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Multi-Rate Exact Discretization based on
Diagonalization of aLinear System
- A Multiple-Real-Eigenvalue Case

T. Sakamoto and N. Hori

Abstract—A multi-rate discrete-time model, whose response
agrees exactly with that of a continuous-time original at all sampling
instants for any sampling periods, is developed for a linear system,
which is assumed to have multiple real eigenvalues. The sampling
rates can be chosen arbitrarily and individually, so that their ratios
can even be irrational. The state space model is obtained as a
combination of alinear diagonal state equation and a nonlinear output
equation. Unlike the usud lifted model, the order of the proposed
model is the same as the number of sampling rates, which is less than
or equal to the order of the origina continuous-time system. The
method is based on a nonlinear variable transformation, which can be
considered as a generdization of linear similarity transformation,
which cannot be applied to systems with multiple eigenvalues in
general. An example and its simulation result show that the proposed
multi-rate model gives exact responses at all sampling instants.
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l. INTRODUCTION

DISCRETIZATION techniques are useful in a variety of areas
including digital signals processing, measurement, systems
analysis, and digital control [1],[2]. Signals with a wide range of
frequencies often calls for the use of multiple sampling periods,
where al state variables are sampled at different rates depending on
their frequency components. Convenient tools are readily available
for simulation studies [3], where a discrete-time lifting technique [4]
is used. Although they are highly useful for simulation and
evauations of multi-rate designs, they are not necessarily a smple
model for analysis or implementation. While a substantial increasein
the order of lifted model may be accommodated in ssimulations, thisis
usually not the case in the analyses and implementation of digital
controllers. Furthermore, sampled signals form an approximation
model of the original system and exactness is often not pursued.
Although these may specific only for digital controllers, requirements
for low order and exactness are nevertheless important. Exact
discretization, where the response of the discretized model matches
exactly that of the original continuous-time system, is well known for
single-rate case [5]. The approach used in the present paper is to
transform the given system into a diagonal form for which this
discretization technique can be applied.
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Diagonalization of system matrices plays important roles in the
analysis and synthesis of linear systems. For instance, such systems
tend to have better numerical properties and can be achieved by
similarity transformation [6]. In the control perspective, system
decoupling followed by state feedback achieves arbitrary
diagonalization [7]. This may be considered as a variable
transformation and has inspired the use of exponential transformation
in [8], where a sufficient condition for exact linearization of
nonlinear systems is presented. This method is applied to exact
single-rate discretization of a nonlinear system in [8]. Thisis applied
in the present paper to exact multi-rate discretization of a linear
system with multiplerea eigenvalues.

The paper is organized as follows: In Section 2, a second-order
system with double eigenvalues is used to explain the concept and its
triangular transformation is reviewed. The triangular system is then
diagonalized, where the inverse transformation that was necessary in
[4] is avoided. In Section 3, the resulting system with arbitrary
eigenvalues is discretized exactly using multiple (including single)
sampling rates. In Section 4, an example is presented with a
simulation result. Section 5 presents conclusions.

Il.  DIAGONALIZATION OF A LINEAR SYSTEM WITH MULTIPLE
REAL EIGENVALUES

The god of this section is to find a variable transformation for
converting a given linear system with multiple real eigenvaluesinto a
diagona system with arbitrary eigenvalues. This is to be carried in
three steps. The first is to transform the system into a triangular
system, which is always possible using a similarity transformation.
The second is to convert the triangular system into a diagonal system
with fixed multiple real eigenvalues. The third is to introduce a new
one-to-one mapping to transform the diagonal system into another
with arbitrary and possibly distinct real eigenvalues. In the following,
these are explained for a second-order case for ease of exposition.

