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Monotonicity of Dependence Concepts  
from Independent Random Vector into Dependent 

Random Vector  
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Abstract—When the failure function is monotone, some 
monotonic reliability methods are used to gratefully simplify and 
facilitate the reliability computations. However, these methods 
often work in a transformed iso-probabilistic space. To this end, a 
monotonic simulator or transformation is needed in order that the 
transformed failure function is still monotone. This note proves at 
first that the output distribution of failure function is invariant 
under the transformation. And then it presents some conditions 
under which the transformed function is still monotone in the 
newly obtained space. These concern the copulas and the 
dependence concepts. In many engineering applications, the 
Gaussian copulas are often used to approximate the real word 
copulas while the available information on the random variables is 
limited to the set of marginal distributions and the covariances. So 
this note catches an importance on the conditional monotonicity of 
the often used transformation from an independent random vector 
into a dependent random vector with Gaussian copulas. 

 

Keywords—Monotonic / Rosenblatt / Nataf transformation; 
dependence concepts; completely positive matrices; Gaussian 
copulas. 

I. INTRODUCTION 
N many cases, stochastic models are monotone in the 
uncertain model inputs [1]. For example, the failure 

function in many mechanical or physical systems happens to 
be monotone in some uncertain parameters, at least in the 
neighbourhood of the failure event [2, 3]. The monotonicity 
is often used to precisely compute the failure probability or 
extreme quantile. 

In what follows, we will use capital letters to represent 
random variables, lowercase letters to represent their values 
and the letters with underline to represent their random 
variable vectors or value vectors. We assume that the one 
dimensional margin is continuous and strictly increasing (so 
is the random variable). Let the failure of a structure in a 
system be quantified by the failure function )(xGz = , where 

pT
p Rxxxx ∈= ),...,,( 21 is a vector of uncertain parameters. 

We assume that its joint density function )(xf X is known (or 
its one dimensional margins and covariance matrix are 
available). For each x  in D  (the domain of )(•G , or 
physical space), we can uniformly compute the function  
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value )(xG  via a numerical code. If 
T

pxxxx ),...,,( 112111 = and T
pxxxx ),...,,( 222212 =  with 

Dxx ∈21, , we say that 1x is less than or equal to 2x for a 
partial order over D  (and write 21 xx ≤ ) if 

ii xx 21 ≤ for pi ≤≤1 . Specifically, we assume that )(•G is 
continuous and strictly monotone for the partial order 
over D . Under this assumption, )(•G is a strictly monotonic 
function with respect to each parameter ix while all others 
are fixed. Since )(XGZ =  is also a continuous random 
variable depending on X , the failure probability can be 
defined as )0( <= ZPPf and the τ-quantile of Z can be 

defined as { }ττ ≥=− )(:inf)(1 zFzF ZZ . 
In the presence of the monotonicity of failure function for 

a partial order over its domain, some methods can gratefully 
simplify the computation of failure probability or quantile 
estimation. On the failure probability computation, the 
article [4] presented an application of Random Set Theory to 
calculate the upper and lower bounds on the probability of 
predicted rock mass response. For this method, the failure 
function domain D is divided into some progressive refines 
boxes (called local elements iA ). Then the failure function 
should be evaluated at each vertex and the integral of the 
joint pdf )(xf X should be calculated over each iA . The 
method has its own shortcomings. On one hand, there are a 
great number of vertexes to be evaluated and a lot of integral 
to be calculated when the dimension is higher. On the other 
hand, the integral computation is difficult when the joint 
density function is irregular, especially in the dependence 
case. Fortunately, the articles [2, 3, 5] presented some 
methods to facilitate the failure probability computation, in 
which the failure probability can be transformed into a 
multi-dimensional volume delimited by the transformed 
failure surface. The dichotomic methods can be used to 
precisely estimate the interesting volume when the 
transformed failure function is still monotone. As to 
quantiles estimation, the article [6] shows a simulation-
based quantile estimator which can be guaranteed to be 
100% with a finite sample size.  

