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Abstract—In this paper, the optimum weight and cost of a 

laminated composite plate is seeked, while it undergoes the 
heaviest load prior to a complete failure. Various failure criteria are 
defined for such structures in the literature. In this work, the Tsai-
Hill theory is used as the failure criterion. The theory of analysis 
was based on the Classical Lamination Theory (CLT). A newly 
type of Genetic Algorithm (GA) as an optimization technique with 
a direct use of real variables was employed. Yet, since the 
optimization via GAs is a long process, and the major time is 
consumed through the analysis, Radial Basis Function Neural 
Networks (RBFNN) was employed in predicting the output from 
the analysis. Thus, the process of optimization will be carried out 
through a hybrid neuro-GA environment, and the procedure will be 
carried out until a predicted optimum solution is achieved. 

 
Keywords—Composite Laminates, GA, Multi-objective 

Optimisation, Neural Networks, RBFNN. 

I. INTRODUCTION 
TRUCTURAL optimisation is a process by which the 
optimum design is aimed while satisfying all the defined 

constraints. In recent years, using laminated composite 
materials in fabrication of mechanical, airspace, marine and 
machine industries are of major concern, due to their high 
strength and light weight. 

The multi-objective function introduced here consists of 
weight, cost and failure loading. Thus, the weight and the 
cost will be minimized while the failure load for all the 
laminated plies is to be maximized. 

The design variables could be any combination of 
thickness, orientation of fibres and the material for each 
layer. The thickness of the layers could be considered 
continuous whereas the cost and the material type for each 
layer to be discrete. Software development was then aimed 
for the analysis and the optimum design of laminated 
composite plates under any combination of design 
parameters. The process of optimization will be carried out 
through a hybrid neuro-GA environment, and the procedure 
will continue until a predicted optimum solution is reached. 

The most common basis of the RBF is a Gaussian kernel 
function. The name RBF comes from the fact that these 
Gaussian kernels are radially symmetric; that is, each node 
produces an identical output for inputs that lie a fixed radial 
distance from the centre of the kernel. Having linked the 
RBFNN to the optimizer, a number of problems were then 
attempted, and recorded. Verification of the results indicate 
that composite laminates with a considerably  

 
 
Authors are with Department of Civil Engineering, University of Sistan 

and Baluchestan, Zahedan, Iran (e-mail: ghasemi40@yahoo.co.uk, 
eng.ehsani@yahoo.com). 

reduced weight and cost may resist very large loads, and that 
neural networks have a major role in reducing time of 
optimization process. 

II.   MULTI-OBJECTIVE OPTIMISATION 
Multi-objective optimisation is a process by which a 

vector of design parameters like [ ]**
2

*
1

* ,,, nxxxx K=  will be 
seeked so that it satisfies m inequality constraints 

0)( ≥xgi
and p equality constraints 0)( =xh j

 while 

optimising an objective function [ ]Tnxfxfxfxf )(),(),()( 21 K= . 
In this paper, the goal is to minimize weight and cost of a 
laminated composite plate while maximizing its failure load. 
Therefore a multi-objective optimization process will be 
carried out such that 

[ ])(),(cos),()( xdfailureloaxtxweightxf =  .  

III. ANALYSIS OF LAMINATED COMPOSITE PLATES 
Composite laminates are considered as orthotropic 

materials. An orthotropic body has material properties that 
are different in three mutually perpendicular directions at a 
point in the body and, further, have three mutually 
perpendicular planes of material symmetry. Thus, the 
properties are a function of orientation at a point in the 
body. Because of their low thickness sizes, they can be 
modelled as shells.  

In the next section, the stress-strain relations for a plane 
stress of an orthotropic material will be noted. 

A.  Strain-Stress Relations in an Orthotropic Material  
For the lamina in the 1-2 plane of Fig. 1, a plane stress 

state is defined by setting 
03 =σ          023 =τ          031 =τ                   (1) 

Thus, using (1), strain-stress relations can be formulated as 
in (2) 
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Fig. 1 Unidirectional reinforced lamina 
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B.  Stress-Strain Relations for a Lamina of Arbitrary 
Orientation 

For a set of lamina that is in x-y plane and it's principal 
directions are in 1-2 plane as in Fig. 2, using Transformation 
matrix, the stress relation is 
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where [ ]T  is Transformation Matrix. 
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Similarly the strain relation will be obtained as 
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Fig. 2 Positive rotation of principal axes from arbitrary x-y axes 

 
However, if the matrix R is defined as  
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using (4) to (7), it will lead to the following relation. 
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where
_
Q is the transformed stiffness matrix [1].  

