawback of this network architecture is its inability
to handle multiscale inputs, i.e. inputs which manifest different
heterogeneous shades of color intensity levels. This is solely
due to the nature of processing employed at the neurons
of each of the network layers. The use of the standard
bilevel sigmoidal activation function, which can only generate
binary/bilevel outputs, restricts the applicability of this archi-
tecture to the graded color domain.

IV. MULTILEVEL ACTIVATION FUNCTIONS

Multicolor responses can be induced in a parallel self orga-
nizing neural network (PSONN) architecture by introducing a
functional modifi cation of the individual processing neurons
of the different layers of the three-layer self organizing neural
networks. This can be achieved by adapting a multilevel
activation function (capable of producing multiscale outputs)
as the characteristic activation function for each of the three
independent self organizing neural networks, working in paral-
lel. A multilevel activation function is a functional extension
of the generalized activation functions in existence. Several
multilevel forms pertaining to several generalized activation
functions can be designed. This section discusses the basic
design mechanism of the multilevel versions of the standard
sigmoidal (MUSIG) activation function, the tan hyperbolic
(MUTANH) activation function and the tan hyperbolic 15
(MUTANH15) activation function.
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A. MUSIG activation function
The generalized sigmoidal activation function is given by
1
o+ e~ Mz=0)
where, a controls the class responses, 6 is referred to as
the threshold/bias value and X is the steepness factor of the

function. The multilevel form of the sigmoidal function is
derived from this generalized form as

Y= fsig(m) = (14)

fMusig(®) < fsig(x) +(v- 1)fsig(c): (y=Dec<wz <(1’)E’:)3
where, v represents the color index and 1 < v < K, the
number of color scale objects or classes. Here, ¢ represents the
color scale contribution (assumed to be equal for all classes).
Multilevel sigmoidal (MUSIG) activation functions for three
and five classes (K) are depicted in Fig. 3 and 4.

The multilevel sigmoidal activation function, exhibiting dif-

10

A=)

Fig. 3. Multilevel sigmoidal activation function for K=3

10

S®)

0.0

_
x

Fig. 4. Multilevel sigmoidal activation function for K=5

ferent transition lobes corresponding to the different number
of color scales, is thus capable of generating multilevel outputs
in response to the input signals by means of the appropriate
transitions from one class boundary to the next. In addition, for
higher number of classes, higher number of responses can be
obtained by varying the « factor. The asymptotic nature of the
function can be controlled by the A\ parameter of the function.
Higher values of A facilitate the rate at which the different
transition lobes of the function reach the class boundaries.
The function, however, tends to flatten at lower values of \.
However, the functions always exhibit multipolar responses.
All the three attributes of the function i.e. the slope, the
threshold value and the class response pertaining to a class can

be varied by changing the values of the X and the o parameters
for that particular class. Moreover, the resulting functions are
continuous and differentiable. This is due to the fact that the
different transition lobes of the functions preserve continuity
at the transition points.

B. MUTANH activation function

Since the input-hidden layer wights and the hidden-output
layer weights of the three independent self organizing neural
networks change during the self supervision process, it is
required that the activations at the different layer neurons
should have a mean of zero and a standard deviation of
one. The standard sigmoidal activation function has a small
asymmetric range from 0 to 1 and has a maximum derivative
is 0.25. Thus, the function is not much sensitive to changes
in weights effected during the standard backpropagation al-
gorithm and the range of the function does not ensure that
the standard deviation would not exceed one. The MUSIG
activation function, derived from the generalized form of the
sigmoidal activation function also suffers from this limitation.
The tan hyperbolic activation function (Fig. 5) is a better
alternative to keep things reasonably well-conditioned. It is
given by

et — e~ T

It has a greater range than the sigmoidal activation function.

