
International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:3, No:10, 2009

2002

Abstract—In order to maximize efficiency of an information

management platform and to assist in decision making, the collection,
storage and analysis of performance-relevant data has become of
fundamental importance. This paper addresses the merits and
drawbacks provided by the OLAP paradigm for efficiently navigating
large volumes of performance measurement data hierarchically. The
system managers or database administrators navigate through
adequately (re)structured measurement data aiming to detect
performance bottlenecks, identify causes for performance problems
or assessing the impact of configuration changes on the system and
its representative metrics. Of particular importance is finding the root
cause of an imminent problem, threatening availability and
performance of an information system. Leveraging OLAP techniques,
in contrast to traditional static reporting, this is supposed to be
accomplished within moderate amount of time and little processing
complexity. It is shown how OLAP techniques can help improve
understandability and manageability of measurement data and, hence,
improve the whole Performance Analysis process.

Keywords—Data Warehousing, OLAP, Multidimensional
Navigation, Performance Diagnosis, Performance Management,
Performance Tuning.

I. INTRODUCTION

ATABASES are growing rapidly in scale and complexity.
High performance, availability and further service level

agreements need to be satisfied under any circumstances to
please customers. In order to tune the database management
systems (DBMSs) within their complex environments,
maximize productivity and efficiency and minimize the total
cost of ownership of an information management platform,
Performance Management, that is the collection, storage and
analysis of performance-relevant data for monitoring, capacity
planning and tuning purposes, has become of fundamental
importance [1][2].

Performance management of complex database information
systems can be regarded as part-science and part-art. In
practice, proactive and reactive strategies ought to be
developed and complement one another in order to ensure
acceptable end user experience. Performance monitoring and
analysis tools aim high at assisting database and system
administrators in coping with these tedious tasks.

However, reporting against and using such tools often
reveals an overwhelming flood of data, making it almost
impossible for analysts and even experienced database
administrators to separate the wheat from the chaff.

David Wiese is with the University of Jena, 07743 Jena, Germany (phone:
+49-3641-9-46367; fax: +49-3641-9-46302; e-mail: david.wiese@uni-
jena.de).

Consequentially, it seems more than warrantable to yield a
more intuitive and flexible source of information on which to
base performance-analytic decision-making.

Facing the associated problems and challenges, this paper
discusses the potentials of widely adopted multidimensional
concepts to represent hierarchical layers of data and allow
explorative, interactive and intuitive problem analyses. Such a
multidimensional model can reduce overhead and diminish the
learning curve involved in understanding performance traces
and their correspondence to performance reports. Decision
making will be accelerated and adequate reaction to changes
can be sped up. But, most importantly, one of the most
valuable assets - information - will be leveraged.

The rest of this paper is organized as follows. Section 2
starts with a general introduction into performance
management as well as common performance data collection
and storage techniques. We then present the basic principles of
OLAP and the multidimensional data model in Section 3, and
discuss the application of multidimensional analysis, followed
along with an exemplary scenario that shows the principles of
the multidimensional methodology in Section 4. Section 5
critically examines merits and drawbacks of the OLAP
paradigm in Performance Management. Lastly, we conclude
with a compulsory summary and an outlook of ongoing and
future work.

II. PERFORMANCE MANAGEMENT

Information systems and database usage scenarios range
from stand-alone systems to complex combinations of database
servers and clients running on multiple platforms. In order to
meet business requirements the achievement of adequate
performance is critical to all these environments.

In order to achieve at least sufficient performance, pursuing
a customized, proactive and reactive performance management
strategy becomes vitally important. Performance management
involves the collection, storage and management of
measurement data in order to enable resource monitoring,
tuning and optimization, early problem diagnosis and repair, as
well as capacity planning and workload forecasting (see Figure
1). Instead of detecting problems when they occur, or, worse,
have already begun degrading system performance, the
proactive effort targets at avoiding problems in the first place.
Usually, this is done by capacity planning of IT resources,
adopting best practices in architecture and application design,
as well as performing regular monitoring of central
performance indicators and storing the collected data in a
long-term repository for subsequent analyses and predictions.

Multidimensional Performance Management
David Wiese

D

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:3, No:10, 2009

2003

However, not all adverse effects on the system can be avoided
beforehand. Hence, a sophisticated reactive methodology for
localizing the problem, pinpointing when and where it occurs,
who is affected and what resources are involved, determining
the root-cause(s) and finally fixing the situation is needed as
well.

Fig. 1: Performance Management Overview

Commonly monitoring can be categorized as subsumed
below [3]:

1. Routine monitoring
Involves the regular collection of information about the
workload and the stress on the system during periods of
normal and peak activity. This monitoring technique is
an essential routine for both system and database
administrators and typically involves ascertaining
minimums, maximums, average, hit ratios, etc. for key
performance elements (such as transactions, users,
CPU, memory, disk space, and SQL) over days and
weeks with the main purposes to keep components
under supervised control, document how the system and
the database are performing day-to-day and based on
the collected history, identify and isolate potential
problems and perform capacity planning.