C.   Strength of an Orthotropic Lamina 
Strength of a lamina is depended on fibre material the 

matrix and its fibre angle. In composite laminates we have 
three principal strengths, as shown in Fig. 3, namely X as 
the axial or longitudinal strength, Y the transverse strength 
and S as the shear strength. 

 
Fig. 3 Definition of fundamental strengths for a unidirectionally 

lamina 
 

If the material has unequal properties in tension and 
compression as do most composite materials, then the 
following strengths are required: 

tX = axial or longitudinal strength in tension, cX = axial 

or longitudinal strength in compression, tY = transverse 

strength in tension, cY  = transverse strength in compression 
and S = shear strength. 

 
D.   Tsai-Hill Theory 
In this theory for orthotropic materials we have the 

relation 
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Ifσ is in compression, one should use cX and cY , 

otherwise tX  and tY  will be used. 

E.  Loads and Moments of Laminated Plates 
Using Integration over thickness of a layer, Moments and 

Loads for each layer can be computed. Equation (11) shows 
the leading relation concluded: 
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where { }xyyx NNNN ,,=  and { }xyyx MMMM ,,=  are 

loads and moments vectors. 0ε and κ are strain and 
curvature of middle plane, respectively. [ ]A  is extensional 

stiffness matrix, [ ]B  is coupling stiffness matrix and [ ]D  
is bending stiffness matrix. 

F.   Environmental Effects 
Environmental effects change strength and stiffness of 

laminates and the matrix. In this paper two of the most 
important effects which are considered, are the thermal and 
moisture effects. 

1. Thermal effects: If thermal changes are taken into 
account in layers, thermal loads and moments shown in 
Eq.(12) should be subtracted from (11) 
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Where z  is the momental distance from the 
corresponding layer to the symmetrical plane. TΔ  is 
temperature difference, xα  and yα  are coefficients and 

xyα  is shear coefficient of thermal expansion. 

     2. Moisture effects: Assigning cΔ  as moisture 
difference, similarly one can conclude that 
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Having completed formulations for the analysis, in the 
next section, the optimization technique used in this study, 
based on Genetic Algorithm, will be defined. 

G.   Developed Analysis Program 
In this study, the analysis program, emphasizing on the 

moisture and thermal effects, was developed. The validity of 
the developed program was also compared and well 
matched with the commercial program LAMINATOR. 

There after, the idea was to determine the failure load by 
which all the layers one by one fail to respond. In this case, 
one can simply say that the maximum failure load is met. 
Fig. 4 issues the above statement graphically. 

 

    
Fig. 4 Analogy between buckled plate and laminate load-

deformation behaviour 
 

IV. GENETIC ALGORITHM 
In this research we use Genetic Algorithm (GA) for a 

multi-objective optimization of composite laminates, where 
weight, cost and failure loads for the laminated composite 
plates are interconnected. The design parameters are angle 
of fibres (θ ), layer thickness sizes (t) and material types 
(M) for each layer. 

A.  Mathematical Model 
1. Objective Function:  The multi-objective function used 

contains three major terms as in (14): 
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where ϕ  is the goal function, W is weight of all layers, 

maxW is maximum weight that layers can possess, C is cost 

of all layers, maxC is maximum cost that layers may contain, 

xyyx MNN ,,, K  are failure loads and moments for all 

layers,
maxmaxmax ,,, xyyx MNN K are the maximum failure 

loads and moments, and  nl  is number of loads applied to 
the structure. For example if only xN  and xM  applied to 
the plate, then nl=2. 

Computation of the fixed value maxW was made by 
choosing maximum thickness and heaviest material for all 
layers. Similarly, maxC was computed by assigning the 
maximum thickness, and relatively most expensive materials 
for all layers which according to the list available in 
Reference [5], it will be the case when  45=θ .  

And finally calculation of 
maxmaxmax ,,, xyyx MNN K , will 

be set by choosing maximum thickness, strongest materials 
and adapted θ  with location of loads and moments. 

