Modern Method for Solving Pure Integer Programming Models

G. Shojatalab

Abstract

In this paper, all variables are supposed to be integer and positive. In this modern method, objective function is assumed to be maximized or minimized but constraints are always explained like less or equal to. In this method, choosing a dual combination of ideal nonequivalent and omitting one of variables. With continuing this act, finally, having one nonequivalent with ($n-m+1$) unknown quantities in which final nonequivalent, m is counter for constraints, n is counter for variables of decision.

Keywords-Integer, Programming, Operation Research, Variables of decision.

I. Introduction

ONE of the most important branches of Operation Research which wide usage of that is not covered to any other science, is pure integer programming in which this model all variables of decision are integer and positive[1,2]. Until knowing many methods for solving pure integer programming models which had explained by many scientists of this branch, but none of them has proper outcomes, especially, some of those methods with long calculations may not have optimal result $[3,4]$. This method, guaranties the optimal result, because it is based on solving equivalent apparatus by omitting method. In near future, software of this method will be introduced.

II. MANUSCRIPT

Supposing pure integer models with two faces:
A: $\quad M A X Z=\sum_{j=1}^{n} C_{j} x_{j}$
s.t: $\mathrm{Ax} \leq \mathrm{b}$
$x \in W ; W=\{0,1,2,3, \ldots\}$
Defining Case " A ":
$A(1): C_{k}>0, a_{i k}>0 ; i=1, \ldots, m$
$\mathrm{k} \in \mathrm{j}=1, \ldots, \mathrm{n}$
$A(2): C_{k}<0 \quad, \quad a_{i k}<0 \quad ; \quad i=1, \ldots, m ; \quad k \in j=1, \ldots, n$

B: $M I N Z=\sum_{j=1}^{n} C_{j} x_{j}$
s.t: $\mathrm{Ax} \leq \mathrm{b}$
$x \in W ; W=\{0,1,2,3, \ldots\}$
G.Shojatalab is with the Industrial engineering Department, Shomal University, Amol, Iran (phone: +98-9111354521; fax: +98-121-2203755; email: gshojatalab@yahoo.com).

Defining Case "B" :

$$
\begin{array}{lll}
\mathrm{B}(1): \mathrm{C}_{\mathrm{k}}>0, \mathrm{a}_{\mathrm{ik}}<0 & ; & \mathrm{i}=1, \ldots, \mathrm{~m} ; \\
\mathrm{B}(2): \mathrm{C}_{\mathrm{k}}<0, \mathrm{a}_{\mathrm{ik}}>0 & ; & \mathrm{i}=1, \ldots, \mathrm{~m}=1, \ldots, \mathrm{n} \\
& \mathrm{k} \in \mathrm{j}=1, \ldots, \mathrm{n}
\end{array}
$$

Without putting any contrary in totally logic, supposing case "A(1)" indefeasible:

$$
\begin{aligned}
& \text { 1) } \begin{array}{l}
\mathrm{MAX} Z=\sum_{j=1}^{n} C_{j} x_{j} \\
\text { s.t: } \mathrm{Ax} \leq \mathrm{b} \quad ; \mathrm{i}=1 \ldots \mathrm{~m} ; \quad ; \quad \mathrm{C}_{\mathrm{k}}>0 \quad, \quad \mathrm{a}_{\mathrm{ik}}>0 \\
\text { k } \in \mathrm{j}=1, \ldots, \mathrm{n}
\end{array} \quad \mathrm{x} \in \mathrm{~W}
\end{aligned}
$$

In this satiation, supposing objective function as: $-\sum_{j=1}^{n} C_{j} x_{j} \leq-Z$ with " m " nonequivalent constraints. Forming an apparatus with ($\mathrm{m}+1$) nonequivalent with ($\mathrm{n}+1$) unknown quantities.

$$
\left\{\begin{array}{c}
\text { (1) }-C_{1} x_{1}-\cdots-C_{n} x_{n} \leq-Z \\
\text { (2) } a_{11} x_{1}+\cdots+a_{1 n} x_{n} \leq b_{1} \\
\text { (3) } a_{21} x_{1}+\cdots+a_{1 n} x_{n} \leq b_{2} \\
\cdot \\
\cdot \\
\cdot \\
(\mathbf{m}+\mathbf{1}) a_{m 1} x_{1}+\cdots+a_{m n} x_{n} \leq b_{m} \\
\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \in \mathrm{W}
\end{array}\right.
$$