2. Event Monitoring
Routine monitoring assures the total control over the
system, most of the time. Nevertheless, unanticipated
problems (delays, deadlocks, increased number of
transactions) might sometimes occur. Event monitoring
involves looking out for specific events in a short
interval of time (short history) that may either identify a
specific problem known to degrade performance or
conceivable problems in the near to immediate future in
order to take quick corrective action to rectify the
problem. In other words, there probably needs to be a
very short delay between information collection and a
corrective response.

3. Alert Monitoring
This type of monitoring is required when end users
discover or suspect a problem, or predefined lower and
upper thresholds for special performance variables are

being exceeded. The database or system administrators
are notified and need to identify the situation's root
cause in order to apply the appropriate action. Unlike
routine and event monitoring, which are planned
occurrences and are designed to have low overheads on
the managed system, alert monitoring is driven by
imminent problem situations and may impose
significant overhead on the managed system. The more
detailed information one collects, the more processing
is necessary in order to collect it.

The next subsections briefly present further goals,
techniques and sources of collecting, as well as storing
different kinds performance data. Collecting and storing
monitoring history is accomplished to gain (quick) access to
and analyze (recent) past-performance data, compare it to
present data, perform strategic and preventive planning and
enable data mining1

A. Performance Data Collection
Performance of the system and its resources is typically

measured using different metrics. Those measurement
variables represent resource allocations and the overall system
state at a specific point in time or over a period of time.

Ideally, there should be a single, global monitor that
supervises all layers in the software stack and provides a
holistic view by continuously extracting useful performance
indicators for the application, network, DBMS, operating
system and hardware (CPU, memory, disk) into a central,
consistent and integrated short- (nearly real time) and long-
term diagnostic performance metric repository. The truth is
that in practice every layer has its own set of proprietary
monitoring and analysis tools which hardly communicate and
do not deliver an acceptable basis for analytical decision
making.

Considering IBM DB2 UDB metrics originate from various
internal sources [4] (these are, among others, the System
Monitor, Explain Facility, DB and DBM configuration
parameters, registry variables, schema definitions, log files,
etc.) as well as from external monitoring facilities (e.g.
operating system and network data, DB2 Performance Expert
[5], IBM Tivoli Monitoring2, etc.) with different locations and
formats.

As in most DBMSs, within DB2, commonly encountered
problems that need proper attention arise from an
inappropriate database, application design, the overall
architecture, bad programming and incorrect use of SQL as
well as insufficient tuning and can be prioritized as follows:

1. Constrained resources (CPU, I/O, memory and network
bandwidth)

1 Extracting valid, useful, previously unknown, and comprehensive
information from data and using it for the automated prediction of trends and
behaviors, as well as the automated discovery of previously unknown
patterns.

2 IBM Tivoli Monitoring, IBM Corporation, http://www.tivoli.com/
products/index/monitor/.

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:3, No:10, 2009

2004

2. Locking contention / conflicts
3. DB shared memory shortages (buffer pools, sort heaps,

application global memory, and catalog and package
caches)

4. Lack of appropriate indexes (sub-optimal access paths)
and inadequate maintaining (runstats and reorgs)

5. Poorly written applications (inefficient database design,
inefficient SQL code)

Despite of the origin and format, metric data typically
belongs to one of the following element types [6]:

1. Counter
Accumulates the number of times a specific event or
activity occurs. Hence, counter values only increase
during monitoring. Some examples of DBMS counters
include deadlocks detected, number of lock escalations,
number of rows read, or number of sort overflows.

2. Gauge
Indicates the current value for an item. Gauge values can
go up and down, depending on database activity. Some
examples of gauges include Locks Held, Total Lock List
Memory in Use, and Connections Involved in Deadlock.

3. Water mark
Indicates the highest (maximum) or lowest (minimum)
value an element has reached since monitoring was
started. Some examples of water marks include
maximum number of concurrent connections or
maximum number of coordinating agents.

4. Information
Provides details of monitoring activities. This can
include items such as database names, partition names,
aliases and path details.

5. Timestamp
Indicates the date and time that an activity took place,
e.g. by providing the number of seconds and
microseconds that have elapsed since January 1, 1970.

6. Time
Returns the number of seconds and microseconds spent
on an activity.

B. Storage and Presentation of Performance Data
Collected measurement data needs to be stored to allow

sophisticated analyses. As conclusions and predictions about
performance, tracking back problems or even correlating
imminent incidences to past events can only be made with
regard to the past, a long-term repository seems more than
warrantable.

Storing performance data can be done in manifold manners.
The expressive capabilities of the implied data model are
crucial for later analysis potentials. Actually, one might argue
that the physical basis of the data is out of relevance, as long a
suitable, intuitive interface to the user, transparently hiding
complexity and structure, exists. However, we presume an
applicable physical model as a basis for analyses, as no
further, complex and time-consuming integrations and
transformations need to be performed at run-time.

An in-depth classification and evaluation of the most
common storage mechanisms like flat files, RDBMS,
spreadsheets, etc. can be found in [7].

Present performance reporting capabilities, delivered either
from monitoring tools or from the RDBMS itself, rather
overwhelm or confuse end-users like administrators and
analysts with a poorly conceived information overload than
supporting in decision making. Furthermore, the rudimentary
SQL analysis capabilities turned out to be unsuitable for more
sophisticated reporting requirements. Manually filtering out
the feasible facts from relational tables becomes exhausting,
time-consuming and error-prone, even for experienced users.