A. The System

Let the linear time-invariant system with double and real
eigenvalues be given by

[ ] 211 a12 x1 [X1(0)] [xlo 1)

21 azz 2 x,(0) xzo

where x; and X, are the state variables with their initial conditions
given by x;0and xy, and a;; are constant coefficients. The eigenvalues
of this system are assumed to be double, so that

(a11 — az2)? + 4aqza,; = 0. )
The eigenvalues are given, therefore, by

1= a;1 + azzl 3)
2
It is assumed that the system is not triangular, which implies that
a1 * ay, , since otherwise parameters would be a;, =0 or
a,, = 0 or both, indicating that the system is triangular. If the given
system is aready triangular, the first step explained next is omitted.
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B. Triangularization
The first step is to transform system (1) intoiantgular system
using a standard similarity transformation [6]. Léte desired
triangular system be given by
}’1(0)] _ [)’10]

;’/;] - [g ;61] B’/ﬂ' v,(0) Y20

wherey, andy, are the state variables with their initial coralit

€))

Using (9) and (10), this can be rewritten as

6171

20z, | _ [/1 + ee"2"’1]
v, dv, A
CZy 6—21 + CZ; 8—22

a
|[czl 6_1271 +cz
! (12)

which is a Lagrange partial differential equatid@].[A number of
methods exist to solve this equation and a metHocharacteristic

given byyioandyzo. Parametere is a non-zero constant and may becyves is used in the present study. The charatitesquations are
set to unity, andi is the eigenvalue given by (3), since they Shou@iven by

remain the same under similarity transformatiorshibuld be noted
that the lower triangular form works just as waltlis section.

The similarity transform of the form given by

x1] _ [b11 b12]
[xZ]_ b1 b, ®)

can always be determined as one that satisfies;unmuely, the
bll blZ] - [bll

following [6]:
b1z] [A s]
byy by, by1  bapllo Al

The similarity transformation used in the preséntlg is given by

)i

(6)

[au

alz]
az1

azz

[X1] B [ iz 2ay, }’1] o
X2 5(‘“11 +az) —ayg +ag +e| 2l
The initial condition can be determined as
—aqq +az; +¢ _E
X
ol =| i 1|l ®
2ea,, £

which always exists under the present condition.
C. Diagonalization of Triangular Systems

In this subsection, the diagonalization is achieiredwo
steps; first to a diagonal system with fixed muéip
eigenvalues and second to one with arbitrary (uistior
multiple) eigenvalues.

Double Eigenvalues
Let the diagonal system be given by
Z1] _[c 0171717 [21(0)] _ [Z10
[ZZ] - [O c] [Zz] ’ [22(0) - [Zz()]
wherez; and z, are the state variables with their initial cormis
given byzpandzy. In the above, the value of eigenvakiés not,
unfortunately, arbitrary and will be determined mlyo The

transformation from systemd)(to (9) is to be achieved using the
following transformation:

yl] _ [3V1(Zl'zz):|

V2 - g”z(zpzz)

where v;(z;,2,) and v,(z;,2z,) are functions of z, and z,.
Functionsv, (z1,2,) and v,(z;,2,) are to be determined explicitly
in the rest of this subsection. To this end, défgiate (10), using (4),
to obtain

)

(10)

(524 5,22),.]
) _ |\ oz T oz | [y + ey
1] = = . Ay
V2 [(Z-%H%H Ay
1621 2622 V2

dv,

_dz; _dz
A+ee2v1 " ¢z cz
dv, dz; dz,

(13)

A czy 2z,

from which the following set of equations are obéa:

dv, _dzy dzy
A+ eevavn c_21 Tz,
g11(v1, 24, 2)dvy

+912(v1,21,2,)dzy
+913(v1, 21, 23)d7;
g11(v1, 21, 2) (A + ge?27"1)
+912(v1, 21, 23)c7y
+913(v1,21,73)c2;
dv, dz; dz,
A cm oz
g214v,
+922(21,22)dzy
+923(21,2,)dz,
9211
+322(21,22)c24
+923(21,2,)c2,

¢z,

(14)

