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Abstract—In this paper, we presented a Multi-Objective Random
Drift Particle Swarm Optimization algorithm (MORDPSO-CD) based
on RDPSO and crowding distance sorting to improve the convergence
and distribution with less computation cost. MORDPSO-CD makes
the most of RDPSO to approach the true Pareto optimal solutions
fast. We adopt the crowding distance sorting technique to update and
maintain the archived optimal solutions. Introducing the crowding
distance technique into MORDPSO can make the leader particles
find the true Pareto solution ultimately. The simulation results reveal
that the proposed algorithm has better convergence and distribution.

Keywords—Multi-objective optimization, random drift particle
swarm optimization, crowding distance, Pareto optimal solution.

I. INTRODUCTION

OPTIMIZATION is considered as one of the most

important problems in the fields of mathematics

and science. In the real world, we usually need to

optimize multiple objectives at the same time, and these

objectives are often contradictory. There is normally no

unique optimal solution which make every objective of the

optimization problem optimal. Therefore, coordinating and

compromising the optimization objectives are critical to solve

the multi-objective optimization problem. The multi-objective

evolutionary algorithm is one of the effective methods to solve

this problem [1]. On account of the good convergence, simple

calculation and less parameters, multi-objective particle swarm

optimization algorithm has received extensive attention and

research recently.

Since Coello and Lechuga [2] formally put forward

multi-objective particle swarm optimization (MOPSO) in

2002, people have learned some methods from multi-objective

evolutionary algorithms to improve the multi-objective particle

swarm optimization (MOPSO) algorithm, emerging many

improved algorithms, such as adopting crowding distance

sorting, clustering technique [3], niching technique [4] and

adaptive grid [5], [6], so on. All of these improvements

aim at solving two key problems: 1) How to find the true

Pareto solution set; 2) How to maintain the diversity of Pareto

solution.

Classical Particle Swarm Optimization (PSO) algorithm

exists the defect of low local search accuracy. The
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Quantum-behaved Particle Swarm Optimization (QPSO) [7]

algorithm has stronger search ability, faster convergence and

less parameters, which can improve weak ability and low local

searching precision in PSO. But RDPSO algorithm has better

performance compared with QPSO. So we introduce it into

solving the multi-objective optimization problem. But when

we use it to solve the multi-objective optimization problem,

fast convergence means that the algorithm is easy to premature

convergence and lose the diversity of solutions. Therefore,

we need to introduce crowding distance sorting to maintain

the diversity of Pareto solutions and find the true Pareto

optimal solution finally. Crowding distance sorting can fully

reflect the density information in spite of high computational

complexity, and it is conducive to cut the particles with high

redundancy and reserve the particles which have good global

search capability, so it is able to maintain the diversity of

solutions, this property can be proved from [8].

In this paper, we presented a multi-objective optimization

algorithm–Multi-Objective Random Drift Particle Swarm

Optimization algorithm based on RDPSO and crowding

distance sorting. Meanwhile, the simulation results reveal

that the proposed algorithm has better convergence and

distribution.

II. MULTI-OBJECTIVE OPTIMIZATION PROBLEM

DESCRIPTION

Here are the concepts [9] that are commonly used in the

multi-objective optimization problem.

A. Definition 1: Multi-Objective Optimization Problem

Assume that we solve the multi-objective minimization

problem (a maximization problem can reverse into the

minimization problem through taking opposite or reciprocal).

The mathematical model of the multi-objective optimization

problem can be described as:⎧⎪⎨
⎪⎩

min y = F (x) = (f1(x), f2(x), ..., fm(x)).

s.t.gi(x) ≤ 0, i = 1, 2, ...h;

x ∈ X ∈Rn, y ∈ Y ∈ Rm,

(1)

where, x is the decision vector, y is the objective vector; X is

considered as the decision space which is formed by decision

vector x, Y is considered as the target space which is formed

by target vector y; f is the optimization function which maps

x to target vector space.
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B. Definition 2: Pareto Dominate

Set Xf as the feasible solution set of multi-objective

optimization problem and F (x) = (f1(x), f2(x), ..., fm(x))
as the target vector. Suppose that xk ∈ Xf , xl ∈ Xf , xk

Pareto dominate xl (written forxk ≺ xl) if and only if{
∀i ∈ 1, 2, ...,m : fi(xk) ≤ fi(xl)

∃j ∈ 1, 2, ...,m : fj(xk) ≺ fj(xl)
(2)

C. Definition 3: Pareto Optimal Front

Pareto optimal front is composed of objective vectors set

which are in correspond with Pareto optimal solutions for a

multi-objective optimization problem.