Online Analytical Processing (OLAP) technologies have
gained ground within the last decade in business-oriented
decision support environments and the business community.
Therefore, it seems legitimate to evaluate the merits of
utilizing OLAP techniques for analyses of performance-
relevant measures.

III. MULTIDIMENSIONAL PERFORMANCE ANALYSIS

OLAP can be seen as a set of technologies and tools that
assist in the quick analysis of (business) data [8][9][10]. For
the analysis using OLAP, the manifold relationships among
(business) data are mapped to multidimensional data
structures.

(a) Multidimensional concepts:
 dimensions, measures

(b) Navigation visualized with
a lattice

Fig. 2: Multidimensional model as basis for navigation

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:3, No:10, 2009

2005

This section highlights multidimensional representation of
performance indicators and shows how OLAP techniques can
help improve understandability and manageability of
measurement data and, hence, improve the whole performance

analysis and analytic decision making process.

A. The Multidimensional Data Model
The multidimensional paradigm can be regarded as an

TABLE I SAMPLE DIMENSIONS AND HIERARCHIES

Dimension Hierarchy Name Hierarchy Paths
DB_OBJECTS DB_OBJECTS_LOGICAL

DB_OBJECTS_PHYSICAL
DB_OBJECTS_LOGICAL_EEE
DB_OBJECTS_PHYSICAL_EEE

TABLE - SCHEMA - DB - INSTANCE
TABLE - TBS - BP - DB - INSTANCE
TABLE - SCHEMA - DBPG - DB - INSTANCE
TABLE - TBS - BP - DBPG - DB - INSTANCE

TIME TIME MICROSEC - SEC - MIN - HOUR - DAYTIME -
DAY - MONTH - YEAR

WORKLOAD WORKLOAD_NORMAL
WORKLOAD_DETAIL

STMT - APPL
STMT_OP - STMT - TA - CONNECTION - APPL

USER USER USER - OS_GROUP
PARTITION PARTITION PARTITION

TABLE II EXEMPLARY MEASUREGROUPS

Measuregroup Measuregroup Association List (MGAL)
BP_IO_INFO1 MICROSEC (x TBS) (x STMT_OP x USER) (x PARTITION)
STMT_COUNT (APPL x USER x) MICROSEC (x DB) (x PARTITION)
APPL_STATUS APPL x DB x MICROSEC
STMT_INFO (DB x) MICROSEC x STMT
STMT_OP_INFO (DB x) MICROSEC x STMT_OP
UOW_INFO MICROSEC x TA (x DB)
TABLE_ACTIVITY TABLE x MICROSEC (x PARTITION)
INTERNAL_COUNTS (STMT_OP x USER x) MICROSEC (x DB) (x PARTITION)
ROW_COUNTS (STMT_OP x USER x) (TABLE x) MICROSEC (x PARTITION)
AGENTS_N_CONNS INSTANCE x MICROSEC (x PARTITION)
LOCKS_N_DEADLOCKS DB x MICROSEC (x PARTITION)
INFORMATIONAL_DBCFG
MODIFIABLE_DBCFG
DBMCFG

DB x MICROSEC (x PARTITION)
DB x MICROSEC (x PARTITION)
INSTANCE x MICROSEC

TABLE III EXEMPLARY CUBES

CubeNo Cube Dimension Hierarchies Measuregroups (MG(CubeNo))
1 TIME x WORKLOAD_DETAIL BP_IO_INFO, INTERNAL_COUNTS, UOW_INFO
2 TIME x DBOBJECTS_LOGICAL BP_IO_INFO, STMT_COUNT, TABLE_ACTIVITY,

INTERNAL_COUNTS, ROW_COUNTS, AGENTS,
LOCKS_N_DEADLOCKS, INFORMATIONAL_DBCFG,
MODIFIABLE_DBCFG, DBM_CFG

3 TIME x DBASE x USER x WORKLOAD_DETAIL BP_IO_INFO, STMT_COUNT, APPL_STATUS,
INTERNAL_COUNTS, STMT_INFO, STMT_OP_INFO,
UOW_INFO

4 TIME x DBOBJECTS_PHYSICAL MG(2)
5 TIME x DBASE x WORKLOAD_NORMAL STMT_COUNT, APPL_STATUS
6 TIME x DBOBJECTS_LOGICAL_EEE x PARTITION MG(1) \ {DBM_CFG}
7 TIME x DBOBJECTS_PHYSICAL_EEE x PARTITION MG(1) \ {DBM_CFG}

Fig. 3: Two sample Performance Cubes

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:3, No:10, 2009

2006

extension of the relational approach. Within two-dimensional
relations each tuple attribute value is determined by the
intersection of a specific row and column, both can be
regarded as dimensions. Dimensions in multidimensional
models are simply higher-level perspectives on the data. In
fact, most of the deployed multidimensional data models are
implemented relationally (ROLAP approach) via star or
snowflake schemas [11].

The basis of the multidimensional data model (see Figure
2(a) and detailed explanation in [12]) is rooted in the
difference between qualifying and quantifying data that are
reflected by two key concepts: dimensions and measures.

Dimensions in multidimensional models serve for the
unambiguous, orthogonal structuring of the data space and
describe different ways of looking at the information (e.g.
time, database objects and workload).