In (14), g11,912,and g3 are functions ofv,, z;,and z,,
gd»2 and g,; those ofz;, and z,, and g,; a constant. These

must be determined such that the denominators @n th
right-most sides are zero and, at the same time, th

corresponding numerators are exact differentialhe T
necessary and sufficient conditions on the exastaes

(3911(171'21'22) _ 0912(v1,21,22)
| 0z, vy
40912(171121.22) _0913(v1,24,2,)
0z, - 0z
1 , 15
lag13(v1,21.zz) _ 0911 (v1,21,2) (15)
dvy - 0z,
0922(21,22) _ 0923(21,7,)
0z, 071
at which time the following hold:
911(v1, 21, 25)dvy + g12(v1, 21, 22)d 2y
+913(v1,21,23)dz; = 0. (16)

9214v2 + 922(21,25)dzy
+923(21,22)dz; = 0

Candidate functiong,;, g.,, and g, that have been chosen
to meet the two requirements are the following:
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where isf an arbitrary parameter. In this case, the exdfgrdntial
is given by

1 B
__ =0. 1
Adv2+zl+/?zz dzl+zl+ﬂzz dz, =0 (18)
This yields, upon integration,
c
—sz + ln(KlF(Zl,ZZ)) = hy, (19)
where F(z,,z,) is defined as
F(z1,2,) = 21 + f7y, (20)
K, is the signum ofF (z,, z,), given as
(1 (F(z1,22) > 0)
= U (P < 03 @D

and h, is a constant. Since this constant
condition, it should be chosen as

must satiséy itfitial

c
hy =1In (K10F0(Zlorzzo)yzo ) (22)
where Fy (210, 250) is defined as
Fo(210,220) = 210 + BZ20 (23)
and x,, is the signum ofF, (24, 220), given by
1 (Fo(z10,220) > 0)
Kig = . 24
10 {_1(F0(ZIO'ZZO) <0) @4
Function v, can now be obtained as
2
vy ( K F )E 25)
ez = .
P Y20

To determine the other functior/:, in (10), substitute (25) into the
first equation of (14) to obtain
A
K F )c o
10F0 ’

911(1,21,2) | A+ €Yz (K

(26)

+912(v1,21,72)czy + g13(v1, 71, Z2)c2Z,

which can be made equal to zero by choosing funstifor instance,

as
e
(911 = Fz
2e"t 2ey,,
912 :_F_FOZAF 27)
_ 2Be"r 2eyyf
$13 =TT F T RE
and choosing the eigenvalue of system (9) as
_A 28
c=3 (28)

Substituting (27) into the first equation in (1&hd integrating
the resulting relation, one obtains

2517-9934
No:2, 2012

29)

o 2 <h1 s 253’201”(’(11“"))'

AF¢

where h; is a constant, which depends on initial conditiassin
(22), and should be chosen as

A}’m - nyzoln(KloFo)

hy = 30
! I (30)
The variable transformation (10) is given by
2¢
(F 2+ F 21 ki F\T
Yio\ 7= Yao\—) n
ny_ F0> (FO) (KIOFO)
yal = ) (3D

7
Y20 Fy
where F, is arbitrary, as will be shown shortly, and istased to be
nonzero. Furthermore,k; and k;, can be removed from (31) as
follows. First, it should be noted that (31) issarged to hold true for
any initial conditions onz, and z, and thus, they can be chosen
arbitrarily. Thus, let them be arbitrary parametiroted by

Z10 = V1, 220 = V2- (32)

Second, functiorr does not change its sign, since its derivative can
be written as

A A A
Ezl +ﬁ522 =EF, (33)

which is a first-order system whose response isatwric. Therefore,
the sign of F depends solely on that @, and, thus,

F=2+pBz% =

K1 = K10- (34
The transformation between (4) and (9) is given by
2¢
» yz<&+l ( fﬁ )A>
[)’z] = Y20 Y1 )2’2 . (35)

