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Abstract—This paper proposes a solution to the motion planning 

and control problem of a point-mass robot which is required to move 
safely to a designated target in a priori known workspace cluttered 
with fixed elliptical obstacles of arbitrary position and sizes. A 
tailored and unique algorithm for target convergence and obstacle 
avoidance is proposed that will work for any number of fixed 
obstacles. The control laws proposed in this paper also ensures that 
the equilibrium point of the given system is asymptotically stable. 
Computer simulations with the proposed technique and applications 
to a planar (RP) manipulator will be presented. 
 

Keywords—Point-mass Robot, Asymptotic stability, Motion 
planning, Planar Robot Arm. 

I. INTRODUCTION 
OTION planning and control of autonomous robots has 
been an active research area for more than two decades 

now. The literature is inundated with algorithms, strategies 
and methods that addresses the motion planning and control 
problem of various different robotic systems [1], [2], [3], [4], 
[5], [6]. The design and development of autonomous robots 
must ensure that the robot is be able to safely navigate to its 
goal position while satisfying the cost and time constraints 
tagged to the system [6]. The presence of obstacles in the 
robots workspace adds another difficult dimension to the 
motion planning problem of autonomous robots. According to 
[7], if a workspace is cluttered with obstacles, an optimal 
collision-free trajectory is desired, as a solution of motion 
planning problem that can lead the robot to its goal position.  

Researchers, over the years, have produced numerous 
algorithms for tackling the motion planning and control 
problem of autonomous robots. The three basic algorithms 
are: physical analogy-based method, graph search technique 
and neural networks. The reader refer to [8] for more 
information on these types of algorithms. With continuous 
time-invariant feedback control laws it is possible to achieve a 
collision-free trajectory of the robot that can guarantee 
stability of the system [7, 8]. However, to show asymptotic 
stability with smooth controllers, in obstacle-ridden 
workspace, is still a challenging problem. An asymptotic 
stable system ensures that all trajectories starting in the 
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neighbourhood of the equilibrium point converges to the 
equilibrium point where as in a stable system, some 
trajectories starting in the neighbourhood of the equilibrium 
point may lead to traps outside the equilibrium point [8]. 
These traps are due to the local minima in the energy function 
[8]. 

Some researchers have developed useful techniques to 
solve the problem of local minima via the use of some special 
functions. The work of Koditschek [9] and Tanner et al. [10] 
are noteworthy. Koditschek [9] used Potential Functions to 
study the problem of local minima while Tanner et al. [10] 
used Dipolar Inverse Lyapunov Functions. Other methods 
found in literature include techniques such as, executing a 
random robot motion [11], temporarily relocating the goal 
[12] and constructing a potential field based on superquadrics 
[13]. More recently, Vanualailai et al. in [14] proposed an 
asymptotically stable point-mass system. The method was 
based on looking for initial conditions that does not lead to a 
local minimum. The authors considered a planar point-mass 
robot moving from its initial position to the desired goal 
whilst avoiding a static obstacle. Since the system was proven 
to be asymptotically stable, its Lyapunov function, which 
produces artificial potential fields around the goal and the 
obstacle, had no local minima other than the goal. 
 In this paper, we will control the motion of a point-mass 
robot in an obstacle-ridden workspace. We will consider 
elliptical obstacles randomly distributed in a priori-known 
workspace. The main aim of this paper is to design time-
invariant continuous control laws that should ensure 
asymptotic stability of the system. An algorithm for target 
convergence and obstacle avoidance will be proposed that will 
work for any number fixed obstacles of various size and 
positions. We have a step-by-step method of constructing the 
control laws.  Moreover, the solution proposed in this paper 
for a point-mass robot can easily be applied to other planar 
robots such as planar robot arms, carlike robots, to name a 
few. As an illustration, we have considered the motion of a 
planar (RP) robot in Section VII. 
 The rest of the paper is organized as follows. In Section II, 
we give the definition of a point-mass robot and derive its 
kinematic model. The main objective of this paper is given in 
Section III. The motion planning and control problem of the 
point mass in obstacle free workspace is described in Section 
IV, together with introducing a tailored velocity algorithm. In 
Section V, we propose a collision-free algorithm where the 
point mass robot moves safely from an initial position to its 
target position in a workspace cluttered with fixed elliptical 
obstacles. Stability analysis is carried out in Section VI while 
Section VII contains the applications of the control laws on a 
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planar robot (RP) arm. Finally, in Section VIII concluding 
remarks on the contributions and future work are made. 