Different from the single problem, the optimal solution

for the multi-objective optimization problem does not exist,

which only has Pareto optimal solution. In general, though

there are many Pareto optimal solutions in the multi-objective

optimization problem, the Pareto optimal solution for the

multi-objective optimization problem is proved to be only

an acceptable ”satisfied solution”; improving the performance

of any one objective will inevitably lead to the depressed

performance of others.

III. RANDOM DRIFT PARTICLE SWARM OPTIMIZATION

ALGORITHM

RDPSO is one of the swarm intelligence methods inspired

by the free electron model of metal conductors in an external

electric field [10]. It adopts a novel set of evolution equations

which is able to enhance the ability of global search. Through

trajectory analyzing, we can see that the convergence of the

PSO algorithm can be achieved by each particle converging

to its local attractor, we define Pi,n = (P 1
i,n, P

2
i,n, .., P

n
i,n) as

the coordinates, and

P j
i,n =

c1r
j
i,nP

j
i,n + c2R

j
i,nG

j
n

c1r
j
i,n + c2R

j
i,n

, 1 ≤ j ≤ N, (3)

where, rji,n and Rj
i,n are the random numbers on (0, 1). The

acceleration coefficients c1 and c2 generally are set to 2. Thus,

(3) can be transformed into (4).

P j
i,n = ϕj

i,nP
j
i,n + (1− ϕj

i,n)G
j
n, (4)

where,

ϕj
i,n =

c1r
j
i,n

c1r
j
i,n+c2R

j
i,n

.

The particles directional movement toward is similar to the

drift motion of an electron in a metal conductor placed in

an external electric field [11]. Based on this fact, we suppose

that the behavior of particle in RDPSO is resemble to the

movement of an electron in a metal conductor in an external

electric field. Consequently, there are two parts as to the

movement of particle towards P j
i,n: the thermal motion and

the drift motion.

Thus, the particles velocity can be represented by V j
i,n =

V Rj
i,n+V Dj

i,n, where V Rj
i,n and V Dj

i,n respectively delegate

the velocities of the thermal motion and the drift motion

towards P j
i,n. RDPSO algorithm only needs to modify

Fig. 1 Diagram of calculating the ith point crowding distance

the particle’s velocity updating equation, which reduces

the complexity of the algorithm and computational cost.

According to the following expression, we update V Rj
i,n and

V Dj
i,n:

V Rj
i,n+1 = σj

i,nλ
j
i,n+1. (5)

V Dj
i,n = β(P j

i,n −Xj
i,n). (6)

σj
i,n in (5) is the standard deviation of a Gaussian distribution,

whose value is determined adaptively by

σj
i,n = α|Cj

n −Xj
i,n|, (7)

where, Cj
n = (1/M)

M∑
i=1

P j
i,n, (1 ≤ j ≤ N) is considered

as the best mean position. α and β are two positive real

numbers called the thermal coefficient and the drift coefficient.

Obviously, the velocities of the thermal motion V Rj
i,n obey

the Maxwell velocity distribution law. From (6), we can see

that the velocities of the drift motion V Dj
i,n make particle

move towards P j
i,n in each iteration. The drift coefficient β

plays a decisive role, the particles local searching capability

is better when 1 ≤ β ≤ 2. Therefore, we adopt the following

evolution equations for RDPSO.

V j
i,n+1 = α|Cj

n −Xj
i,n|λj

i,n+1 + β(P j
i,n −Xj

i,n. (8)

Xj
i,n+1 = Xj

i,n + V j
i,n+1 (9)

IV. A MULTI-OBJECTIVE RANDOM DRIFT PARTICLE

SWARM OPTIMIZATION ALGORITHM BASED ON

CROWDING DISTANCE SORTING (RDPSO-CD)

A. The Basic Theory of Crowding Distance

Crowding distance [12] is used to measure the proximity

between a point and its neighbors. Without loss of generality,

our derivation will be highlighted with two objectives, but

the results can be easily extended to multiple objectives. The

crowding distance of the solution can be obtained by:

idistance = (1/2)(if1dist + if2dist), (10)

where, if1dist and if2dist are the adjacent edge in this rectangle

as shown in Fig. 1. Crowding distance can be used to evaluate

size of the cuboid, contains only the point without any other

points.
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The process of calculating the crowding distance of each

point in solution set T , is as:

Step 1.Count the number of solutions l and initialize

crowding distance for each point in set TT i
distance =

0, i = 1, 2, ..., l, and set the objective function

counter j = 1.