The intersection of dimensions acts as an index and
identifies the data points the analysts intend to analyze, the so-
called measures (e.g. index pool and data page hit ratios,
physical writes/reads, number of commits/rollbacks as well as
dynamic/static SQL statements). In contrast to the descriptive,
textual and qualifying dimension attributes, these are mostly
numerical, additive and quantifying information.

The structure of the data is similar to that of an array. Like
the dimensions of an array, dimension levels provide the
indexes for identifying individual cube cells, as well as the
situation in which the measures were taken and where they are
meaningful. For example, a buffer pool hit-ratio of 13% is
useless. Provided with the TIME and name of the BUFFER
POOL its meaning and validity becomes clear. As it is often
sufficient to draw decisions from a high-level point of view,
not everybody is interested in detailed (raw) data. In order to
increase manageability, dimensions are broken down into
hierarchy levels (e.g. table - tablespace - buffer pool - database
- instance; secs - mins - hours - days) with differing
granularities. Such an abstraction process is an instinctively
known human activity. Utilizing these hierarchical
relationships, analysts can drill-down/roll-up along their data
to view different levels of granularity and abstraction and only
deal with the level of information appropriate to their current
assignment.

Basically, measures can be divided into atomic and non-
atomic, derived ones. Derived measures can be computed from
either other measures (atomic or derived) or from dimension
attributes. Typically, measures are of a numerical nature that
allows the classification into additive (can be aggregated by
simple arithmetical operations), semi-additive (can be
aggregated along some of the dimensions' hierarchies and not
along others) and non-additive (cannot be aggregated at all)
ones. Despite the fact of structural aggregation-capability, the
computation of aggregation functions might not be
semantically meaningful for all the measures (e.g. SUM(high-
water-mark) does not make sense along a hierarchy,
MAX(HWM) seems more appropriate). Informative measures
that are neither aggregatable nor numeric are no rarity (e.g.

DB2 System Monitor elements of type information). Type and
semantical meaning of a measure is solely determined by the
analysis scenario and the prevalent environment.

Abstraction cannot solely be achieved with the concept of
dimension hierarchies. Measuregroups (MG) group sets of
measures semantically by subject area. This can be useful for
systems with a countless number of measures in order to
reduce and manage complexity.

B. Multidimensional Navigation
Aligning complex data by dimensions that influence the key

business factors as well as representing and capturing natural
hierarchical relationships in data gives users the ability to
comprehend the conceptual scheme and recognize
dependencies and implications more intuitively.

Typical multidimensional navigation is a top-down
approach. With the intention to obtain a "big-picture" view,
the user normally starts analysis from an upper level of
abstraction (entry point) by looking at a specific set of
summarized problem- or situation-relevant key performance
metrics (totals, averages, counts, etc.) that might not seem
quite right. Issuing a combination of sequential and mutually
dependent OLAP queries [13], from there he crawls along
paths through the multidimensional data space in order to
reveal inter-connections and dependencies between metrics
that should be examined next. When requiring insight into
more fine granular data, the analyst can incrementally increase
the level of detail with a drill-down operation. Rolling-up does
the opposite, it moves upwards in hierarchical relationships,
thereby decreasing level of detail. Besides, setting focus on
specific regions of data that appear promising can be
performed by slicing, dicing and pivoting on the current data
cube.

A typical business analyst will not query against relational
tables directly3. Reasons for that are insufficient knowledge
and understanding or experience as well as missing time to
build complex SQL statements. Instead, he specifies his

3 Presuming a relational OLAP implementation via star or snowflake
schemas.

Database

Bufferpool

Tablespace

Container

(1,*)

(1,1)

(1,*)

(1,1)
(1,*)

(1,1)

(1,*)

(1,1)

Table(0,*)

(1,1)

Schema

Instance Partition group

Partition(1,*)

(1,1)

(1,*)

(1,*)

Partition nums
defined within
db2nodes.cfg

(1,*)

(1,*)

Defined for

(1,1)

(1,*)

Lies in

(1,*)

created in

(1,*)

(1,1)

(1,1)

(1,*)

Fig. 4: Implicit DB2 Database Object Hierarchies

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:3, No:10, 2009

2007

requests with a graphical navigation interface4. In contrast to
common static reporting, it is not necessary anymore to
generate an entirely new report in order to see more details or
to change the perspective on the data. With an appropriate
graphical tool, it can be as easy as a mouse click, and the
requested points of interest can be displayed. Access to
valuable information can be gained quickly and intuitively
without having to learn a new query or programming language
or dialect. However, as the number of dimensions and
therefore complexity grows, it naturally becomes more
difficult to visualize the model of the database and make it
understandable for human users. Therefore, the number of
dimensions should be kept small and clearly arranged.

Regarding multidimensional performance analyses there are
many ways for finding the actual cause of the problem.
Utilizing dimension hierarchies for navigation provides the
analyst with the flexibility to explore various paths of interest
that may all lead to the potential root cause(s). Some paths
seem more naturally intuitive to the user, but require more time
for analysis. In order to reduce system down times or time for
decisive analyses, the paramount goal is to find the cause(s) as
quickly as possible. From a set of representative query
sequences, ideally, it seems optimal to select the one with the
lowest accumulated execution time. Apparently, this can be
difficult and depends on the skill and experience of the user.
Interestingly, the authors of [14] propose a layer on top of
multidimensional data that provides for automated problem
isolation of performance problems. They claim that automated
drill down is sufficiently general so that it offers the possibility
of improved productivity in a wide range of computing
environments. However, analysts still must explore different
dimensions manually in order to determine which provides the
best characterization of the problem being isolated.