II.   MODELING THE POINT-MASS ROBOT 
  Let P be a point-mass robot in the 1 2z z  plane, positioned at  
( , )x y  with a circular protective region of radius 0Pr ≥ . 
Precisely, P can be represented as  
 

{ }2 2 2 2
1 2 1 2( , ) : ( ) +( ) .PP z z z x z y r= ∈ − − ≤R  

 
According to [8], the disk-representation strategically aids 

in the construction of the path planning algorithms. Let P be 
moving with a velocity of v in the 1 2z z  plane. Suppose 1u  and 

2u  are the 1z  and 2z  components, respectively, of v, then the 
kinematic model of P can be expressed as 
 

1 2

0 0

,
(0), (0)

x u y u
x x y y

= = ⎫
⎬= = ⎭

& &
                           (1) 

 
System (1) is a description of the instantaneous velocities of 

the point-mass where 1u  and 2u   are classified as the 
controllers. Hereafter, we shall use the vector notation   

( )( ) ,t x y=x to refer to the position of P. 

III. MAIN OBJECTIVE: PROBLEM STATEMENT 
Let P be the point-mass robot moving in the workspace W. 

Suppose 1 2,  , ,   qFO FO FOK  are stationary elliptical 
obstacles randomly distributed in W. Assume that the position 
and size of P and 1 2,  , ,   qFO FO FOK is a prior known. The 
problem statement is:  

Given any initial position and orientation of P in W, 
design the controllers 1u  and 2u  so that P can 
converge to a goal position whilst avoiding collisions 
with the stationary obstacles. 

IV. MOTION PLANNING 
In our motion planning problem, we want the point-mass 

robot P to start from an initial position, move towards a target 
and finally converge at the centre of the target. We therefore, 
require a predefined target fixed for P. This target is defined 
as follows [8]: 
 
Definition 1: The target for P is a disk of centre ( )1 2,p p and 
radius Tr  . Precisely, it is a set 
 

{ }2 2 2 2
1 2 1 1 2 2( , ) : ( ) +( ) .TT z z z p z p r= ∈ − − ≤R  

 
Now, we look for an appropriate form of v(t), which can 

move P from its initial position to the target position and stop 
there. That is, we want a velocity which should be depended 
on the initial and final positions of the robot. The velocity 
algorithm proposed is 

0| | ( )
,

(0)
v t

v
−

=
−

x e
x e

                                (2) 

 
where 0| |v  is the initial velocity of P at 0t =   and 

( )1 2, (0)p p= ≠e x is an equilibrium point of system (1). Note 
that v(t) is defined, continuous and positive over the domain 
 

{ }2
1 2: ( (0),  (0) ( ,  ) .D x y p p= ∈ ≠x R  

 
We further ( )tξ  as the angular position of the target center 

relative to the current position of P at time t. The angle ( )tξ  
is defined implicitly 

 
2

1

( )
, if ( )

( )tan ( )
tan ( 1), if ( )

p y t
t

p x tt
t t

ξ
ξ

−⎧ ≠⎪ −= ⎨
⎪ − =⎩

x e

x e
 

 
Since 1u  and 2u  are the 1z  and 2z  components, 

respectively, of v, we see that 
 

 

( )

( )

0 1
1

0 2
2

| |
,

( (0) )

| |
.

( (0) )

v p x
u

v p y
u

− ⎫
= ⎪− ⎪

⎬
− ⎪= ⎪− ⎭

x e

x e

                             (3) 

 
with this definition of 1u  and 2u , we have the following 
theorem: 
 
Theorem 1: Let 1u  and 2u  be as defined by equation (3). Then 
the point e is the only equilibrium point of system (1) and is 
globally asymptotically stable. 
 
Proof. Note that ( , ) (0,0)x y =& &  only if 1 2 0u u= =  which 
implies that ( )t =x e . Thus e  is the only equilibrium point of 
system (1). 

To prove global asymptotic stability, consider the 
Lyapunov function of the form 

 
21( ) ( )

2
L t= −x x e , 

 
which is defined, continuous, positive and radially unbounded 
over the domain 
 

{ }2
1 2: ( (0),  (0) ( ,  ) .D x y p p= ∈ ≠x R  

 
Clearly, ( )L x  has continuous first partial derivatives in the 

region D  of the neighborhood of the equilibrium point e  of 
system (1). Moreover, in the region D , we see that 

( ) 0L =e and ( ) 0L >x for all ≠x e . 
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Now, the time-derivative of ( )L x along a trajectory of 
system (1) is given by 

 
2 2
1 2( ) ( )L u u t= − + −x x e& . 