)
Y20 v1 + By

D. Distinct Eigenvalues

The given system (1), which has double eigenvalugeas
converted into a triangular system (4) with the sagigenvalues
using a similarity transformation (7). System (4)asw then
transformed into a diagonal system (9) with douieenvalues but
their values were halved, using the method predent§4]. System
(9) is now to be related yet to another diagonaltey whose
eigenvalues can now be set arbitrarily, double istirgtt. This is
possible since once the system is diagonalizedsytsiem is basically
a collection of first-order sub-systems, each oficlwhcan then be

modified to another sub-system with arbitrary eigdoe
individually.
The final diagonal system is written as
W1 my wy (0)] W10
Wz] [ mz] ] [WZ(O) W20 (36)

where w; and w, are state variablesy;, and wy, their initial
values, andm; and m, are non-zero but otherwise arbitrary
eigenvalues. The transformation between systeman@)36) can be
achieved using the following:

[zl] _ [epl(wl)]
Z2 - epz(Wz) ’
where p,(w;) and p,(w,) are functions of single variable, which
suffices for first-order sub-systems. These fumstjg,(w,) and

(37)
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p2(w,), are derived below:

Differentiating (37) and using system (9) with telaship (31) give
dPl z
] dwl 1
dpz

We dw
which can be re-arranged, using (36), into

(38)

dp,
miwq d_VVl

dap,
myow, _dW
2

(39

N NN

This leads to the following exact differential etjaa:

(dpl dwy
A mw;

dp, dw, (40)

4 mow,
2
which yields

2 _1

7P + Injw;| ™ = qy

5 1 (41)
702 + In|w,| ™2 = q,

with constantsq,; and g,chosen as

2 L
In <Y11|W10| m1> =01

) ) . (42)
& (yflw20l_m_2> =q
With these valuesp, and p, are determined as
A
=2
[wiol
4 1 (43)

l <|w2| )W
=(n —_—
D2 Y2 Waol

y (m+—lnL)
D20 A vitbBr2

V1
] = l 2 J (45)
Y20 (y1 + By2)?
where
_ Wy 2171 Wa ZLmz
G(wy,wy) =71 (W_l()) + By2 <W_2o) . (46)

E. Diagonalization

The triangularization of system (1) to (4), thegtinalization with
multiple eigenvalues of system (4) to (9), and théh arbitrary
eigenvalues of system (9) to (36) can be combimtd & single
transformation. This can be obtained by substitutdb) into (7) so
that y; and y, are eliminated and using the relationship (8) on
initial conditions. The resulting transformationoistained as

n
X0 +=In———
Ay + By,

47
[ ] (i + ,3)’2)2 _nlay; —az,) G (47
20 2a154 Y1+ B72
whereG is given by (46) and
n = (ay — az2)¥10 + 2a12%20- (48)

It must be pointed out that in the diagonalization
conversions, the eigenvalue of the given systgmmust be
assumed nonzero, while it can be zero in the trikanzation
and multi-rate discretization that follows.

I1l.  MULTI-RATE DISCRETIZATION

Using the diagonal form (36) where the eigenvalaes
chosen to be identical, a multi-rate exact disetiete model
can be obtained easily, where there is no ordee&se and
sampling rates are chosen arbitrarily. The exastrdte-time
model is a model whose response matches coincittetiat
of the original continuous-time system at all sanginstants
for any sampling period. When all state variablessampled
at the same rate, it reduces to the well-known texedlel [3].
The most primitive approach to the analysis of dtirnate
n-th order system, where each state is sampledstnaive
rate, is to prepare an n-th order single-rate mdoeleach

Since the statess; and w, are of first-order sub-systems insampling rate and, thus, use the totalnok n numbers of

(36), their signs are the same as thosevgf and w,,, SO
that the desired variable transformation is finétlynd as

6]
b))

It should be noted that the initial conditions,, and w,,,
must be non-zero but otherwise can be chosen anibyjtfor
any givenz;o andz.