2. Constraints: To enable a rather faster convergence to 
the optimum solution, some constraints are introduced. 
Thus, after the process of analysis of each individual belong 
to each generation, if any of the designs had failure loads 
and moments less than 15% of maximum computed loads 
and moments or being heavier than 45% of maximum 
weight or even found to be more expensive than 45% of 
maximum cost of the plate, they will not be allowed to breed 
and will automatically be replaced by another randomly 
generated individual which satisfies all the constrains as 
listed in  (15): 

 

max)(15.0)( dFailureLoadFailureLoa ipop ≥   

max)(15.0)( entFailureMomentFailureMom ipop ≥  

max)(45.0)( WeightWeight ipop ≤                                     (15) 

max)(45.0)( CostCost ipop ≤  
 

where the subscript ipop indicates one design of a 
population, and the subscript max refers to the maximum 
possible value of that parameter.  

 

B.   Genetic Operators 
There are available catalogue lists of 12 fibre angles, 13 

layer thicknesses and 15 material types where the three 
different design variables are chosen from. They are listed in 
the Tables I, II and III. 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

10
13
8
6

9
8
3
11

1
9
5
2

Design
 

Fig. 5 Sample Design 
 

Fig. 5 shows one sample design of a generation. Columns 
one, two and three of this design, show θ , t  and M, 
respectively. This design has 4 rows and it means that there 
are 8 layers available for this design. That is because of 
symmetry, which means there are only four layers to be 
shown. Numbers in this matrix must change using Tables I, 
II and III.  For example,θ , t  and M for layer 2 of this 
design is 60 deg. , 0.1cm and AS4/5250-3, respectively. 
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TABLE I 
CATALOGUE LIST OF FIBRE ANGLES 

θ  1 2 3 4 5 6 

deg 0 15 30 45 60 75 

θ  7 8 9 10 11 12 

deg 90 -15 -30 -45 -60 -75 

 
TABLE II 

CATALOGUE LIST OF LAYER THICKNESSES 

t 1 2 3 4 5 6 7 

cm 0.06 0.08 0.1 0.12 0.14 0.16 0.18 

t 8 9 10 11 12 13 

cm 0.2 0.22 0.24 0.26 0.28 0.3 

 
 

TABLE III 
CATALOGUE LIST OF MATERIAL TYPES 

M Material name 
1 T300/5208 
2 T300/934 
3 T300/976 
4 AS/3501 
5 AS4/3501-6 
6 AS4/3502 
7 AS4/APC2 
8 AS4/5250-3 
9 Generic IM6 

10 IM6/APC2 
11 Generic E-Glass 
12 Generic S-Glass 
13 S2-499/SP 
14 Generic Kevlar 
15 GY70/934 

 
1. Mating Pool: After generating the first population, and 

having analysed each of the individuals, the obtained 
objective values will be sorted. They are then credited with 
respect to their validities. For the purpose of carrying the 
genetic operations then, a mating pool is generated. The 
procedure of generating the mating pool is such that  
100% individuals in the mating pool=the first 50% of  total 
+ the first 20% of  total+ the first 10% of  total+ random 
20% of the remaining individuals.  

Therefore there will be 100% individuals in the mating 
Pool. Now, in order to proceed with creation of new 
generations towards better designs, genetic operations take 
place.  

2. Selection: Due to a specific type of creating a mating 
pool, selection operator is carried out quite randomly where 
the credits to better designs were already given in generating 
the mating pool. However, out of a 100% individuals in a 
generation there are only 10% of the new generation to be 
created through selection. 

 
Fig. 6 Cross-over for thickness of the layers  

(a) two sample parents     (b) children 

3. Cross-over: Since the algorithm introduced in this 
study deals with real variables, which are themselves of 
three different types (θ , t and M), therefore, there will only 
be three positions for the cross-over to take place. Thus, 
when two designs are selected from mating pool, they may 
randomly exchange theirθ , t or M. Fig. 6 demonstrates the 
exchange of the second type of the design variables, as a 
result of which children are created. However, out of a 
100% individuals in a generation there are only 30% of the 
new generation to be created through cross-over.   

 
4. Mutation: This type of genetic operators is carried out 

similar to Cross-over. However, as indicated in Fig. 7, in 
case of the thickness of the layers to mutate, within their 
catalogue range they will be randomly changed, as a result 
of which new children are created. However, out of a 100% 
individuals in a generation there are 60% of the new 
generation to be created through mutation.   
 