These methods must work in an iso-probabilistic space 
(the random variables are i.i.d). The presented articles only 
introduced the independent case in which the components of 
the random vector are independent. In this case, the inverse 

I 
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iso-probabilistic transformation is monotone and the 
transformed failure function is still monotone in the newly 
obtained space. However, it may not be the case when 
applying a transformation on a dependent X into an iso-
probabilistic space (such as Rosenblatt or Nataf 
transformation [7, 8]). In fact, its inverse transformation is 
monotone under some conditions. Aim of this paper is 
therefore to point out and discuss the favourable conditions 
under which the transformation from an independent 
(uniform or Gaussian) random vector into a dependent 
random vector is monotone. It concerns the following 
monotonicity of dependence concepts. The monotonicity 
can be considered as a characterization of dependence 
concepts.  

The paper proceeds as follows. In section II of this paper, 
a general framework for the random variable vectors 
transformation is presented and then the conditions under 
which the inverse transformation is monotone are discussed. 
A brief history of dependence concepts is also presented in 
this section. The section III presents the Rosenblatt 
transformation and a sufficient condition under which the 
inverse Rosenblatt transformation is monotone. A sufficient 
condition on the correlation matrix is deduced when the 
joint distribution is a standard normal distribution. The 
Nataf distribution approximation is introduced in the section 
IV. The next section concerns the orthogonal transformation. 
We will present some conditions on the correlated normal 
distributions which the inverse Nataf transformation is 
monotone. The 6th section introduces copulas and its 
primary applications in simulation. In fact, this section gives 
us the condition on the interesting monotonicity of 
dependence concepts. Finally, the extension and the 
conclusion are identified in section VII. 

II. RANDOM VARIABLE VECTORS TRANSFORMATION 

A p-dimensional continuous random variable vector 
T

pXXXX ),...,,( 21=  holds on: 
1. known with joint density function (pdf) of X in the 

physical space: )(xf X  or know with joint cdf : 

)(xFX ; 
2. related to an other q-dimensional random variable 

vector Y: )(xTy = and T
qYYYY ),...,,( 21= with the 

joint pdf )(yfY in a transformed space; 

3. for qp = , having unique inverse: )(1 yTx −= . 

If qp = , then the relation between X and Y can be obtained 
by the transformation [9]: 
 

Jxfyf XY )()( = ,                             (1) 

 
where J  is the Jacobean transformation matrix with 

jiij yxJ ∂∂= and 0det ≠= JJ . The Jacobean matrix 
plays an important role in the transformation. However, the 
transformation may not be unique and J is not a square 

matrix when qp ≠ . In fact, if qp < , let augmented 

vector T
qp

T yyxx );( 1
*

L+= , we can then obtain an 

augmented transformation )( ** xTy = having unique inverse 

)(1* yTx −= . The relation between X and Y can be obtained 

by: 
 

*
1 )()()(

1
Jxyyfxfyf qpXYYXY qp

L
L +

+
= ,              (2) 

 
where  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−×− )()(

*

0 pqpqI
J

J                                 (3) 

is an augmented Jacobean matrix.  

We can prove that )(XG and )(1 YTG −o have the same 
distribution.  
Demonstration: Let )()( * xGxG = . Using the Jacobean 
variables change for integral, we have: 
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(4) 
So the outputs distribution of failure function is invariant 

via inputs variables transformation. 

The monotonicity of transformed failure function is 
determined by that of the inverse transformation. The 
monotonic transformation is defined as following: 
Definition1: monotonic transformation if 0≥ijJ  for 

all pji ≤≤ ,1 , then )(1 yTx −=  is an increasing function on 

y. We can say that the transformation )(1 yTx −=  is a 

monotonic transformation, or that the matrix 1−J is of 
monotone kind. Hereafter, 0≥ijJ  for all pji ≤≤ ,1 can be 
denoted by 0≥J . However, if 0≥J , it may not deduce 
that )(xTy = is a monotonic transformation on x . Moreover, 

if 01 ≥−J , it can deduce that )(xTy = is monotone on x. In 

general, if 0≥J , it can not deduce that 01 ≥−J , except J  is 
a diagonal matrix.  