The sequential nature and diversity of exploration
possibilities (possible paths) in multidimensional analysis can
be clarified visually using the lattice approach (see [15] for
details). The multidimensional lattice represents the solution
space of the problem with vertices that present unique
combinations of dimension levels, hence queries on the base
data. Edges between vertices represent single drill-down/roll-
up operations. The art in analyses lies in considering only
those queries of importance. Figure 2(b) aims at showing
various "movement" strategies and illustrating the possible
navigation process of an analyst. Each node is labeled with a
combinatory instance of dimension levels. The chosen
hierarchies for both dimensions are: (T)able - (D)atabase -
(I)nstance and (M)inute - (H)our - (D)ay. The lowest node
represents the highest level of abstraction with the least
cardinality in contrast to the uppermost one which describes
information at highest detail. The arrows (dotted and drawn
through) ought to represent two of numerous sequential paths
(with operations restricted and simplified to drilling-down and
rolling-up) an analyst could take to best localize the (database-

4 See www.tdwi.org/marketplace for a comprehensive list of vendors and
tools.

related) problem. Obviously, the dotted path seems more
effective regarding time and effort to arrive at the conclusion.
Regrettably, the shortest path is not always the most evident to
a human analyst. In addition, analysis paths may also lead to a
dead-end. Often, users have to go back in history, back-trace
their routes through the data and find alternative paths to draw
conclusions.

IV. EXEMPLARY DB2 PERFORMANCE ANALYSIS SCENARIO

In order to practically demonstrate some basic structures
and scenarios, we will use IBM DB2 UDB. The presented
concepts, however, can be generalized to common
performance scenarios with differing DBMS, OS and further
layers of the software stack.

A. Multidimensional structures within IBM DB2
Fortunately, the DB2 architecture already provides a

comprehensive set of object hierarchies as depicted in Figure
4. Relationships are mostly "contains" and are visualized using
undirected arrows with the appropriate (n,m)-cardinalities.

The following sample dimensions and parallel hierarchies
can therefore be derived (Table 1). Hierarchies roll up from
child to the parent and abbreviations are basically the same
used in various DB2 documentations (DBPG = Database
Partition Group, TA = Transaction). The time dimension is
often considered separately and can be found in almost every
multidimensional data model. It allows time-series analyses
and comparisons among different points in time. This is
essential for performance analysis in that the root cause of a
problem might originate a long time ago in the past, leading to
an irresolvable bottleneck at the end.

Table 2 provides the list of possible measuregroups and the
associated dimensions (brackets indicate alternative hierarchy
levels). The established dimensions and measuregroups can be
combined in many ways forming the cubes presented in Table
3. Two cubes and four of the defined measuregroups as well as
their associated (shared) dimensions are visually depicted in
Figure 3.

B. Exploring DB2 performance data multidimensionally
using SQL
Aside from utilizing sophisticated tools, multidimensional

data can also be analyzed using SQL directly, applying the
ANSI-SQL99 OLAP extensions [13]. Operationss include the
extended GROUP BY functionality (grouping sets,
GROUPING function, ROLLUP and CUBE operators, etc.) as
well as OLAP functions (aggregating, partitioning, windowing,
ranking, etc.) to form the typical queries on star schemas.
Those queries are characterized by affecting a large number of
tables and mainly applying equi-join predicates between fact
and dimension tables, as well as local selective predicates on
the dimension tables.

A typical problem isolation scenario consists of multiple
successional steps and might look like the following (the
measures have been taken from the Performance Expert long-
term repository and are embedded within a star schema

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:3, No:10, 2009

2008

equivalent of cube number 4 from Table 3). Only basic SQL
constructs that support OLAP have been used, such as
ROLLUP, RANK, GROUP BY.

The database administrator (DBA) observes (possibly in
return to user complaints) increasing (database) response
times. Assuming this problem occurs due to multiple
applications questioning the database at the same time, he
decides to first monitor buffer pool activity, as one possible
indicator of overall system health.

Starting root cause analysis he computes the buffer pool hit
ratios for the highest level of abstraction in each hierarchy at
first. The subsequent query determines the average buffer pool

hit ratios5 on a buffer pool and database level and results in
Table 4.
SELECT dbo.db_name as DB, dbo.BP_name as BP,

AVG(fact.pool_hit_ratio) as BPHR
FROM d_db_objects dbo, f_bp_io_info fact,

d_time t
WHERE fact.d_db_objects_id = dbo.d_db_objects_id

AND fact.d_time_id = t.d_time_id
GROUP BY ROLLUP(dbo.db_name, dbo.BP_name)

Next, the DBA further drills down into tablespace level and
applies ranking functionality to obtain the 10 worst buffer pool
hit ratios (see Table 5) using a similar SQL statement.

5 As the buffer pool hit ratio metric is of type gauge, we can use the AVG
aggregation function to present values of coarser detail.

