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Moment Generating Functions of Observed Gaps
between Hypopnea Using Saddlepoint

Approximations
Nur Zakiah Mohd Saat and Abdul Aziz Jemain

Abstract—Saddlepoint approximations is one of the tools to obtain
an expressions for densities and distribution functions. We approxi-
mate the densities of the observed gaps between the hypopnea events
using the Huzurbazar saddlepoint approximation. We demonstrate the
density of a maximum likelihood estimator in exponential families.

Keywords—Exponential, maximum likehood estimators, observed
gap, Saddlepoint approximations.

I. INTRODUCTION

PEOPLE with sleep apnea stop breathing for 10 to 30
seconds at a time while they are sleeping.There are

two kinds of sleep apnea which is obstructive sleep apnea
and central sleep apnea. Obstructive sleep apnea (OSA) is
the most common type. The person that have the OSA feel
like something is blocking the trachea that brings air into
the body. While central sleep apnea is a rare cases and it is
related to the function of the central nervous system[1].

Doctors estimated that about 12 million Americans people
have sleep apnea.Men and people who are over 40 years old
are more likely to have sleep apnea. Apnea is defined as a
complete cessastion of airflow for at least 10 seconds. Whilst
hypopnea is defined as decreased in airflow of at least 50%
with a concomitant fall of at least 4% in the arterial oxygen
saturation,followed by an arousal response. The symptom is
heavy snoring or long pauses in breathing during sleep[2].

The duration of the hypopnea is recorded in every 30
seconds. Between the 30 seconds there might be a hypopnea
that is not recorded because it is less than 10 seconds. Let
Y be the duration of the gap between hypopnea’s, which
is between the real hypopnea and the hidden hypopnea or
vice-versa. While X denoted the duration of hypopnea’s
which is the duration of the real hypopnea and the duration
of the hidden hypopnea. Next, Z is denoted as the true
gap or observed gap, which is sum of the duration of gap
between the real hypopnea and the hidden hypopnea denotes
as Y1, the duration of the hidden hypopnea denotes as X2

and the duration of the gap between the hidden hypopnea
and the real hypopnea Y2. .Y’s and X’s are in alternating
sequence.The summation of the X’s and Y’s are geometric
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distributed. X’s and Y’s are independent and identically
distributed (iid). X1, X2, X3, ...Xn and Y1, Y2, Y3, ..., Yn are
also iid. This study are interested to determine the effect of
hidden hypopnea and the process of hidden hypopnea is not
homogeneous in time because the subjects sleep stages is
changing through time. The observed gap is a sum of n th
hidden hypopnea and sum of (n+1) true gaps, n is the number
of events.

X1 X3
X2

Y2Y1

Z

Fig. 1. Diagram of the observed gap, Z. Y is the duration of gap. X1 and
X3 is the duration of hypopnea’s, X2 is the hidden hypopnea

II. MOMENT GENERATING FUNCTIONS

The distribution of X and Y were determined in order
to find the distribution of the observed gaps. Moreover, the
observed distribution of gaps and the distribution of hypopnea
durations were used to make inferences about the distributions
of the gaps(Y ).Suppose the moment generating functions of
X and Y are MX(t) and MY (t) respectively

Let p denotes the probability that a hypopnea is not observed

p =
∫ 10

0

f(x)dx = Pr(a hypopnea is hidden)

The distribution of the number of hidden hypopneas that
occur between two observed hypopneas whilst n is the
number of false events during the gap, has the mgf,

Mz(t) =
n∏

i=1

Mxi(t)
n∏

i=1

Myi(t) (1)
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and the mgf of X given that X < 10

MX1+X2+...+Xn = E
[
et(X1 + X2 + ... + Xn)

]
= E(etX1)...E(etXn)

=
n∏

i=1

MXi(t)

and the mgf of time of gap which is the distribution of y

MY1+Y2+...+Yn = E
(
et(X1 + X2 + ... + Xn)

)
= E(etY1)...E(etYn)

=
n∏

i=1

Myi
(t)

thus the mgf of observed gap distribution

Mz(t) = M(X1 + X2 + ... + Xn)(t)M(Y1 + Y2 + ... + Yn)(t)

=
n∏

i=1

Mxi(t)
n+1∏
i=1

Myi(t)

Now for conditional on N=n, we have mgf of z

Mz(t) =
∞∑

n=0

Mz|n(t)(1 − p)n−1p

=
∞∑

n=0

Mn
x (t)Mn+1

y (t)(1 − p)n−1p

= pMy(t)
∞∑

n=0

[Mx(t)My(t)(1 − p)]n

=
pMy(t)