This definition means that each ix is an increasing 
function on y. So we have the following proposition.  
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Proposition1: If G is monotonic on x  and )(1 yTx −= is 

monotone on y, then the transformed function 1−= TGH o is 
monotone on y. Hence the monotonicity of inverse 
transformation constrains that of the transformed failure 
function. 

The next subsections present Rosenblatt and Nataf 
methods for transforming arbitrary random vector into 
independent standard normal random vector (Gaussian 
space) or independent uniform 1  random vector (uniform 
space) and then discuss the conditional monotonicity of the 
inverse transformation.  

Before we begin, it might be useful to give a brief 
introduction about dependence concepts. In 1966, Lehmann 
[10] had introduced “Some Concepts of Dependence” 
involving dependent bivariables. The quadrant dependence 
and regression dependence had been presented in his paper. 
For example, when a pair of variables (X, Y) satisfies: 

)()(),( yYPxXPyYxXP ≤≤≥≤≤                (5) 

for all x, y, it will be of positively quadrant dependence. 
Since the following form,  

∫ ∫
+∞

∞−

∞

∞−

−=− dxdyyFxFyxFYEXEXYE YX )]()(),([)()()(  (6) 

a pair of positively quadrant dependent variables is of 
nonnegative covariance. The next year, Esary and al.  [11] 
developed the positively quadrant dependence for 
association of random variables as the following condition: 
for all strictly increasing function f and g, if: 

0))(),(( ≥XgXfCov                             (7) 

the random variables X will be associated. The association is 
clearly invariant under all strictly increasing transformation 
of X. It is easily proved that the independent random 
variables are associated. To research the association of 
correlated normal variables, Ruschendorf [12] introduced in 
1981 a monotonic linear transformation from the 
uncorrelated normal variables into some correlated normal 
variables. It is proved that the normal variables with 
completely positive covariance matrix are associated. In 
1982, using a different method from Ruschendorf’s, Loren 
D. Pitt [13] proved that all positively correlated normal 
variables are associated.  

III. ROSENBLATT TRANSFORMATION AND ITS CONDITIONAL 
MONOTONICITY 

When the joint distribution function is available, 
Rosenblatt transformation [7, 8, 14] is often used to 
transform the dependent random vector into an independent 
one. Notationally, T

pVVVV ),...,,( 21=  will refer to the 
transformed vector of independent random variables in the 
uniform space, while T

pXXXX ),...,,( 21= is the original 

1 The components independently follow the uniform distribution. 

vector of statistically dependent random variables. Let the 
joint density function and the joint probability distribution 
function of X  be known as )(xf X  and )(xFX  respectively; 
and let the marginal density function and the marginal 
distribution function of iX be known as )( ii xf  and 

)( ii xF respectively. The conditional density functions and 
the conditional probability distributions are available. Let 

)( 111 xff c =  and )( 111 xFF c = . For all pi ,,2 L= , let the 
following conditional distribution sequence be denoted by 

 
 )...,,,()( 112211 −− ===== iiiii

c
i

c
i xXxXxXxfxff ,                          

(8) 
)...,,,()( 112211 −− ===== iiiii

c
i

c
i xXxXxXxFxFF .                          

(9) 
 

Then the independent, random vector V  in the uniform 
space can be obtained by the following Rosenblatt 
transformation: 
 

T
p

c
p

ccT
p xFxFxFvvvv ))(,),(),((),...,,( 221121 L==    (11) 

 
where pVVV ,...,, 21 are uniformly and independently 
distributed on [0, 1].  

Its inverse form is implicit and the Jacobean matrix is 
difficult to be obtained. For simplicity, the inverse of the 
Jacobean matrix of this transformation is obtained first. 
Let j

c
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For researching the monotonicity of the inverse 
Rosenblatt transformation, J should be obtained. The 
computation of J  is presented in appendix A. It is complex 
but it can show the necessary condition to get the monotonic 
transformation (or to get 0≥J ). Hereas a sufficient 
condition is given to get 0≥J which concerns the M-
Matrices introduced by Ostrowski. The matrix whose all off-
diagonal entries are nonpositive and all principal minors are 
positive is called M-matrices. An important result on M-
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matrix is that each M-matrix is on monotone kind (an 
inverse-positive matrix). We assume that 0)( >xf X in the 

physical space. Then we can obtain 0>c
if and all principal 

minors of 1−J are positive. So, if 0/ ≤∂∂ j
c

i xF for all ji > , 
1−J  will be an M-matrix [15, 16] such that 0≥J .  