Supposing all dual combination from nonequivalent of (1) with all other nonequivalenst:
$(1,2)\left\{\begin{array}{l}-C_{1} x_{1}-\cdots-C_{n} x_{n} \leq-Z \\ a_{11} x_{1}+\cdots+a_{1 n} x_{n} \leq b_{1}\end{array}\right.$
$(1,3)\left\{\begin{array}{l}-C_{1} x_{1}-\cdots-C_{n} x_{n} \leq-Z \\ a_{21} x_{1}+\cdots+a_{1 n} x_{n} \leq b_{2}\end{array}\right.$

$$
(1,(m+1))\left\{\begin{array}{l}
-C_{1} x_{1}-\cdots-C_{n} x_{n} \leq-Z \\
a_{m 1} x_{1}+\cdots+a_{m n} x_{n} \leq b_{m}
\end{array}\right.
$$

In upon apparatus, $\mathrm{C}_{1}, \mathrm{a}_{11}, \mathrm{a}_{21}, \ldots, \mathrm{a}_{\mathrm{m} 1}$ are supposed to be positives, therefore, Omitting x_{1} from all upon apparatus, hence, in apparatus $(1,2)$ having:
4) $\left\{\begin{array}{c}-a_{11} C_{1} x_{1}-\cdots-a_{11} C_{n} x_{n} \leq-a_{11} Z \\ a_{11} C_{1} x_{1}+\cdots+a_{1 n} C_{1} x_{n} \leq C_{1} b_{1}\end{array}\right.$

From totaling upon dual nonequivalent, having:
5) $-a_{11} C_{2} x_{2}+a_{12} C_{1} x_{2}-\cdots-a_{11} C_{n} x_{n}+$
$a_{1 n} C_{1} x_{n} \leq-a_{11} Z+C_{1} b_{1}$
Omitting x_{1} continues, having:
6) $-a_{m 1} C_{2} x_{2}+a_{m 2} C_{1} x_{2}-\cdots-a_{m 1} C_{n} x_{n}+$ $a_{m n} C_{1} x_{n} \leq-a_{m 1} Z+C_{1} b_{m}$

Having an apparatus with " m " nonequivalent with " n " unknown quantities, (5) and (6) are samples of them. We can continuing the last step and Omitting x_{2} and then having (m1) nonequivalent with ($n-1$) unknown quantities.

Finally, with continuing upon step and Omitting $x_{3}, x_{4}, \ldots, x_{1}$ $\left.{ }_{(1} \in{ }_{j}\right)$, reaching to nonequivalent with $(n-m+1)$ unknown quantities, interducing:
7) $x_{l+1}, x_{1+2}, \ldots, x_{n}, Z$
(End of section 2)

III. Examples

A. Example for "Case A(1)"

$$
\begin{aligned}
& \operatorname{MAX} Z=2 x_{1}+x_{2}-3 x_{3}+5 x_{4} \\
& \text { s.t: }
\end{aligned}
$$

8) $\left\{\begin{array}{c}3 x_{1}-x_{2}+x_{3}+2 x_{4} \leq 8 \\ x_{1}+7 x_{2}+3 x_{3}+7 x_{4} \leq 46 \\ 2 x_{1}+3 x_{2}-x_{3}+x_{4} \leq 10\end{array}\right.$ $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right) \in \mathrm{W} ; \mathrm{W}=\{0,1,2, \ldots\}$

Resolve:
9) $\left\{\begin{array}{c}-2 x_{1}-x_{2}+3 x_{3}-5 x_{4} \leq-Z \\ 3 x_{1}-x_{2}+x_{3}+2 x_{4} \leq 8\end{array}\right\}$

Omitting x_{1} in apparatus (9), then having:
10) $3 Z \leq 5 x_{2}-11 x_{3}+11 x_{4}+16$
11) $\left\{\begin{array}{c}-2 x_{1}-x_{2}+3 x_{3}-5 x_{4} \leq-Z \\ x_{1}+7 x_{2}+3 x_{3}+7 x_{4} \leq 46\end{array}\right.$

Omitting x_{1} in apparatus (11), then having:
12) $Z \leq-13 x_{2}-9 x_{3}-9 x_{4}+92$
13) $\left\{\begin{array}{c}-2 x_{1}-x_{2}+3 x_{3}-5 x_{4} \leq-Z \\ 2 x_{1}+3 x_{2}-x_{3}+x_{4} \leq 10\end{array}\right.$

Omitting x_{1} in apparatus (13), then having:
14) $Z \leq-2 x_{2}-2 x_{3}+4 x_{4}+10$