 

Again, it is clear that in the region D , ( ) 0L =e& and 
( ) 0L <x& for all ≠x e . Hence it can be concluded that e  is a 

global asymptotic stable equilibrium point of system (1). 

V.      MOTION CONTROL IN THE PRESENCE OF STATIONARY 

OBSTACLES 
Now we will consider a situation where there are stationary 

objects in the working space that the point-mass P has to 
avoid. The lth stationary obstacle is defined below. 

 
Definition 2: The lth stationary obstacle is an elliptical-shaped 
obstacle with center ( )1 2,l lo o .  Precisely, the lth stationary 
obstacle is the set  
 

2 2
2 1 1 2 2

1 2 2 2

( ) ( )
( ,  ) : 1l l

l
l l

z o z o
FO z z

a b
⎧ ⎫− −

= ∈ + ≤⎨ ⎬
⎩ ⎭

R  

for l = 1,2,…,q. 
 
Assumption 1: There is sufficient free-space between any two 
stationary obstacles for the point-mass P to steer through if 
warranted. 
 
Remark 1: Assumption 1 is inline with the work of Sharma 
et.al in [8]. This is to ensure that P could fit into the free-space 
between two obstacles, in case, one desires to steer the robot 
in between the two obstacles.  
 

In order for the point-mass robot P to avoid the stationary 
obstacles, we redefine the controllers 1u  and 2u  as: 

 
( )
( )

1

2

cos ,

sin .

u v

u v

ξ ε

ξ ε

= + ⎫⎪
⎬

= + ⎪⎭
                              (4) 

 
where ε  determines the direction in which the P will turn to 
avoid the obstacles.  If ε  > 0, then the point-mass will turn 
left; if ε  < 0, it will turn right; and if ε  = 0, it will move 
straight towards the target. Thus controlling the value of ε  
will enable the robot to avoid obstacles and reach its target 
safely. 

Definition 3: Let max > 0d   be a predefined scalar. The set S  
defined by 
 

( ) ( )

2 2
2 1 1 2 2

1 2 2 2
1 max max

( ) ( )
( ,  ) : 1

q
l l

l l l

z o z o
z z

a d b d=

⎧ ⎫− −⎪ ⎪= ∈ + ≤⎨ ⎬
+ +⎪ ⎪⎩ ⎭

RUS  

is called the sensing zone. 
Next, we define the following: 

( ) ( )

1 2 2 1
2 2

1 2
2 2

2 2
1 2

2 2
max max

( )( ) ( )( )

( ) ( )
1

( ) ( )

l l l

l l
l

l l

l l
l

l l

f x o p y y o p x

x o y o
R

a b

x o y o
D

a d b d

= − − − − −

− −
= + −

− −
= +

+ +

 

                

0,        if  1
1 , if  1

1,  if  0
1 if  0

l
l

l l

l
l

l

D
D D

f
f

α

β

≥⎧
= ⎨ − <⎩

≤⎧
= ⎨− >⎩

 

 
Note that the size of the sensing zone is determined by 

maxd . If maxd  is large, then P will avoid the fixed obstacle 
from a greater distance. Thus maxd  is regarded as the control 
parameter in this paper. 

Normally seen in literature [7], [8], [15], [16] for effective 
obstacle avoidance, the measure of the distance from the robot 
to an obstacle, appears in the denominator of repulsive 
functions. Thus in our case, we propose the following form of 
ε : 

1

1

tan
q

l l

l lR
α β

ε −

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑                                  (5) 

 
Remark 3: The function lα  ensures that the output ε  will be 
a continuous function. Thus the controller derived will be 
continuous everywhere along the trajectory of the system. The 
parameter lβ  is an indicator function. It indicates the direction  
P should turn in the sensing zone to ensure that an overall 
shortest path is achieved. 
 
Remark 4: With the form of ε  given in equation (5), we see 
that as P comes closer to lFO , then the quantity lR  will 
decrease. This will increase | ε | since lR  appears in the 
denominator. Hence an increase in | ε | will force P will 
move away from the obstacle. 
 

Substituting (5) into (4) and simplifying, we see that the 
controllers are 

 

0 1 2
1

1 2

1

0 2 1
1

2 2

1

| | ( ) ( )
,

(0) 1

| | ( ) ( )
.