TABLE IV START OF ANALYSIS

DB BP TBS Time Interval BPHR
PEDEMO BUILDINGS ALL ALL 99.61
PEDEMO FRUITS ALL ALL 20.35
PEDEMO IBMDEFAULTBP ALL ALL 89.55
PEDEMO LOCKTEST ALL ALL 99.69
PEDEMO MOTION ALL ALL 98.98
PEDEMO ALL ALL ALL 83.08
SAMPLE IBMDEFAULTBP ALL ALL 85.35
SAMPLE ALL ALL ALL 85.35
TESTDB IBMDEFAULTBP ALL ALL 82.39
TESTDB ALL ALL ALL 82.39

ALL ALL ALL ALL 83.49

TABLE V DRILL-DOWN AND RANKING

DB BP TBS Time Interval BPHR
PEDEMO FRUITS GROWTH ALL 15.27
PEDEMO FRUITS TRADE ALL 49.77
TESTDB IBMDEFAULTBP USERSPACE1 ALL 65.72
TESTDB IBMDEFAULTBP SYSCATSPACE ALL 81.96
SAMPLE IBMDEFAULTBP SYSCATSPACE ALL 85.02
PEDEMO IBMDEFAULTBP SYSCATSPACE ALL 88.93
TESTDB IBMDEFAULTBP SYSTOOLSPACE ALL 97.03
SAMPLE IBMDEFAULTBP SYSTOOLSPACE ALL 98.75
PEDEMO MOTION VEHICLES ALL 99.01
PEDEMO BUILDINGS LOCATIONS ALL 99.64

TABLE VI FURTHER DRILL-DOWN

DB BP TBS Time Interval BPHR
PEDEMO FRUITS GROWTH Month11/Day2 57.20
PEDEMO FRUITS GROWTH Month11/Day2 2.12
PEDEMO FRUITS GROWTH Month11/Day8 24.41
PEDEMO FRUITS GROWTH Month11/Day8 33.58
PEDEMO FRUITS GROWTH Month11/Day9 55.71
PEDEMO FRUITS GROWTH Month11/Day9 14.09
PEDEMO FRUITS GROWTH Month11/Day9 10.76
PEDEMO FRUITS GROWTH Month12/Day14 12.52
PEDEMO FRUITS GROWTH Month12/Day15 21.97
PEDEMO FRUITS TRADE Month11/Day2 76.51
PEDEMO FRUITS TRADE Month11/Day2 52.07
PEDEMO FRUITS TRADE Month11/Day8 56.99
PEDEMO FRUITS TRADE Month11/Day8 54.79
PEDEMO FRUITS TRADE Month11/Day9 77.90
PEDEMO FRUITS TRADE Month11/Day9 58.45
PEDEMO FRUITS TRADE Month11/Day9 45.58
PEDEMO FRUITS TRADE Month12/Day14 45.54
PEDEMO FRUITS TRADE Month12/Day15 55.50

TABLE VII DETERMINING ROOT CAUSE TIME OF PROBLEM
DB BP TBS Time Interval BPHR

PEDEMO FRUITS GROWTH Month11/Day2/12:45-13:00 65.99
PEDEMO FRUITS GROWTH Month11/Day2/13:00-13:15 10.85
PEDEMO FRUITS GROWTH Month11/Day2/13:15-13:30 10.50
PEDEMO FRUITS GROWTH Month11/Day2/13:30-13:45 10.01
PEDEMO FRUITS GROWTH Month11/Day2/13:45-14:00 8.98
PEDEMO FRUITS GROWTH Month11/Day2/14:00-14:15 8.46
PEDEMO FRUITS GROWTH Month11/Day2/14:15-14:30 8.22
PEDEMO FRUITS GROWTH Month11/Day2/14:30-14:45 8.18
PEDEMO FRUITS GROWTH Month11/Day2/14:45-15:00 7.97
PEDEMO FRUITS GROWTH Month11/Day2/15:00-15:15 8.37

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:3, No:10, 2009

2009

Navigating the cube's data, the analyst notices that the BPHR
decreases below 30%. Having detected the problem, he tries to
judge which abstraction hierarchy best localizes the problem.
In our simple example it is obvious to drill more into detail for
the FRUITS buffer pool and the GROWTH tablespace as it
was done in Table 6. By steadily descending lower in the
(time) hierarchy, he seeks more in detail and constraints the
data for further navigations. Now, it seems interesting to
pinpoint the exact time interval the performance started
suffering (Table 7). From observing configuration change
history at the pinpointed time interval(s), it turns out that the
size of the buffer pool has been decreased at run-time at about
1 PM. From that moment, the hit ratio rapidly dropped down.

V. CRITICAL EVALUATION

Existing performance management solutions, however,
cannot become multidimensional without effort as several
fundamental challenges and problems before analyzing the
multidimensional structures prevail. In order to harness
powerful multidimensional analysis potentials, the following
additional steps are required beforehand or even repeatedly at
run-time, causing additional overhead:

1. Identification
Determination of appropriate sources, their structure
and deliverable data.

2. Conceptualization/Creation
Establishment of multidimensional target structures, as
well as their relational representations.

3. Mapping
Specification how to translate data from one
representation to another.

4. Filling
Transferring of the source data into the created
multidimensional target representatives in compliance
with predefined mapping guidelines.