This sufficient condition ( 0/ ≤∂∂ j
c

i xF for all ji > ) 
concerns the conditionally increasing in sequence (CIS) of 
the random vector [17]. A random vector 

T
pXXXX ),...,,( 21= is said to be CIS if the conditional 

probabilities 
 

)...,,,( 112211 −− ===> iiii xXxXxXxXP ,        (13) 

 
are increasing in )...,,,( 121 −ixxx for every { }pi ,,2 L∈ . It is 
a beautiful decision whether the inverse Rosenblatt 
transformation could be used when the joint distribution 
function is known or available. However, the necessary 
conditional joint density functions are difficult to obtain 
except in rare situation. The joint distribution approximation 
is often used in practice. For example the Nataf models 
provide a well behaving in some cases [18].  

We shall write down the transformation when )(xFX  is a p-

dimensional standard normal pdf )',( Rxpϕ with correlation 

matrix )(' '
ijR ρ=  pji ≤≤ ,1 . In fact, if )(xFX  is not a p-

dimensional standard normal distribution, under the 
assumption of Gaussian copulas, it can be transformed into a 
p-dimensional standard normal distribution by a monotonic 
transformation. It concerns the first step of the following 
Nataf transformation. Since the Pearson correlation 
coefficient is not invariant but available under this 
transformation, '

ijρ  is used to distinguish the original ijρ . 

Let kjiij
k ≤≤=Λ ,1)( 'ρ , )(k

ijΛ be the cofactor of '
ijρ in kΛ  

and denote )det()( kk Λ=Λ . The sufficient condition 

( 0/ ≤∂∂ j
c

i xF  for all ji > ) is equivalent to 0)( ≤Λ i
ij  for 

all ji > . And then we have the following proposition. 

Proposition2: If 0'≥R and if 0)( ≤Λ i
ij  for all ji > , the 

inverse Rosenblatt transformation is monotone. 

The proof for the above proposition is presented in 
Appendix B. The correlation matrix is in practice available 
and whether jifori

ij >≤Λ 0)(  is easily to be verified.  

IV. NATAF TRANSFORMATION 

Nataf transformation [7, 8, 19] may be applied to 
transform correlated random variables into uncorrelated 
standard normal variables. When the marginal probability 
distributions and correlation data are available, the non-
Gaussian random variables can be approximated by 
multivariate Gaussian distribution, called Nataf distribution 

approximation. That is in fact the first step of Nataf 
transformation. This approximation may exhibit undesirable 
when the variables are highly non-Gaussian [18]. The 
second step concerns orthogonal transformation which may 
transform the correlated standard normal variables into an 
uncorrelated (or independent) standard normal vector.  

Let i-th marginal cdf and pdf of X be noted by Fi and fi 
respectively. By virtue of Nataf transformation, the original 
random vector X can be transformed into a random variable 
vector Y with p-dimensional standard normal pdf )',( Rypϕ . 

This transformation is denoted by T1 which has the unique 
inverse as the following forms: 

( )T
pp xFxFxFxTy )]([...,)],([)],([)( 1

22
1

11
1

1
−−− ΦΦΦ==

.                                              (14) 
( )Tpp yFyFyFyTx )]([...,)],([)],([)( 1

2
1

21
1

1
1

1 ΦΦΦ== −−−−

.                                              (15) 
 

The joint pdf of X is given by: 
 

),(1)( ρϕ y
J

xf pX = ,                             (16) 

 
where the Jacobean matrix J is obtained by: 
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and where the Jacobean |J| is obtained by: 
 

)()...()(
)()...()(

2211

21

pp

p

xfxfxf
yyy

J
ϕϕϕ

= .                       (18) 

 
Clearly the Jacobean matrix of 1T  is a positive diagonal 
matrix and both T1 and T1

−1 are monotonic transformation. 