(0) 1

q
l l

l l

q
l l

l l

q
l l

l l

q
l l

l l

v p x p y
R

u

R

v p y p x
R

u

R

α β

α β

α β

α β

=

=

=

=

⎫⎡ ⎤
− − − ⎪⎢ ⎥

⎣ ⎦ ⎪= ⎪
⎛ ⎞ ⎪− + ⎜ ⎟ ⎪⎝ ⎠ ⎪

⎬
⎡ ⎤ ⎪− − −⎢ ⎥ ⎪⎣ ⎦ ⎪=

⎪⎛ ⎞ ⎪− + ⎜ ⎟ ⎪⎝ ⎠ ⎭

∑

∑

∑

∑

x e

x e

 

which are bounded and continuous at every point over the 
domain 
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{ 2

2 2
1 2

2 2

: (0)  

( ) ( )
          1  for 1, 2, ,l l

l l

D

x o y o
l q

a b

= ∈ ≠ ∩

⎫− −
+ > = ⎬

⎭

x R x e

K
 

VI. SIMULATION 
To demonstrate the effectiveness of our method, we have 

simulated the trajectory of a point-mass robot navigating in a 
workspace cluttered with stationary elliptical obstacles. We 
have considered a simple setup where the robot maneuvers 
from an initial to a final configuration, whilst avoiding all the 
fixed obstacles placed randomly in the workspace. This is 
shown in Fig. 1 and Fig. 2. The nonlinear controllers 1u  and 

2u  were simulated to generate feasible robot trajectories. For 
the numerical integration of system (1), a fourth order Runge-
Kutta method was used. 
 

 
Fig. 1 Trajectory of the point-mass robot with initial position (5, 5) 

and the target placed at (25, 25) 

 
Fig. 2 Trajectory of the point-mass robot with initial position (25,5) 

and the target placed at (5, 25) 

VII. STABILITY ANALYSIS 
We utilize the Direct method of Lyapunov to carry out the 

stability analysis of system (1). 
 
Theorem 2: The point e  is a global asymptotic stable 
equilibrium point of system (1). 
Proof. Consider the Lyapunov function 
 

21( ) ( )
2

L t= −x x e , 

 
which is defined, continuous, positive and radially unbounded 
over the domain  
 

{ 2

2 2
1 2

2 2

: (0)  

( ) ( )
         1  for 1, 2, ,l l

l l

D

x o y o
l q

a b

= ∈ ≠ ∩

⎫− −
+ > = ⎬

⎭

x R x e

K
 

 
The function, ( )L x  has continuous first partial derivatives 

in the region D  of the neighborhood of the equilibrium point 
e  of system (1). Moreover, in the region D , we see that 

( ) 0L =e and ( ) 0L >x for all ≠x e . 
Now, the time-derivative of ( )L x along a trajectory of 

system (1) is given by 
 

2 2
1 2

2

0

( )
( )

1 l l

l

q

R
l

u u t
L

α β

=

+ −
= −

⎛ ⎞
+ ⎜ ⎟

⎝ ⎠
∑

x e
x& . 

 

Again, it is clear that in the region D , ( ) 0L =e& and 

( ) 0L <x& for all ≠x e . Hence it can be concluded that e  is a 
global asymptotic stable equilibrium point of system (1). 

VIII.    APPLICATION: A PLANAR ROBOT ARM 
In this section, we apply our approach to a planar robot arm 

that has a translational joint and a rotational joint in the 1 2z z  

plane as shown in Fig. 3. The arm consists of two links made 
up of uniform slender rods; the revolute (R) first link with 
fixed length and the prismatic (P) second link of varying 
length. Hereafter, we will use the abbreviation (RP) to refer to 
the joint type of the planar robot. 
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Fig. 3 A planar (RP) manipulator in the 1 2z z plane (adopted from 

[6]) 
 
With reference to Fig. 3, we assume that: 
•    the planar (RP) manipulator is anchored at the origin; 
•    the first link has a fixed length of l ; 
•    the second link has a varying length of ( )r t  at time t ;  
•    the manipulator has angular position ( )tθ  at time t ; 
•    the coordinate of the gripper is ( ( ), ( ))x t y t . 

 
Remark 5: It can easily be observed that we can express the 
position of the end-effector completely in terms of ( )r t  and 

( )tθ  as: 
( ) ( ( )) cos ( ),
( ) ( ( ))sin ( ).

x t r t t
y t r t t

θ
θ

= +
= +
l

l
 

 
We consider the kinematic model of this planar (RP) robot 

manipulator in order to model ( )r t  and ( )tθ . Suppose that 
the end-effector is moving with a velocity of  1u   in the 1z  

direction and 2u   in the 2z  direction. We see that 
2 2( )r t x y= + − l  and  

1 22 2
( )  cos sin .