1 − Mx(t)My(t)(1 − p)
(2)

A. Mean and variance of z

Cumulant generating function(CGF)

R(t) = ln Mz(t) = ln

[
pMy(t)

1 − [My(t)Mx(t)(1 − p)]

]

= ln [pMy(t)] − ln [1 − Mx(t)My(t)(1 − p)]

First derivatives

R′(t) =
M ′

y(t)
My(t)

+
(1 − p)

[
Mx(t)M ′

y(t) + M ′
x(t)My(t)

]
[1 − Mx(t)My(t)(1 − p)]

and the mean of z is
E(z) = R′(0)

E(z) =
M ′

y(0)
My(0)

+
(1 − p)

[
Mx(0)M ′

y(0) + M ′
x(0)My(0)

]
1 − Mx(0)My(0)(1 − p)

and

My(0) = 1 , Mx(0) = 1[3]
thus

E(z) =
M ′

y(0) + M ′
x(0) − pM ′

x(0)
p

M ′
y(0) = E(Y ), M ′x(0) = E(X)

E(z) =
E(Y ) + (1 − p)E(X)

p
(3)

To find the variance of z,

V ar(z) =
M ′

y(t)
My(t)

+
(1 − p)Mx(t)M ′

y(t)
1 − Mx(t)My(t)(1 − p)

+

(1 − p)My(t)M ′
x(t)

1 − Mx(t)My(t)(1 − p)

Let V ar(Z) = R′
a(t) + R′

b(t) + R′
c(t)

and

R′
a(t) =

M ′
y(t)

My(t)

R′′
a(t) =

(My(t)M ′′
y (t) − M ′

y(t)M ′
y(t))

My(t)2

R′′
a(0) =

M ′′
y (0) − [

My(0)]2
]

My(0)2

= V ar(Y )

and

R′
b(t) =

(1 − p)Mx(t)M ′
y(t)

1 − Mx(t)My(t)(1 − p)

R′′
b (t) = [[1 − Mx(t)My(t)][Mx(t)M ′′

x (t) + M ′
x(t)M ′

y(t)]

−[Mx(t)M ′
y(t)] − [

Mx(t)M ′
y(t) + My(t)M ′

x(t)
]
(1 − p)]

/

[1 − Mx(t)My(t)(1 − p)]2

R′′
b (0) = [p[M ′′

y (0) + [M ′
y(0)]2]+

[E(Y )(1 − p) [E(Y ) + E(X)]] (1 − p)]
/

p2
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=

[
Var(Y )

p
+

[
E(Y )2

]
+ E(Y )E(X)
p2

]
(1 − p)

and

R′
c(t) =

(1 − p)My(t)M ′
x(t)

1 − Mx(t)My(t)(1 − p)

R′′
c (0) =

[
Var(X)

p
+

[
E(X)]2

]
+ E(Y )E(X)
p2

]
(1 − p)

thus

V ar(Z) = V ar(Y ) +
1 − p

p
[V ar(X) + V ar(Y )]+

[
E(X)2 + E(Y )2 + 2E(Y )E(X)

] 1 − p

p2

III. SADDLEPOINT APPROXIMATION

f̂T (t) = [2πK ′′(s)]−1/2 exp[K(s) − tŝ] (4)

K ′
z(s) = t (5)

where ŝ is the saddlepoint is solved by computing
K ′

z(s) = t numerically

A. Exponential distribution

Let p be the probability of the hidden hypopnea (< 10s)with
exponential distribution

p =

c∫
0

λ exp(−λk)dk

=
∣∣∣∣ − exp(−λk)

∣∣∣∣
c

0

= exp(−λc)

Let X denotes the duration of the hypopnea has an exponent
distribution. The mean of X,

E(X) =
1

1 − p

∞∫
c

λx exp(−λx)dx

=
exp(−λc) + exp(−λc)λc) − 1

λ(p − 1)

=
p + pλc − 1

λ(p − 1)

=
1 − p − pλc

λ(1 − p)

To find the variance of X, we need to find

E(X2) =

∞∫
c

λx2 exp(−λx)
1 − p

dx

=
−2 exp(−λc) + 2 exp(−λc)λc + exp(−λc)c2λ2 − 2

λ2(1 − p)

=
−2p + 2pλc + pc2λ2 − 2

λ2(1 − p)

thus

V ar(X) = E(X2) − [E(X)]2

=
−2p + 2pλc + pc2λ2 − 2

λ2(1 − p)
−

[
1 − p − pλc

λ(1 − p)

]2

Moment generating function of X

Mx(t) =
λ

1 − p

∞∫
c

exp(tx)λ exp(−λx)dx

=
λ

1 − p

[
exp(tc − λc)

−t + λ
+

1
−t + λ

]

=
(1 − exp(tc − λc))λ

(1 − p)(λ − t)

Y is the duration of the gap between the hypopnea, which
has the standard exponetial mean and variance.