The random vector Y , obtained by 1T , has jointly standard 
Gaussian probability density function )',( Rypϕ , zero means, 

unit standard deviations and correlation matrix )(' '
ijR ρ= . It 

should be noted that the correlations of newly obtained 
variables are different form that of the original. The new 
correlation matrix is in fact obtained from an advanced 
method. Let the known )( ii XEm = , )( ii XVar=σ and the 

known ijρ denote the original correlation coefficient of 

bivariables iX and jX , the unknown '
ijρ  can be obtained by: 
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⋅

−Φ−Φ
=

−−
=

−−

jiijji

j

jjj

i

iii

j

jj

i

ii
ij

dydyyy

myFmyF

mXmXE

),,(

)
)((

)()(((

)])([(

'
2

11

ρϕ

σσ

σσ
ρ

    (19) 

  
Since ijρ is a strictly increasing function of '

ijρ , this equation 

can be iteratively solved for '
ijρ [18]. 

The beauty here is not only its inverse is a monotonic 
transformation, but also the transformed random vector has 
Gaussian copula. For a random vector with Gaussian copula, 
if its components are pairwise independent or uncorrelated, 
it will be independent. It means that a Gaussian distribution 
vector is independent if and only if its correlation matrix is a 
unit matrix. The rest what we will do is the 
orthogonalization of the newly obtained random vector Y. It 
can be achieved by the second step T2 of Nataf distribution. 
By T2, the joint standard normal random vector Y can be 
transformed into a resulting random vector U whose 
correlation matrix is a unit matrix I . It means that U has an 
independent standardised density function ),( Iupϕ . This 
orthogonalization concerns the decompositions of the 
covariance matrix in which the non-negative decomposition 
is interesting in our research.  

V. ORTHOGONAL TRANSFORMATION OF JOINT STANDARD 
NORMAL RANDOM VARIABLES 

Considering the presented random vector Y with p-
dimensional standard normal pdf )',( Rypϕ , we know that it 

has zero means and covariance matrix 'RCY = . Now for the 
uncorrelated standard normal vector U with pdf ),( Iupϕ , a 
linear transformation with a matrix A can be found, such that: 

YAU = .                                  (20) 
 

Under this linear transformation with matrix A, the 
covariance matrix CY is also transformed into the 
uncorrelated vector U’s covariance matrix CU = I.  
 

T
Y

TT

TT
U

AACAYYEA

YAYAEUUEC

==

==

])[(

]))([()(
,                  (21) 

 

So we can obtain: 
 

T
Y AAC −−= 1 .                                  (22) 

 

The covariance matrix is a positive definite matrix and it 
keeps the Cholesky decomposition T

Y LLC = . One of the 
matrixes A may be equal to 1−L . We can then get YLU 1−=  
or ULY = . L is also a linear transformation matrix. 
Considering the relation between y and u, we can obtain the 
Jacobean matrix of the transformation by: 

ijijij LuyJ )(=∂∂= .                         (23) 
 
So we have: 
 

LRyIu pp ),',(),( θϕϕ = .                      (24) 

 
Clearly, the inverse orthogonal transformation can be 
monotone while 0≥L . The result depends only on the 
correlation matrix 'R . Let k

ijM  denote the minor of 'R with 

rows ik,,,1L and columns jk,,,1L for pjik ≤≤ , . We 
have the following proposition [20]: 

Proposition3: If 0'≥R , then 'R has a Cholesky 
factorization TLLR =' with 0≥L if and only if 0≥k

ijM for 

all pjik ≤≤ , ; and then the inverse Nataf transformation 
under Cholesky factorization is monotone. 

There is another alternative manner to get an orthogonal 
transformation. Note that a random variable vector W with 
an independent standardised distribution pdf ),( Iwqϕ . There 
is an qp×  matrix B such that: 
 

WBY = .                                   (25) 
 
Then we have: 
 

TTTT
Y BBBWWEBYYEC === ])[(][ .          (26) 

 
We need the following definition concerning completely 

positive matrix [13]. A real pp×  positive definite matrix C 
is called completely positive if C can be factored as TBB for 
some qp× non-negative real matrix B for q < ∞. The 
minimum value of q is the CP rank of C, denoted by 
cprank(C). An obvious fact is that )()( CrankCcprank ≥ for 
any completely positive C. Let CPp denote the set of all 
completely positive pp× matrices. We have the following 
result. 
 