  

xx yyr t u u
x y

θ θ+
= = +

+

& &
&  

Similarly,  tan /y xθ =  so that 

2 1
2 2

cos sin( )  .
  

u uxy yxt
rx y

θ θ
θ

−−
= =

++
& &&

l
 

 
Thus the kinematic equations for the planar robot arm is 

 
1 2

2 1

2 2

( ) cos sin ,
cos sin

( )

(0) (0) (0) ,
(0) atan2( (0), (0)).

r t u u
u u

t
r

r x y
y x

θ θ
θ θ

θ

θ

= + ⎫
⎪− ⎪= ⎪+ ⎬
⎪= + − ⎪
⎪= ⎭

&

&
l

l

                         (6) 

 

System (6) is a description of the instantaneous velocities of 
the planar robot arm. Here 1u  and 2u  are classified as the 
controllers. We shall use the vector notation ( , )r θ=x  to refer 
to the position of the planar robot arm in the 1 2z z -plane. 

A. Convergence to the Target 
For the end-effector, we have a designated target T with 

center ( )1 2,p p and radius Tr . We want the end-effector of the 
robot arm to start from an initial configuration, move towards 
T and converge to the center of the target. To achieve this, we 
will modify the velocity algorithm described in Section IV as:  

 
( )

( )
0 1 2

1 2

| | ( ( )) cos ( ) , ( ( ))sin ( )
,

( (0))cos (0) , ( (0))sin (0)
v r t t p r t t p

v
r p r p

θ θ

θ θ

+ − + −
=

+ − + −

l l

l l
 

 
where 0| |v  is the initial velocity of the end-effector at 0t = . 

B. Mechanical Singularities 
In reality, the motion of the end-effector is restricted in the 

sense that the end-effector of the prismatic 2-link manipulator 
cannot go inside the first link [7]. Thus the circular region 
with the origin (0, 0) as its center that encloses the first link 
is treated as an artificial obstacle for the end-effector (see Fig. 
4). For the avoidance of the mechanical singularity, we first 
define: 

 

0 2 1cos sin ,f p pθ θ= −  

max
0

max max

0,           if  
, if  

r d
d r r d

α
≥⎧

= ⎨ − <⎩
 

0
0

0

1,  if  0
1 if  0

f
f

β
≤⎧

= ⎨− >⎩
 

 
We then adopt the controllers 1u  and 2u  from Section V 

and simplify to get: 
 

[ ]

[ ]

0 1 2 0 0
1 2 2

1 2 0

0 2 1 0 0
2 2 2

1 2 0

| | ( ) ( )
,

( (0) , (0) )

| | ( ) ( )
.

( (0) , (0) )

v p x r p y
u

x p y p r

v p y r p x
u

x p y p r

α β

α

α β

α

⎫− − −
= ⎪

− − + ⎪
⎬

− − − ⎪= ⎪− − + ⎭

                (7) 

 
We note that the controllers given in (7) are bounded and 

continuous at every point over the domain 
 

{ }2
1 2: ( (0),  (0) ( ,  ) 0 .D x y p p r= ∈ ≠ ∩ >x R  

C. Simulation 
 Fig. 4 shows an interesting simulation of the manipulator 

arm starting from an initial configuration and converging to a 
target configuration whilst avoiding the artificial obstacle 
along its path. In this example, we notice that the end-effector 
encounters the artificial obstacle, formed by the mechanical 
singularity of the system, along its path. The initial and final 
position of end-effector are shown in Fig. 4. 
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Fig. 4 Trajectory of the end-effector of the robot arm with initial 

position (4.3,8.4) and the target placed at (−9.3,-1.9) 

IX. CONCLUSION 
This paper presents a simple and unique approach for 

solving the motion planning and control of autonomous robots 
in a two-dimensional plane. Firstly, a unique velocity 
algorithm, which vanishes at the goal position, is used to 
move the robot from an initial position to a goal position. 
Secondly, in the presence of elliptical obstacles, a turning 
angle is introduced which helps the robot to deviate away 
from an obstacle along its path.  

The control laws presented in this paper ensures safe and 
smooth system trajectory and works for any number of fixed 
elliptical obstacles. This has been verified through computer 
simulations. 

By using the Direct Method of Lyapunov, we see that the 
system’s equilibrium point is asymptotically stable.   
Moreover, the method proposed in this paper can easily be 
applied to other robotic systems. As an example, we have 
applied the idea to an anchored 2-link (RP) manipulator. 

Future work will involve fixed and moving obstacles of 
various other shapes such as line and arc obstacles. The result 
obtained in this paper can also be generalized to three-
dimensional motion planning.  
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