Although a large number of commercial solutions are
currently available on the market to support multidimensional
structuring and ETL processing in a comprehensive way, in
[12] we argue that the price, lack of standards, differing
functionality and proprietary nature, as well as diverse other
problems legitimate the idea of deploying a lightweight,
platform-independent, general multi-purpose framework with
little footprint on the system that is supposed to comply with
all four above steps in an intuitive way for end users. Hence, in
[12] we show how a simple, lightweight and extensible data
mart creation framework (XDMF) has been developed to
easily rearrange and aggregate performance data and construct
subject-oriented multidimensional data marts as well as valid
and complex SQL-based data transformation and movement
mappings in order to support subsequent analyses. Data marts
can then be created on-demand at run-time in order to organize
data (into symptoms or categories) and to allow subsequent
analyses over time, tracking back problems or even correlating
imminent incidences to past events. The framework has been

utilized for creating data marts with performance-relevant data
on demand. It turned out that performance monitoring
(especially historical performance analysis) is greatly
facilitated by using multidimensional structures.

Another great difficulty for users is to find and select the
appropriate set of cubes for conducting navigational analyses
on. This can be a highly non-trivial and possibly iterative trial-
and-error process that should be accomplished by experienced
DBAs only. At the beginning, the user has to get some idea
which measures (cubes) are best suited for addressing the
problem and providing an entry point into following analyses.
In [12] some aspects of an autonomic cube advising and
selection component in the area of performance tuning are
introduced. Basic elements of the therein described
architecture are a knowledge base, correlating typical and
recent performance problems to possible performance cubes, a
learning component that analyzes previous cube
determinations and success ratios to adopt the priority list of
cube proposals, and triggering mechanisms (e.g. health
indicators exceeding user defined thresholds) for automatically
initiating the advising process.

Furthermore, fast query times are crucial for OLAP. The
ability to intuitively manipulate huge quantities of data and to
accomplish analyses within and across dimensions in order to
answer important (business) questions requires quick retrieval
of information. In practice, however, "quick" applies only for
the most common requests that, in return, need to rely on a
well-tuned underlying physical schema. Response times,
however, suffer the more calculation needs to be done. Aside
from widespread indexing techniques, pre-aggregating and
storing frequently accessed data in materialized views helps to
reduce run-time calculation overhead. Techniques have been
developed for deciding what subsets of a data cube to pre-
compute, for estimating the size of multidimensional
aggregates, and for indexing pre-computed views. Approaches
to aggregation affect both the size of the database and the
response time of queries. If more values are pre-calculated, a
user is more likely to request a value that has already been
calculated, thus the response time will be faster. However, if
all possible values are pre-calculated, not only will the size of
the database be unmanageable, but the time it takes to
aggregate will be intolerably long. Furthermore, updating and
refreshing the according materialized views can be time-
consuming and must be considered as well. Optimization
techniques emphasize lowering query costs with little regard
to maintenance (e.g. refreshing tables and materialized
views). Update costs are believed to be unimportant as
systems are oriented towards nightly or offline batch updates.
The truth is, in upcoming business scenarios and in our
performance management scenario, data warehouses become
more and more real-time storage and access containers (real-
time warehousing). Furthermore, global 24x7 businesses do
not have any downtimes or timeframes of low activity and
least of all "night"-periods.

Nevertheless, effectively determining pre-aggregation

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:3, No:10, 2009

2010

candidates and managing the update of the materialized tables
are far beyond this work's scope. Further, in-depth
information can be found in [15] [8].

Designing effective materialized views requires adequate
prior planning. The designer has to anticipate the query
workload and the likely user behavior to identify patterns for
accessing tables, and frequently performed aggregations. A
highly interesting approach addressing this problematic can be
found in [16]. The author presents a mathematical model and a
graphical notation for capturing knowledge about typical
multidimensional interaction patterns in OLAP systems, taking
into account the session oriented, interactive and navigational
nature of the user query behavior. Furthermore, an architecture
is presented to speed up OLAP systems at runtime by using
speculative execution techniques based on a prediction of the
user query behavior. The concept of predicting query behavior
can be considered rather irrelevant for performance analysis
requirements. Irregular system states that could not be
anticipated through proactive routine monitoring occur at run-
time and require immediate reactive actions by means of
multidimensional analyses to isolate the problem and finding
its root cause.

VI. SUMMARY AND OUTLOOK

Applying OLAP techniques to performance and system
management supports sophisticated problem detection and
analysis instead of naively guessing problem causes and
parameters that take effect. In fact, OLAP technologies offer a
wide variety of features to simplify decision making. By
storing decision-supporting data in spreadsheet-like
multidimensional data structures, end users (DBAs, knowledge
worker, analysts) can access their large (historical) data in a
simple and understandable way - by the dimensions of their
business. Dimensions are closely related to the nature of
(business) data and offer a very intuitive way of organizing
and selecting data for retrieval and analysis. Beyond it,
individual, subject-specific multidimensional cubes are
capable of providing a basis for several reports that can be
shared or stored for later (re)use.