Proposition4:  If pCPR ∈' , then TBBR =' with a qp× non-
negative real matrix B; and then the inverse Nataf 
transformation under non-negative factorization is monotone. 

Some interesting results concerning the completely 
positive matrices are worth presenting hereafter. 

Proposition5:  If pCPR ∈' and p < 5, then TBBR =' with 
a pp× non-negative real matrix B, see [21]. The 
monotonicity of dependence concepts is available for the 
small dimensional (< 5) positive correlated variables. 

Proposition6:  If 0)(' ' ≥= ijR ρ and '2 RI − is positive semi-

definite, then pCPR ∈' , see [16]. '2 RI − is called 
comparison matrix of 'R . 
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Proposition7:  If 0)(' ' ≥= ijR ρ and 1' ≤∑ ≠ij ijρ for all j (or i), 

'R  is said to be diagonally dominant, and then pCPR ∈' , see 
[22]. The lower correlated variables are favourable. 

Conjecture1:  If pCPR ∈' and 4≥p , then 

]4/int[)'( 2pRcprank ≤ , see [23].  

This conjecture can help us to estimate the maximum 
dimension of the newly obtained iso-probabilistic space. 
Unlike Rosenblatt transformation, Nataf transformation may 
product an augmentation of dimension. 

VI. MONOTONICITY OF RANDOM VARIABLES 
TRANSFORMATION VIA COPULAS  

Copulas are functions that join multivariate distribution 
functions to their one dimensional marginal distribution 
functions. They are of interest to us for the reason as a way 
of studying scale-free measures of dependence [24]. A p-
copula (p-dimensional copula) is a function C: [0, 1]p →[0, 
1] which satisfies: 

1) for every T
pssss ),...,,( 21= in p]1,0[ , 0)( =sC if at 

least one coordinate of s is 0, and 

issC =)( whenever all coordinates of s  are 1 
excepte is ; 

2) C is a positive probability measure. 
 

Sklar’s theorem: the joint distribution function F of the 
continuous random vector T

pXXXX ),...,,( 21= with 

univariate marginals pFFF ,...,, 21 can be expressed, for 

every pIRx∈ , by 
 

))(),...,(),(()( 2211 pp xFxFxFCxF = .                 (27) 
 
where the p-copula C is uniquely determined on 

pRangeFRangeFRangeF ××× ...21 . 

The copula is a class of joint distribution functions of X 
having the same dependence. When a copula function is 
fixed, the different joint distribution functions of same class 
can be obtained by different one-dimensional margins. 
Under assumption that all random variables are continuous, 
the above result provides a method of constructing copulas 
from joint distribution functions. 
 

))(),...,(),(()( 1
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1
21

1
1 pp sFsFsFFsC −−−= .              (28) 

 
Since the copula is also a distribution function, from 
standard textbooks, we know that the density function is its 
p-derivative, if it exists. In particular, a p-copula is said to 
be absolutely continuous if:  
 

td
tt

tCsC
s s

p

pp

∫ ∫ ∂∂
∂

=
1

0 0
1

)()(
L

L .                      (29) 

If copula is absolutely continuous, the expression of the 
copula density c can be defined as: 
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Like the conditional distribution, we can obtain the 
conditional copula: 
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It is also conditional distribution and can be noted 

by ),,,( 11 ji ttssC LL . 

One of the primary applications of copulas is in 
simulation. By virtue of Sklar’s theorem, we need only 
generate a vector s of observations of uniform random 
vector S whose joint distribution function is C. This can be 
realised by generating the independent uniform random 
variables pvvv ,...,, 21 (can be noted by T

pvvvv ),...,,( 21= ) 
since the copula C is known, like the Rosenblatt 
transformation. Let 11 vs = and for pi ,...,2= , 

11

11
1

11

1
1
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),(
/
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),(
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−
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−
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==

i

i
i

i

i
i

ii
c
ii

ss
ssC

ss
ssC

sssCCv

L

L

L

L

L

.                (32) 

 
For every pi ,...,2= , evaluate the inverse of the conditional 
copula function c

iC −  at iv  to generate:  
 

),,( 11
1

−
−− == ii

c
ii ssvCCs L .                      (33) 

 
The inverse can be derived either analytically or 

numerically. In fact, this simulation process is a type of 
dependence concepts. Its monotonicity depends on 
convexity of the copulas function. This can be stated by the 
monotonic condition of the inverse Rosenblatt 
transformation.  