By combining (35) and (44), using (20), the transfation
that relates directly the triangular system (4xhe diagonal
system (36), can be determined as

(44)

=] -

state variables. In contrast, in system (36), therevalues and
initial stats are chosen to be identical as

m =mp; =m, Wip = W20 = Wo, (49)
so that the states become identical as
Wi =Wy =W. (50)
Thus, the diagonal system is practically a firstesrsystem as
w = mw. (51)

The exact discrete-time models of this linear syssampled
with the periods ofT; and T,, which are then collected as
diagonal elements, yield the following exact seqeation:

|'e‘mT1 -1
0

5T1 W1k, [W1 Ky

S, W2k, | emlz — 1J| WZk

| T,

(52)

o
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where w; ., implies w;(k;, T;) = w; (t)|¢=x,r, and

qr; —1
O, = —r drWi = Wik (53)
13

model, where its sampling rates can be chosenraribtand
its order does not increase.Triangular systems usethe
present study can be replaced with Jordan blockisatso be
extended to cover the distinct eigenvalue portiafisthe

The stateswy,, which are updated element-wise using (52) asystem. Combining these two cases, a general igahalue

different rates, can be substituted into the folfmwnonlinear output case may be covered. The technique should be furthe

equation to recover the original states elemenéwis

yl
) ()|

i) _| wo /o \M10 wo |
[xz,kz] | [
n(an - azz) W2 k2 2m>J

i
l Wz k2 <
2a4,

It should be noted that parametgfsy,, andy, in (47)
have disappeared in (54). The exact multi-rate misdgiven
as a set of linear state equation (52) with a neali output
equation (54).

(54)

IV. SIMULATIONS

The system used for the simulation is the secoddror
system given in the following state space form:

X -1 171™

[xz] = [—1 —3] [XZ]'
whose eigenvalues are identical at=—2. Its initial
conditions are chosen arbitrarily ag, =1 and x,, = 2.
The exact discrete-time model (52) is chosen toehthe
eigenvalue ofm = —1 and sampled using the period of
T, =03 and T,=0.5 seconds. The resulting exact

discrete-time model is obtained as the followinweér state
equation with the non-linear output equation:

(55)

-03 _

e
SosWi,| _ | 03 [
80.5W, 0 Wk,
~ —0.8639
[ —0. 7869 sz (56)
and
2
[xl,k1] _ (Wl.kl) (1 —3lnwy ) 7
Y2kal | (W)’ 2+3lwag,) |

wherew,y= 1. Figures 1 and 2 show the state responseg afriginal
continuous-time system in solid lines. The sequemixained by the
exact discrete-time model are held constant usiagéro-order-hold
[4] and are shown in broken stair-case lines. ritloa seen from these
plots that the exact model gives the responsestibtith exactly with
the original system at all sampling instants. budtl be emphasized
that the sampling periods can be arbitrarily chpseciuding those
whose ratios are irrational. Furthermore, the orderthe model
remains the same at 2.

V. CONCLUSIONS

By applying an exact linearization technique praabs a
previous study [8], the diagonalization of systemith
multiple-eigenvalues via a nonlinear variable tfamsation
has been made possible. Such diagonalization iposgible
using the standard similarity transformation, whiglased on
linear transformations. The developed techniquetinas been
applied to the derivation of an exact multi-ratectdéte-time

extended to systems with complex-conjugate eigemgalThe
linearization of nonlinear systems into a diagasatem may
then be possible based on [8].Another highly imguairavenue
to pursue is to apply the developed multi-rate eraadel for
the development of multi-rate digital controller sim

methods. An example is an extension of a single-digital

redesign method, which can guarantee closed-|@dylisy for

any sampling periods [10], to the multi-rate vensio

1~ —xl
J
0.8¢
0.61
0.4r
0.2r
0 1 2 3 1 5
Tme
Fig. 1 State response, and its exact modet, ,, for T; = 0.3
seconds
—x2
--x2,k2| |
0 1 2 3 4 5
Tme
Fig. 2 State response, and its exact modet, , for T, = 0.5
seconds
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