 
Fig. 7 Mutation for thickness 

  (a) before Mutation      (b) after Mutation 
 

V.   ARTIFICIAL NEURAL NETWORKS 
The design of Neural Network (NN) has been inspired by 

the biological research on how the human’s brain works. 
The brain is a network consisting of approximately 2.5 
billion simple processors, called neurons, connected to one 
another through branchlike structures called axons and 
dendrites (see Fig. 8). Synapses connect the axons and 
dendrites of one neuron to those of another. The objective of 
NN is to mimic the neurons in the brain by linking together 
many simple processors, called Artificial Neurons or Nodes. 
Variable strength connections, called weights, implement 
the biological synapses [4], [8]. 

 
Fig. 8 The structure of a biologic neuron 

 
The main objective in neural model development is to 

find an optimal set of weight parameters w  such that 
),( wxyy =  closely approximates the original problem 

behaviour. This is achieved through a process called 
training. During training, the neural network performance is 
evaluated by computing the difference between actual NN 
outputs and desired outputs for all the training samples. The 
difference is also known as the error. The weight parameters 
w  are adjusted during training, such that this error is 
minimized. The technique by which the training phase is 
processed is called back propagation, a detail of which is 
given in [6], [8]. However, in the following sections some 
detail of new type of neural network techniques namely 
RBF will be described. 
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A.   Radial Basis Function Neural Networks 
Radial Basis Function is a function which depends only 

on the radial distance from a point. This type of NN consists 
of three layers. The first layer is called the input layer. 
Number of neurons in this layer equates number of elements 
of the input vector. The second layer is known as the hidden 
layer. Each neuron of this layer is affected by a Gaussian 
activation function, results of which are transferred to the 
third layer, namely the output layer. Since the latter is 
influenced by a linear activation function, it is also referred 
to as the linear layer. Since the curve of Gaussian activation 
function in the hidden layer is radially symmetrical, neurons 
in the hidden layer are therefore called neurons of Radial 
Basis Function (RBF). Also, since the essence of this 
network operation is pawned to the neurons in the hidden 
layer, this type of artificial NN is known as RBF network. 

Fig. 9 shows the architecture of a simple neuron of RBF 
network in hidden layer. 

 

 
Fig. 9 RBF network architecture and a simple neuron [9] 

 
During the process of network training, the modifiable 

parameters and weight matrix of the output layer change in 
quantity such that the mean error between desired outputs 
and those of the network reach a permissible value [4], [7].  

As indicated in Fig. 9, a RBF neuron in hidden layer 
consists of three blocks: 

1. dist  block. This block determines the distance 
between input vector P and its weight vector W, so that 

∑ =
−=

R

i ii pWD
1

2)(                 (16) 

where R is number of components of P and W. Now if P 
applies to a RBF network, then R would equate number of 
columns of weight matrix. 

2. Cross Block: In this block, output of dist  being a 
value, will be multiplied by the bias of a neuron. Bias, is a 
weight itself which is compared with a weight that transfers 
a constant input value one to the cross block. 

3. radbas Block: The output of cross block is used as an 
input to the Gaussian basis function. The maximum value of 
this function being equal to one, appears when its input is 
equal to zero. This occurs when input vector to the neuron 
and weight vector match very closely in value. Thus, an 
increase in the distance between these two vectors causes a 
quick reduction on the value of radbas. This function uses 
the following relation in its computations: 

2nea −=                                 (17) 
Using bias b in cross block, adjusts the sensitivity of 

RBF neuron to the parameter D  in (16). For instance if the 
bias for a RBF neuron had a value of 0.1, it would output 
0.5 for any input vector P at vector distance of 8.326 

(0.8326/b ) from its weight vector W. This is because n and 
radbas( n ) would be computed as follows: 

                                    
 5.08526.01.0*326.8*376.8 =→==→= radbasnbn   (18) 

 
Therefore the major role of the bias in RBF neuron is to 

increase the network generalizing ability. 

VI. OPTIMISATION NETWORKS 
In the present research, training of a neural network 

requires provision of solutions to a number of laminated 
plates. Note that all the individuals in generations should 
satisfy all the constraints. Otherwise they will be replaced 
by other randomly generated and valid individuals. The 
optimisation procedure can be detailed in two stages. First, 
to train the RBFNN network, the best 30 percent of the total 
population of the analysed first generation are transferred to 
the network through a linkage to the MATLAB software 
environment. Obviously, for each sample, the values of the 
design variables are considered as one set of input data to 
enter the NN, and its corresponding loads and moments, as 
the reference output to the NN for that sample. 