Step 2.Sort the solution according to the jth objective

function value fj(T ), the new solution set written

as TS.

Step 3.In set TS, define the first and the last as positive

infinity: TS1
distance = TSl

distance = ∞.

Step 4.Calculate crowding distance of the rest solution

TSi
distance(2 ≤ i ≤ l − 1) according to (11):

TS1
distance = TSi

distance+(TSi+1
j −TSi−1

j ), (11)

where, TSi+1
j is the (i+1)th solution corresponding

jth objective function value.

Step 5.j = j + 1, return to step 2.

In order to ensure uniformity of solutions, we need to lay off

redundant solutions. For further optimization, we are inclined

to choose the solutions with larger crowding distances. In the

light of the above process, we know that the marginal points

are apt to be selected. The higher average crowding distance,

the greater diversity of population.

B. External File Updating and Maintenance Strategy Based
on Crowding Distance

External file (archive) first appeared in the SPEA algorithm.

It is utilized to store all the current optimal solution which do

not dominate each other in the operation. If the new solution

dominates the one or some of the solutions, or augmenting new

solution leads to the external memory exceeding the maximum

capacity, we need to update and maintain the external memory,

operation process is listed:

Step 1.If the new solution dominates the one or some of

the solutions, we should delete the solutions which

are dominated in the external memory and augment

new solution. If the new solution do not dominate

any others, then we just add the new solution.

Step 2.Judge whether the current external memory exceeds

the maximum capacity. If it exceeds the allowed

capacity, we need to perform cutting operation; and

if not, updating and maintaining are aborted.

Step 3.Calculate the crowding distance of all solutions in

the external memory and sort those in descending

order.

Step 4.According to the order in step 3, if there are two or

more in last, then we should randomly choose one

of them and shift it out. Return to step 2.

C. The Selection Mechanism of Global Best Particle

The global best particle (leader particle) mainly guide

particles globally searching, the choice of the leader particle

is directly related to whether the algorithm can find Pareto

solution set. With the propose of the diversity and distribution

of solutions, leader particle of each solution can be determined

according to crowding distance of the existing optimal solution

in the external memory. The solution with higher crowding

distance distribute more uniformly. Hence, after calculating

crowding distances of all leader particles in external memory,

we sort all of them in descending order. Then, taking the top

ten percent of the particles as candidate leader particles of the

current solution. Finally, each solution randomly chooses its

own leader from these candidate particles.

D. MORDPSO-CD Algorithm Flow

According to the above algorithm thought and principle, the

main pseudo-code MORDPSO-CD algorithms is as:

Algorithm 1 The MORDPSO-CD algorithm

Begin:
Pre-assign M , N , Vmax, α and β
Initialize the current positions and velocities of all particles

randomly;

Set the current positions as the personal best positions of

each particle;

Evaluate the objective values of the personal best positions;

Initialize the external memory using the Pareto-dominated

rules;

Set n = 0
while not(termination condition) do

n = n+ 1
for i = 1 → M do

Assign Gi,n for each particle according to Section

IV.C
Update Xi,n and Vi,n according to (8) and (9);

Evaluate the objective values of the particles;

Update Pi,n according to (4) in the literature [10]

and Pareto-dominated rules;

Update the external memory based on

Pareto-dominated rules and Section IV.B);

end for
end while

V. EXPERIMENTS

A. Algorithm Performance Evaluation

This algorithm uses convergence, distribution and operation

time as evaluation parameters. Calculate the average distance

between the optimal front obtained by experiment and the true

optimal front according to (12), written as GD, which is used

to evaluate convergence of algorithm.

GD =

√∑ns

i=1 d
2
i

ns
, (12)

where, ns is the number of optimal solutions, di is Euclidean

distance between the ith point of the Pareto optimal front

obtained by experiment and the nearest point of the true Pareto

optimal front. As indicated by definition, the smaller of GD,

the closer of optimal front obtained by experiment and the true

optimal front, and the better convergence.