Data access is enterprise-wide, but each user can flexibly
manipulate (by slicing, dicing, rotating, drilling, etc.), view,
analyze and compare data from various perspectives and see
only facts relevant for the assigned activities. An appropriate
tools collection presumed, access to valuable information can
be gained without having to learn a new query or programming
language or dialect. These kinds of analyses are able to
enhance productivity and skills of even inexperienced analysts.

This, however, requires an initial learning and preparation
time. Requirements need to be specified, an appropriate
multidimensional data model must be designed, a complete
Warehousing architecture, seamlessly integrating a set of
sophisticated tools, needs to be established and last but not
least, administration, maintenance and end user personnel must
be trained. One of the biggest challenges lies in the trade-off
between more intuitive analyses and the overhead in creating,

filling and navigating respective structures. Chances, however,
are promising, especially, looking at the development of
OLAP for business decision making.

However, it must be kept in mind that neither the most
advanced analysis techniques can belie an offer of information
(the available performance measures) of low quality.
Therefore, it must be of paramount importance to retrieve
detailed and consistent, but only relevant and expressive
measures for later analyses.

Further research work delves into the possibilities of
enhancing autonomic database performance tuning with
multidimensional performance data collection, storage and
analysis techniques. In [17] we describe our workload driven
system for best-practice oriented autonomic database tuning,
called Autonomic Tuning Expert (ATE). ATE’s architecture is
based on widely accepted and influential technologies and
industry-proven products that are combined in a way to build a
component-based MAPE loop for automating typical tuning
tasks. The ATE infrastructure is designed to be the core
component of an ecosystem that enables DBAs to design,
exchange, adapt, and execute best-practice tuning methods. It
is intended to leverage the multidimensional model for more
sophisticated automated problem detection and diagnosis, as
well as trend prediction.

The research field of autonomic database performance
tuning is very promising. However, we do not believe that
highly skilled DBAs will ever get replaced by intelligent
autonomic database administrating tools. Automation is in fact
a great option for the “usual case” but there always will be
exceptional cases that need to be taken care of. Those even
more justifying the need of a profound, holistic, short-term and
long-term knowledge base.

REFERENCES

[1] S. Chaudhuri, G. Weikum. Rethinking Database System Architecture:
Towards a Self-tuning RISC style Database System. In Proceedings of
VLDB, 2000.

[2] IBM Corp. DB2 UDB ESE V8 non-DPF Performance Guide for High
Performance OLTP and BI. IBM Redbooks, 2004.

[3] Alur, N; Balaji, R.; Miskimen, M.; Stolz-Hofmann, D.: IBM DB2 UDB
Performance Expert for Multiplatforms - A usage guide. Redbook. IBM
Corp, 2003.

[4] Alur, N.; Falos, A.; Lau, A.; Lindquist, S.; Varghese, M.: DB2
UDB/WebSphere Performance Tuning Guide. Redbook. IBM Corp,
2003.

[5] Chen, W-J; Ma A.; Markovic, A.; Midha, R.; Miskimen, M.; Siders, K.;
Taylor, K; Weinerth, M.: DB2 Performance Expert for Multiplatforms
V2. Redbook. IBM Corp, 2005.

[6] IBM Corp.: DB2 Universal Database - System Monitor Guide and
Reference (Version 8). IBM Corp, 2004.

[7] Sriram, C.; Martin, P.; Powley, W.: A Data Warehouse for Performance
Management of Distributed Systems. Dept. of Computing and
Information Science. Queen's University at Kingston, 1998.

[8] Bauer, A.; Günzel, H.: Data Warehouse Systeme Architektur,
Entwicklung, Anwendung. dpunkt. Heidelberg. 2000.

[9] Codd, E.F. et al.: Providing OLAP to User-Analysts: An IT mandate.
Arbor Software, 1993.

[10] Inmon, W.H.: Building the Data Warehouse. 3rd edition. Wiley. New
York, 2002.

[11] Kimball, R.: The Datawarehouse Toolkit. John Wiley & Sons, New
York 1996.

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:3, No:10, 2009

2011

[12] Wiese, D.: Framework for Data Mart Design and Implementation in
DB2 Performance Expert. Diploma thesis. University of Jena and IBM
Böblingen. 2005.

[13] Mogin, P.: OLAP Queries and SQL1999. Issues in Database and
Information Systems. Victoria University of Wellington, 2005.

[14] Hart, D.G.; Hellerstein, J.L.; Yue, P.C.: Automated drill down: An
approach to automated problem isolation for performance management.
In: Proceedings of the Computer Measurement Group, 1999.

[15] Harinarayan, V.; Rajaraman, A.; Ullman, J. D.: Implementing data
cubes efficiently. Proceedings of the 1996 ACM SIGMOD international
conference on Management of Data (SIGMOD'96). ACM Press, June
1996.

[16] Sapia, C.: On Modeling and Predicting Query Behavior in OLAP
Systems. Proceedings of the International Workshop on Design and
Management of Data Warehouses. Heidelberg, Germany, 14. - 15. 6.
1999.

[17] Wiese, D.; Rabinovitch, G.; Reichert, M. and Arenswald, S.: Autonomic
Tuning Expert - A framework for best-practice oriented autonomic
database tuning. In Proceedings of Centre for Advanced Studies on
Collaborative Research (CASCON 2008). Ontario, Canada, October 27
- 30, 2008.