μ = R′(0) =
1
μ

σ2 = R′′(0) =
1
μ2

Moment generating function of Y

My(t) =

∞∫
0

exp(ty)μ exp(−μy)dy =
μ

μ − t
(6)

Mean of z by substituting formula (3)

E(z) =
λ + 1 − p − pλc

μλp
(7)

Moment generating function of z

Mz(t) =
pμ(λ − t)

(λ − t)(μ − t) − λμ(1 − exp(tc − λc))
(8)

Cumulant generating function(CGF) of z

Kz(s) = ln(Mz(s)) (9)
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First derivatives

K ′
z(s) = −s2−sc exp(−c(λ−s))λμ+2λs−λμ−λ2 +λμ

exp(−c(λ−s))+λ2μc exp(−c(λ−s))
/

(λ−s)(λs+sμ−s2

−λμ exp(−c(λ − s)))

Second derivatives
K ′′

z (s) = (exp(−c(λ − s))(−2λ3μ − 2μ2cλs2 + 4μcλs3

+ μλ4c2t − 3μλ3c2s2 + μ2λ3c2s
−2μ2λ2c2s2 + 3μλ2c2s3 + μ2c2λs3

−μc2λs4 + 8μλ3cs + 6λ2μs − 2μλ4c − 2λ3μ2c + 2λμ2s
−4λμs2 + 4μ2λ2cs − 10μλ2cs2) − λ2μ2 exp(−2c(λ − s))
−4λ3s + 6λ2s2 − 4λs3 − 6λ2sμ + 4λs2μ − 2λμ2 + λ4

+2λ3μ+λ2μ2+s4)
/

(λ−t)2(−λs−sμ+s2+λμ exp(−c(s−
λ)))2

The mgf of the gap distribution which is defined as y, is
assumed exponential with parameter μ with the standard mgf
exponent. The mgf of the hypopnea distribution which is
defined as x, assumed to be exponential with parameter λ but
left-truncated at c=10. In order to be sure that the mgf exists
around zero it must exist in an interval around the origin
(c1, c2) where c1 < 0 and c2 > 0 [4]

My is the MGF of an exponential distribution. It exists
when s < μ, s is the saddlepoint approximation. This means
that the MGF of the truncated distribution X is exists for
all values of s. MGF of the z is obtained from the observed
gap by summing a geometric series,under conditions,which is
within the range(-1,1). Thus, pmxmy has to lie in the range(-
1,1).Recalling that p is the duration of hidden hypopnea.
Hence, pmxmy will always be positive. It is certain when
pmxmy < 1. This puts a limit on the maximum value of s
that is allowed.

A smaller value than this is require to ensure that mz

exists. Because the mgf exists for any negative value of s, we
can take c1 to be large negative value such as -5000. Next,
to solve the saddlepoint equation k1 − t = 0 for the different
values of t , we can look for solutions in the range (c1, c2)[4].

B. Gamma distribution
Let p be the probability of the hidden hypopnea (< 10s)with

gamma distribution. The probability of the duration of hidden
hypopnea is the integration of the Incomplete gamma function
[0, c] [5]

px =
∫ c

0

xα−1 exp(−x/β)
Γ(α)βα

dx

=
1

Γ(α)β

∫ c

0

[
x

β

]α−1

exp(−x/β)dx

Let
u =

x

β

and
du =

dx

β

pu =
∫ c

β

0

uα−1 exp(−u)du = Γ(α, c/β)
/

Γ(α) (10)

and the MGF of the duration of the gap between the
hypopnea is given by the MGF of the standard gamma
function

My(s) =
∫ ∞

0

yk−1 exp(sy − y/λ)
Γ(k)

dy =
1

(1 − λs)k
(11)

and the MGF of the duration of hypopnea is given by
Mx(s) =

∫ ∞
c

xα−1

βαΓ(α)p exp
[
− x

β + sx
]
dx

Let
u = sx − x

β

and

du = (s − 1
β

)dx

Mu(s) =
1

(1 − βs)α(1 − p)Γ(α)