Distribution of algorithm is mainly measured by distribution

scope SP. the smaller of SP, the more uniformly of optimal
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solution distribute in objective space. The definition of SP is

as:

SP =

√√√√ 1

ns − 1

ns∑
i=1

(d̄− di)2, (13)

where, di = min
j �=i

{
n∑

ni=1
|fni

i − fni
j |

}
, d̄ = 1

n

ns∑
i=1

di

B. Simulation Experiment

In this paper, we select the standard test functions ZDT1,

ZDT3 and DTLZ2 to evaluate the performance of algorithms.

These standard test functions have different characteristics,

such as non-convexity, discontinuity, and so on,and they can be

used to test searching ability of algorithms in different ways.

ZDT1 and ZDT3 are the two-objective minimum problem,

DTLZ2 is the three objective minimization problem.

C. Results

Set the population size M = 100, iterations G = 100,

the size of external memory C = 100 and the grid is

divided into 10. The parameters of MORDPSO-CD are set

as α = 0.25, β = 1.95, the parameters of MOQPSO-CD are

set as α = 0.25,, and ω = 0.1, c1 = 2, c2 = 2 in PSO-In.

Randomly select 30 experiments results, each experiment runs

independently, three algorithms use the same initial particle

swarm.

TABLE I
PERFORMANCE EVALUATION OF THREE ALGORITHMS BASED ON

CROWDING DISTANCE

Index GD SP Time
A B C A B C A B C

ZDT1 0.3661 0.3695 0.3665 0.0062 0.0065 0.0065 3.8554 9.4094 8.2304
ZDT3 0.1937 0.1872 0.1942 0.0110 0.0097 0.0097 3.5334 6.0494 6.1439

DTLZ2 0.3308 0.3327 0.3328 0.0506 0.0377 0.0687 6.6869 11.9155 8.6346

A, B, C express respectively MORDPSO-CD, MOQPSO-CD, MOPSO-in-CD.

Figs. 2-4 show the optimal front obtained by three

algorithms based on crowding distance, the solid line in figure

denotes the true Pareto optimal front of test function. Fig. 2

and Table I show that the MORDPSO-CD (Fig. 2 (a)) has

better convergence and distribution than the other algorithms,

running time is significantly less than other algorithms as well.

MORDPSO-CD has the smallest GD, the best convergence

properties, and the distribution of solution is in the middle

level on ZDT1 (Fig. 2) and DTLZ2 (Fig. 4) problem. The

convergence and distribution of MORDPSO-CD is second

only to MOQPSO-CD on ZDT3 (Fig. 3) problem.

The optimal front achieved by MORDPSO-CD is better

approximation to the true optimal front, and the other

algorithms especially MOQPSO-CD does not get the optimal

solution on the side and does not get some approximate

solutions, as shown in Fig. 2. This phenomenon also appears

in ZDT3, which has five sections discrete true optimal front.

MORDPSO-CD gets five sections approximate solution, but

the other algorithms do not find the solution in the same

section (Figs. 3 (b) and (c)), this suggests that MORDPSO-CD

has strong ability of searching the boundary solution. There is

a large gap between some approximate solutions achieved by

all algorithms on DTLZ2 problem and true optimal solution.

The results show that MORDPSO-CD has the best

convergence and distribution on ZDT1 problem. Meanwhile,

MORDPSO-CD has the best convergence but distribution

of solution is in the middle level on DTLZ2 problem.

However, the convergence and distribution rank only second

to MOQPSO-CD.

VI. CONCLUSION

In this paper, we introduce RDPSO into multi-objective

optimization problem and propose multi-objective Random

Drift Particle Swarm Optimization algorithm based on

crowding distance sorting (MORDPSO-CD). Besides,

calculating the crowding distance, updating and maintaining

the external memory, the choice of leader particle are

discussed in detail. We adopt standard test functions

and choose convergence, distribution and running time

as performance indicator to compare MORDPSO-CD,

MOQPSO-CD, MOPSO-In. The simulation on typical test

functions indicates that this proposed algorithm has better

global optimization and rapid convergence.
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Fig. 2 The optimal front obtained by (a) MORDPSO, (b) MOQPSO, and (c) MOPSO-In based on crowding distance on ZDT1

Fig. 3 The optimal front obtained by (a) MORDPSO, (b) MOQPSO, and (c) MOPSO-In based on crowding distance on ZDT3

Fig. 4 The optimal front obtained by (a) MORDPSO, (b) MOQPSO, and (c) MOPSO-In based on crowding distance on DTLZ2
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