Because the copula is a joint distribution function, the 
monotonicity of dependence concept depends on that of the 
inverse Rosenblatt transformation on the copula function. 
Then one sufficient condition is that 0/ ≤∂∂ j

c
i sC for 

all ji > . In this case, we can say that the random vector S  
with copula )(sC  can be monotonically constructed by a 
random vector V  with independent copulaΠ . For example, 
a 2D random vector ),( 21 SS  with copula ),( 21 ssC can be 
obtained by the following transformation: 
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2),(

1
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11

21
),( v

s
ssC

vs
sv =

⎪⎩

⎪
⎨
⎧

∂
∂

=
.                        (34) 

 

Clearly, 1s is monotone on 21 ,vv and 2s is monotone on 2v . 

2s will be monotone on 1v when 0/),( 2
121

2 ≤∂∂ sssC . 
To postulate that a random vector T

pXXXX ),...,,( 21= is 
of Gaussian copula is equivalent to assume that: 

a) the univariate random variables pXXX ,...,, 21  have 

one dimensional margins )(xFs ii = ; 
b) these margins are linked by a unique copula 

function C called Gaussian copula such that: 
 

zdRzsC ps

p

s

R ∫∫
−− Φ

∞−

Φ

∞−
′=

)()(

'

1
1

1

),()( ϕL .                (35) 

 
where ),( Rzp ′ϕ  is the p-dimensional standard normal pdf of 
zero means, unit standard deviations and correlation 
matrix 'R . The Gaussian copula is absolutely continuous. 
Given any correlation matrix, we can generate a Gaussian 
copula with the presented simulation process. According to 
its monotonicity, we have the following sufficient condition. 
 
Proposition8: If 0'≥R and if 0)( ≤Λ i

ij  for all ji > , the 
inverse transformation via Gaussian copula is monotone. 
The proof for the above proposition is presented in 
Appendix C. 

VII. EXTENSION AND CONCLUSION 

This paper proved at first that the output distribution of 
failure function is invariant via inputs variables 
transformation. Then the theoretical conditions presented in 
this paper provide substantial evidence how the 
monotonicity of dependence concept can be achieved. Since 
the Gaussian copulas are often used to approximate the real 
world copulas in the industrial application, we gave the 
important correlation conditions under which the positively 
correlated normal random vector can be monotonically 
constructed by an independent normal random vector or 
uniform random vector. The presented Rosenblatt and Nataf 
transformation on the distributions with Gaussian copulas 
are different for the monotonicity of dependence concept. 
Nataf transformation is in fact an orthogonal transformation 
whose monotonicity concerns completely positive matrices. 
For this transformation, the dimension of the newly obtained 
iso-probabilistic space is equal to the cp-rank of the 
completely positive correlation matrices. Since, for every 
completely matrices, its cp-rank is always greater than or 
equal to its rank (the physical space dimension). It may 
product an augmentation of dimension while monotonic 
transformation, especially for the higher physical space 
dimension (> 4).  In comparison with Nataf transformation, 
the Rosenblatt transformation always holds on the same 
dimension. 

The presented correlation conditions are essential for 
getting a monotonic transformation. In fact, the 
monotonicity of dependence concept is independent on the 
random variables’ order; the permuted random variables 
may give us satisfactory correlation matrices. Even though 
the permutation can not transform a non-completely positive 
matrix into a completely matrix, it may achieve a positive 
Cholescky factorization. For example, with a suitable 
permutation, all the 3-dimensional positively correlated 
normal random variable can be construction by a monotonic 
transformation (both inverse Nataf and Rosenblatt). 