Having completed the first stage of the algorithm, the 
second stage is to verify the validity of the trained network. 
Thus, a new design of the remaining 70% individuals of the 
first generation is randomly chosen and is verified by the 
network. In case the outcome is not within the accepted 
range, the best 10% population of the second generation is 
then added as training samples to the network, for which it 
should be trained. This process will be continued until the 
error on the results is minimized to the accepted value. 
Thereafter, the analysis will automatically be carried out 
through the trained network.  

In the following section some examples will be presented, 
results of which involve the multi-objective optimization of 
composite plates using a hybrid merging of GA with RBFN.  

 
VII. EXAMPLES 

A.   Example (1) 
This example is a laminated plate with 9 layers, four of 

which are symmetrical as shown in Table IV.  The plate is 
under a distributed yN loading. As stated in Section VI, the 
training of the network was completed in the fifth 
generation, after which the analysis was carried out using 
RBFNN and at the same time using the developed analysis 
software. This was made in order to enable a comparison of 
the two procedures as shown in Fig. 10. 
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Fig. 10 Comparison between RBFNN and Analysis in solving 

example (1) 
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The optimum solutions obtained using RBFNN are listed 
in Table IV which shows that at least the optimum θ  and 
M match those anticipated.  

 
TABLE IV 

PARAMETERS OF OPTIMISED LAMINATES FOR EXAMPLE (1) 
Layer no. Angle (degree) Thickness (m) Material 

1(9) 90 0.0028 Generic 
IM6 

2(8) 90 0.0010 Generic 
IM6 

3(7) 90 0.0008 Generic 
IM6 

4(6) 90 0.0008 Generic 
IM6 

5 90 0.0008 Generic 
IM6 

Optimum solutions 

yN =3481960 mkg  Weight=11.2 3mkg  Cost = 8.09 U 

 
B.   Example (2) 
This example is a laminated plate with 12 layers, six of 

which are symmetrical as shown in Table V.  The plate is 
under distributed xN  and xM  loading where xN = 2 xM . 

Also there is a temperature change of Co15+ for all the 
layers. The training of the network was completed similar to 
Example (1). The optimum solutions were obtained then by 
setting the trained RBFNN as the analyser. For the means of 
comparison, the same individuals in all generations were 
also analysed the developed analysis program. Fig. 11 
shows the comparisons made. 
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Fig. 11 comparison between RBF and Analysis in solving 

 example (2) 
 

Table V shows the parameters of optimized laminated 
plate. 

TABLE V 
PARAMETERS OF OPTIMISED LAMINATES FOR EXAMPLE (2) 

Layer no. Angle 
(deg) 

Thickness (m) Material 

1 (12) 0 0.0022 Generic IM6 
2 (11) 0 0.003 Generic IM6 
3 (10) 0 0.0006 Generic 

Kevlar 
4 (9) 0 0.0006 Generic 

Kevlar 
5 (8) 0 0.0006 Generic 

Kevlar 
6 (7) 0 0.0008 Generic 

Kevlar 

Optimum solutions 

xN =16175 mkg  xM =8087 mmkg /.  T
yN =7180 mkg  

Weight=16.6 3mkg  Cost = 9.95U 

 
VIII.   CONCLUSION 

With regard to the thermal and moisture effects on the 
analysis of composite laminates, the analysis program 
developed well matched that in the literature. 

Also, the new Genetic Algorithm introduced here to 
handle real variables and to deal with multi-objective 
functions, resulted on a fast and global convergence of the 
optimum solution, as for such examples on composite 
laminates, in particular for example 1, it is rather simple to 
anticipate the solution. It was also shown that by 
emphasizing more on the role of mating pool, one can 
reduce selection contribution in the genetic operations.   

Involving RBF Neural Networks as to predict and cover 
for the analysis, it concluded in closely satisfied 
comparisons for both examples attempted. This 
investigation closely validates the clear power of neural 
network techniques in solving laminated composite plates.  

Therefore, regarding a reasonable accuracy of the results 
performed using RBFN networks, it is possible to produce 
software that could promptly expose the optimum without a 
need to analyse the structure. This is particularly effective 
where a very quick response to the problem is vital. 
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