∫ ∞

c
β −cs

uα−1 exp(−u)du

=
Γ(α, c/β − cs)

(1 − p)Γ(α)(1 − βs)α

thus the MGF of the duration of observed gap can be written as

Mz(s) = Γ(α,
c

β
)Γ(α)(1−p)(1−βs)α

/
Γ(α)−Γ(α,

c

β
−cs)Γ(α,

c

β
)

(12)
Cumulant generating function(CGF) of z

Kz(s) = ln(Mz(s))

First derivatives

K ′
z(s) = gradient(kz, s) (13)

Second derivatives
Let Kz(s) = L(α, β) [6]

K ′′
z (s) = hessian(kz, s) =

[
δL/δα2 δ2L/δαβ
δ2L/δαβ δL/δβ2

]
(14)

IV. RESULTS

Saddlepoint approximation is a method to approximate
density function from a MGF[7]. Using the saddlepoint
approximation, we want to approximate the PDF of the
Mz , which is the observed gap. Firstly we use the exponent
distribution as it has an explicit form of MGF. This is
generally to get the idea on the working of saddlepoint
aprroximation in the R program. Furthermore, other positive
skewed distribution has a special case of exponent distribution.
Exponent distribution is a special case of gamma distribution
when the shape parameter is equal to 1 or usually named as
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Incomplete Gamma Function. So, it is essential to check the
model of gamma distributions with exponent distribution in
order to clarify the adequacy of the MGF that is generated.

Secondly, the saddlepoint approximation that produce the
MGF of Mz will be compared with the simulation of the
distribution that has been used for example the MGF of
gamma distribution will be compared with the simulation of
random numbers generated from gamma distribution.

A. Exponential distribution
A exponent random variable T∼ Exp(λ) with mean (1/λ)

has a CGF given in section 2. Solution of the saddlepoint
approximation density given in section 2, yields a saddlepoint
that can be solved numerically which is by giving a value of t,
see section 2. Calculation of the density requires approxima-
tions the first derivatives K ′(s) and second derivatives K ′′(s)
of the exponent function. Figure 2 is the density function for
a Exp(5) variable with λ = 1/5 with mean 5 and variance
25.The saddlepoint normalizing constant ,is the area under
the graph which is 1 for all nonnegative function [5],and the
normalizing constant for exponent saddlepoint approximation
is 1.06 which slightly deviates from 1 for t from 1 until 500.
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Fig. 2. Exponential density function saddlepoint approximation(dashed
curve) and simulation(solid curve) of the observed gap Mz sample size
200,for 5000 simulation

B. Gamma
A gamma random variable X∼ Gamma(α,β)with mean αβ

has a CGF given in section 2. Solution of the saddlepoint ap-

proximation density given in section 2 and for gamma density
function requires solving the Incomplete gamma function, pro-
duce a saddlepoint that can be solved numerically which is by
giving a value of t, see section 2. The computation of the den-
sity requires the first derivatives K ′(s) and second derivatives
K ′′(s) of the gamma function,using the gradient and hessian
matrix[5]. The density function for X∼ Gamma(11,60.5) with
α = 2,and β = 5.5 and X is the duration of the hypopnea
.While Z is the observed gap, that was approximated using the
saddlepoint approximation. Y∼(45,675) with κ = 3,λ = 15,
Y is the gap between hypoponea.The saddlepoint normalizing
constant ,is 1.04 which deviates from 1 for t from 1 until
500.The Mz was compared with the simulation of the observed
gap , (see Figure 3).
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Fig. 3. Gamma density function from saddlepoint approximation(dashed
curve) and simulation(solid curve) of the observed gap Mz sample size 500
for 5000 simulation

V. DISCUSSION AND CONCLUSION

We applied the saddlepoint to the MLEs in exponential
families, but more general classes can be handled. For
example for discrete distributions such as Geometric
and Poisson distributions. In this paper we illustrate the
use of saddlepoint to approximate a skewed distribution
which is gamma distribution. From (5) where we take the
transformation K ′

z(s) = t. This transformation can be found
in [7] and this transformation allows the evaluation of the
integral with only the saddlepoint approximation using a
numerical method to solve the expression (5) The normalizing
constant deviates slightly from 1 which indicates that it is
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close to the accurate approximation. However, the saddlepoint
approximations have not yet received much attention in
statistical applications. It is due to the computation involved
difficulties to solve the K ′z(s) = t numerically.
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