As for the normal distribution with some negative 
correlated variables, for example 0),( 21 ≤UUCov , we may 
use 1

'
1 UU −= to change the correlation. Clearly, if 1U follows 

normal distribution, 11 UU −=  on distribution. The 
increasing function will be changed into a decreasing 
function by this special transformation. But we can rechange 
it into an increasing one while the simulation in the iso-
probabilistic space [3].  

APPENDIX 

A: The computation of Rosenblatt transformation 
matrices is as follows: 

Let • denote the determinant of matrix. From the 

equation (12), we have 0=ijJ for all pji ≤< . 

Since ∏
=

− =
p

i

c
ifJ

1

1)det( , we can easily find c
iii fJ /1=  for 

all pi ≤ ;
c

i
c
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c
ii

ii ff
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)1(
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−= for all pi ≤≤2 ; 

c
ii

c
ii

c
i

c
ii

c
i

c
i

c
i

ii

f
fff
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1)2)(1(

12
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−−

− ∂∂
∂

=  for all pi ≤≤3 .  

 
Now let 11 −≤≤ pd , c

i
c
ii f=∂ and 0=∂ c

ij for pji ≤< , 

we can obtain
c

i
c

di
c

di

d
i

dii fff
J

L1
)(

+−−

−

Δ
=  for all pid ≤≤+1 , 

where 
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c
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c
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c
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L
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L

L

.   (36) 

 
Finally, 0≥Δd

i is the sufficient and necessary condition 
under which the inverse Rosenblatt transformation is 
monotone. 

B: The proof of proposition 2 is as follows: 
Let kjiij

k ≤≤=Λ ,1)( 'ρ , )(k
ijΛ be the cofactor of '

ijρ in kΛ , 

denote )det()( kk Λ=Λ  and )(1
ii vu −Φ= . The resulting 

Rosenblatt transformation is then given by: 
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Let  
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⎩
⎨
⎧

≥Λ
<

=Ω=Ω −−

jiif
jiif

i
ij

ij )(
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0
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we can then obtain: 
 

xw 1−Ω= or wx Ω= .                             (38) 
 

The Jacobean transformation J is equivalent to Ω for 
researching the monotonicity of the inverse Rosenblatt 
transformation and the sufficient condition ( 0/ ≤∂∂ j

c
i xF  

for all ji > ) is equivalent to 0)( ≤Λ i
ij  for all ji > .  

As to the sufficient and necessary condition, assume that 
)(i

ij
c
ij Λ=∂  for all ji ≥ and 0=∂ c

ij  for all ji <  in the 

formulation (36), we can obtain d
iΔ . 

 

C: The proof of proposition 8 is as follows: 
Let Let ikjjk

i ≤≤=Λ ,1)( 'ρ denote the correlation 

matrix of the random vector T
iXXXX ),...,,( 21= . The i-

dimentional Gaussian copulas can be denoted by: 
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Since the correlation matrix is symmetric, we can 

set 1)()( −Λ== i
jkaA for all ikj ≤, , and 

11 )()( −−Λ== i
jkbB for all 1, −≤ ikj . Both A and B are 

symmetric matrix.  

Let: 
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We can obtain: 
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The conditional Gaussian copula c

iC  can be denoted by: 
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Let T

iiii aaa ),,,( 121 −= Lα and )(0 jkaA = for 

all 1, −≤ ikj . Since ⎟⎟
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⎞
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So, 
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Let 
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Differentiating c
iC with respect to is , we have the 

conditional copula density: 
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Differentiating c

iC with respect to ts for all 1,1 −= it L , 
we can obtain: 
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Since 0)( =+ T

ii
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αβ  (the proof is presented hereafter) 
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Hereas the first factor is always positive (theoretically 

non-negative) and the second is the the cofactor of '
itρ in iΛ . 

Thus we have proved that if 0'≥R and if 0)( ≤Λ i
ij  for 

all ji > , the inverse transformation via Gaussian copula is 
monotone. 
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From the same manner, we obtain:  
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Because )( jkaA = for all ikj ≤,  

and T
iiii aaa ),,,( 121 −= Lα , we can then obtain 
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 and then iijiitjtjt aaaba /+= for 

all 1,1, −= itj L .  This is the end of proof. 
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