1.0

f=)

Fig. 5. Bilevel tan hyperbolic activation function

In terms of real numbers, it has a range (-1 to +1) equivalent to
double that of the sigmoidal function. This range implies that
the standard deviation cannot exceed 1, while its symmetry
about zero means that the mean will typically be relatively
small. Furthermore, its maximum derivative is also 1, so that
backpropagated errors will be neither magnifi ed nor attenuated
more than necessary. Thus, the tan hyperbolic activation func-
tion would have a greater sensitivity to changes in weights.
The generalized form of the tan hyperbolic activation function
is given by
e’ —e ®

Y = frann(z) = @ tanh(z) = e p— 17
where, a controls the class responses. The multilevel version
of the tan hyperbolic function is derived from the generalized
form using a recurrence relation similar to equation (15).
Multilevel tan hyperbolic (MUTANH) activation functions for
three and five classes (K) are depicted in Fig. 6 and 7.
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f=

Fig. 6. Multilevel tan hyperbolic (MUTANH) activation function for K=3

10

ity

-1.0
x

Fig. 7. Multilevel tan hyperbolic (MUTANH) activation function for K=5

C. MUTANH15 activation function

The tan hyperbolic 15 activation function is similar to the
tan hyperbolic activation function in terms of the functional
form. When used as an activation function of a neural network,
it generally increases the rate of learning of the network and
speeds up the rate of convergence of the learning procedure.
The generalized form of the tan hyperbolic 15 activation
function is given by

61.51 _ e—l.5z

¥ = franh15(¢) = a tanh(1.52) = am (18)
The presence of the weightage term of 1.5 ensures that the
function reaches its extrema faster. The multilevel version of
the tan hyperbolic 15 function can be generated using relations
similar to equation (15).

V. PROPOSED METHODOLOGY

The proposed approach of true color image scene segmenta-
tion by a PSONN architecture assisted by multilevel activation
functions has been carried out in fi ve phases. The flow diagram
is shown in Fig. 8. The different phases are discussed in this
section.

A. Designing of MUSIG, MUTANH and MUTANH15 activa-
tion functions

The most important part of the true color image segmen-
tation approach lies in inducing multicolor responses into the
three independent self organizing neural networks (SONNS).
This is achieved by designing appropriate multilevel versions
of the sigmoidal, the tan hyperbolic and the tan hyperbolic 15
activation functions from their respective generalized forms.
The number of transition lobes of each of the multilevel

‘ Designing of MUSIG, MUT ANH and ‘

MUT AINHIS activation functions

|

Input of true color image scene to the
source layer of the PSONN archiiecture

|

Di; ion of the color comp
images to the three independent SONNs

l

Segmentation of component color image
scenes hy the independent SONNs

!

Fusion of segmenied component outputs
inio a true color image scene at the sink
layer of the PSONN architecture

Fig. 8. Flow diagram of the proposed approach

activation functions to be designed, depends on the number
of target classes into which the input true color image scene
is to be segmented. Assuming equal class responses from
contributing classes in the input true color image scene, four
different multilevel forms (with number of target classes being
3, 5, 7 and 9), for each of the sigmoidal, the tan hyperbolic
and the tan hyperbolic 15 activation functions are designed
using equation (15). The resultant MUSIG, MUTANH and
MUTANH15 functions are used by the processing units of
each layer of the three independent three-layer self organizing
neural networks (SONNs) for component level segmentation
of the input true color image scene.

B. Input of true color image scene to the source layer of the
PSONN architecture

After the multilevel activation functions have been designed
and the neurons of the SONNSs are activated, the true color
image scene to be segmented, is fed as an input to the source
layer of the PSONN architecture. The input image pixel true
color intensities are assigned to each of the neurons of the
source layer for this purpose.

C. Digtribution of the color component images to the three
independent SONNs

The individual primary color component information are
extracted from the input true color image scene and passed on
to the three independent three-layer component SONNS. Thus,
one SONN accepts the red component, another SONN accepts
the green component and the remaining SONN accepts blue
component information at their respective input layers through
the fixed interconnections with the source layer.

D. Segmentation of component color image scenes by the
independent SONNs

The independent SONNs segments the color component
information fed to them from the source layer, into different
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number of target classes, depending on the number of transi-
tion lobes of the multilevel activation functions by means of
self supervision. The system errors for each of the SONNs
are evaluated at the corresponding output layers based on the
subnormal linear indices of fuzziness of the outputs obtained.
These errors are used to adjust the interconnection weights
between the different layers of the corresponding SONN
independently. This self supervision procedure finally results
in segmented color component image scenes at the respective
output layers of the independent SONNSs.

E. Fusion of segmented component outputs into a true color
image scene at the sink layer of the PSONN architecture

The segmented outputs obtained at the three output layers
of the three independent three-layer SONNSs after stabilization
of the SONN architectures, are fused at the sink layer of
the PSONN architecture to obtain the segmented true color
image scene, the number of segments obviously equaling the
number of transition lobes of the designed multilevel activation
functions used during component level segmentation.

VI. RESULTS

The application of the proposed true color image seg-
mentation approach using multilevel activation functions and
a PSONN architecture is demonstrated with a Lena image
(Fig. 9a), an Aish image (Fig. 10a) and a cube image (Fig.
11a). Segmentation has been carried out with 3, 5, 7 and 9
number of target classes. The results of segmentation with a
MUSIG activation function are shown in Fig. 9(b-¢e), 10(b-
e) and 11(b-e) for the three images respectively. The cor-
responding segmented images with the MUTANH and the
MUTANH15 activation functions are shown in Fig. 9(f-i),
10(f-i), 11(f-i) and Fig. 9(j-m), 10(j-m), 11(j-m) respectively.
The standard correlation coeffi cients between the original and
the segmented images for different number of target classes
(K) with MUSIG, MUTANH and MUTANH15 activation
functions are reported in Tables I, Il and 111 respectively.

TABLE |
STANDARD CORRELATION COEFFICIENTS OBTAINED WITH MUSIG

K | Lenaimage | Aish image | Cube image
3 0.768755 0.901498 0.935379
5 0.873991 0.950659 0.978707
7 0.897064 0.960225 0.982065
9 0.908066 0.971536 0.984580
TABLE 11
STANDARD CORRELATION COEFFICIENTS OBTAINED WITH MUTANH
K | Lenaimage | Aish image | Cube image
3 0.770469 0.899696 0.936369
5 0.883519 0.956226 0.977580
7 0.897586 0.960606 0.981737
9 0.918973 0.961373 0.982133

From the tables it is evident that the performances of all the
multilevel activation functions as regards to the segmentation
of the Lena image are comparable. However, the MUSIG

TABLE 111
STANDARD CORRELATION COEFFICIENTS OBTAINED WITH MUTANH15
K | Lenaimage | Aish image | Cube image
3 0.774379 0.899705 0.937297
5 0.883439 0.956260 0.980037
7 0.908828 0.960304 0.981721
9 0.937511 0.969658 0.984662

and the MUTANH15 activation functions outperform the MU-
TANH counterpart during the segmentation of the Aish and
the cube image for higher number of classes. Fig. 12, 13 and
14 show the variation of the standard correlation coeffi cient
with the number of classes for the Lena, Aish and the cube
images respectively. This is mainly due to the presence of the
darker intensity regions at the background of these images
which is absent in the Lena image. Thus it can be inferred
that the MUTANH activation function is not so sensitive to
fi ner variations in the darker part of the true color spectrum.
These variations are aptly taken care of by the MUSIG and
the MUTANH15 activation functions which is reflected by the
higher values of the standard correlation coeffi cients at higher
number of classes.

VIIl. DISCUSSIONS AND CONCLUSION

A parallel neural network architecture for segmentation of

true color images is discussed. The architecture is used to seg-
ment input color information at the component levels by means
of self supervision by three three-layer self organizing neural
networks. The constituent network layers of the three-layer self
organizing neural networks are activated by multilevel activa-
tion functions, thereby exhibiting multicolor responses. The
multilevel forms of a sigmoidal (MUSIG), a tan hyperbolic
(MUTANH) and a tan hyperbolic 15 (MUTANH15) activation
function used by the neurons at the different layers of the
PSONN architecture, are designed based on the number of
target classes of the segmentation procedure. The performance
of the three multilevel activation functions as regards to the
segmentation of true color images are compared by evaluating
the standard correlation coeffi cients between the original true
color images and the segmented outputs.
The evolution of the PSONN architecture is noteworthy from
the implementation point of view. It is clear from the PSONN
architecture that the entire segmentation technique can be
easily extended in the distributed computing domain, thereby
reducing the time complexity of the approach. The authors are
currently engaged in this direction.
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