Here, forming an apparatus using nonequivalents of (10), (12)26
(14) :
15) $\left\{\begin{array}{c}3 Z \leq 5 x_{2}-11 x_{3}+11 x_{4}+16 \\ Z \leq-13 x_{2}-9 x_{3}-9 x_{4}+92 \\ Z \leq-2 x_{2}-2 x_{3}+4 x_{4}+10\end{array}\right.$

Choosing a dual combination form above apparatus:
16) $\left\{\begin{array}{l}3 Z \leq 5 x_{2}-11 x_{3}+11 x_{4}+16 \\ Z \leq-13 x_{2}-9 x_{3}-9 x_{4}+92\end{array}\right.$

Omitting x_{2} in apparatus (16), then having:
17) $44 Z \leq-188 x_{3}+98 x_{4}+668$

Choosing a dual combination from above apparatus:
18) $\left\{\begin{array}{c}3 Z \leq 5 x_{2}-11 x_{3}+11 x_{4}+16 \\ Z \leq-2 x_{2}-2 x_{3}+4 x_{4}+10\end{array}\right.$

Omitting x_{2} in apparatus (18), then having:

$$
\text { 19) } 11 Z \leq-32 x_{3}+42 x_{4}+82
$$

Variables of x_{3} and x_{4} can not be omitted in (17), (19), because, the sign of x_{3} in both of them is negative and the sign of x_{4}, in both of them is positive.
Supposing (17), (19) :

$$
\text { 20) }\left\{\begin{array}{c}
44 Z \leq-188 x_{3}+98 x_{4}+668 \\
44 Z \leq-128 x_{3}+168 x_{4}+328
\end{array}\right.
$$

Having 3 conditions:

Condition 1:

$$
\begin{aligned}
& \text { 21) }-188 x_{3}+98 x_{4}+668=-128 x_{3}+ \\
& 168 x_{4}+328
\end{aligned}
$$

Simplifying (21), then having:
22) $6 x_{3}+7 x_{4}=34$

According to (22) and integering variables of decision:
23) $x_{4}=2 q=>3 x_{3}+7 q=17$

According to (23), having:

$$
\text { 24) } \begin{aligned}
& q+1=3 d=>q=3 d-1=> \\
& 3 x_{3}+21 d=24
\end{aligned}
$$

Therefore, having:

$$
\text { 25) } x_{3}=8-7 d, \quad x_{4}=6 d-2
$$

Hence, for $\mathrm{d}=1$ having:
$x_{3}=1, x_{4}=4$
Putting values of x_{3} and, x_{4} in nonequivalents of (20) having:
27) $44 Z \leq-188(1)+98(4)+668=>Z \leq 19$

Putting values of x_{3}, x_{4} and Z in nonequivalent (8) having:
28) $\left\{\begin{array}{cl}2 x_{1}+x_{2}-3(1)+5(4) \leq 19 & => \\ 2 x_{1}+x_{2} \leq 2 & \\ 3 x_{1}-x_{2}+1+2(4) & =8 \\ 3 x_{1}-x_{2} \leq-1 & => \\ x_{1}+7 x_{2}+3(1)+7(4) \leq 46 & => \\ x_{1}+7 x_{2} \leq 15 & \\ 2 x_{1}+3 x_{2}-1+4 & => \\ 2 x_{1}+3 x_{2} \leq 7 & \end{array}\right.$

Simply , According to (28) having:
29) $x_{1}=0, x_{2}=2, Z=19$

Condition 2:

30) $-188 x_{3}+98 x_{4}+668>-128 x_{3}+168 x_{4}+328$

Simplifying (30), then having:
31) $6 x_{3}+7 x_{4}<34$

Therefore having:
32) $44 Z \leq-128 x_{3}+168 x_{4}+328$

Hence, regarding to (31) and (32) having:
33) $x_{3}=0, x_{4}=4, Z \leq 22$

Thereupon:
34) $\left\{\begin{array}{c}2 x_{1}+x_{2} \leq 2 \\ 3 x_{1}-x_{2} \leq 0 \\ x_{1}+7 x_{2} \leq 18 \\ 2 x_{1}+3 x_{2} \leq 6\end{array}=>5 x_{1} \leq 2=>x_{1}=0, x_{2}=2\right.$,

$$
Z=22
$$

Condition 3:

35) $-188 x_{3}+98 x_{4}+668<-128 x_{3}+168 x_{4}+328$

Sampling:
36) $6 x_{3}+7 x_{4}>34$

Hence:
37) $44 Z \leq-188 x_{3}+98 x_{4}+668$

Regarding to (36) and constraint of $x_{1}+7 x_{2}+3 x_{3}+7 x_{4} \leq$ 46 having:
38) $x_{3}=0, ~ x_{4}=5$ or $x_{4}=6$

Putting values in (37) :

$$
\text { 39) }\left(x_{3}=0, x_{4}=5\right)=>Z \leq 26
$$

Putting values in objective function:

$$
\text { 40) } 2 x_{1}+x_{2} \leq 1=>x_{1}=0=>x_{2} \leq 1
$$

Putting values in first constraint:

$$
\text { 41) }-x_{2}+10 \leq 8=>x_{2} \geq 2
$$

Nonequivalents of (40), (41) reverse each other.
Putting values in (37):
42) $\left(x_{3}=0, x_{4}=6\right)=>Z \leq 28$

Putting values in objective function:
43) $2 x_{1}+x_{2} \leq-2$

Unequal of (43) is an impossible tie (x_{j} is an integer variable).
Therefore optimal result is attained from (34):
44) $x_{1}=0, x_{2}=2, \quad x_{3}=0, \quad x_{4}=4, Z=22$ End of example A.
B. Example for "Case A(2)"

MAXZ $=-3 x_{1}+x_{2}-7 x_{3}+3 x_{4}$

$$
\text { 45) }\left\{\begin{array}{cc}
\text { s.t: } & \\
-x_{1}+x_{2}-x_{3}+x_{4} & \leq-2 \\
x_{1}-x_{2}-x_{3} & \leq 1
\end{array}\right.
$$

Resolve:
46) $\begin{cases}3 x_{1}-x_{2}+7 x_{3}-3 x_{4} & \leq-Z \\ -x_{1}+x_{2}-x_{3}+x_{4} & \leq-2\end{cases}$

Omitting x_{1} in apparatus (46),then having:
47) $2 x_{2}+4 x_{3} \leq-Z-6$
48) $\left\{\begin{array}{cl}-x_{1}+x_{2}-x_{3}+x_{4} & \leq-2 \\ x_{1}-x_{2}-x_{3} & \leq 1\end{array}\right.$

Omitting x_{1} in apparatus of (48),then having:

$$
\text { 49) }-2 x_{3}+x_{4} \leq-1=>x_{3} \geq 1
$$

Forming (47) and (49) together, Omitting x_{3} :

$$
\begin{aligned}
& \text { 50) }\left\{\begin{array}{c}
2 x_{2}+4 x_{3} \leq-Z-6 \\
-2 x_{3}+x_{4} \leq 1
\end{array}=>\right. \\
& 2\left(x_{2}+x_{4}\right) \leq-Z-8
\end{aligned}
$$

51) $Z \leq-2 x_{2}-2 x_{4}-8$

Regarding to (49):
52) $x_{3}=1=>x_{4} \leq 1=>x_{4}=$ 1 or $x_{4}=0$

Putting values in objective function:

$$
\text { 53) } x_{4}=1=>Z=-3 x_{1}+x_{2}-4
$$

Putting values in constraints:
54) $\left\{\begin{array}{c}-x_{1}+x_{2} \leq-2 \\ x_{1}-x_{2} \leq 2\end{array}=>x_{1}-x_{2}=2\right.$
55) $Z=-3 x_{1}+x_{2}-4=-3\left(x_{2}+\right.$ 2) $+x_{2}-4=-2 x_{2}-10$

$$
\begin{aligned}
& \Rightarrow> \\
& \left\{\begin{array}{c}
x_{2}=0 \\
x_{1}=2 \\
Z=-10
\end{array}\right.
\end{aligned}
$$

Putting values in objective function:
56) $x_{4}=0=>Z=-3 x_{1}+x_{2}-7$ (56)

Putting values in constraints:
57) $\left\{\begin{array}{c}-x_{1}+x_{2} \leq-1 \\ x_{1}-x_{2} \leq 2\end{array}=>x_{1}-x_{2} \geq 1\right.$
58) $x_{1}-x_{2}=1=>x_{1}=x_{2}+1=>$ $Z=-3\left(x_{2}+1\right)+x_{2}-7=>Z=$ $-2 x_{2}-10$

Therefore:
59) $x_{2}=0=>x_{1}=1, Z=-10$
60) $x_{1}-x_{2}=2=>x_{1}=x_{2}+2=>$ $Z=-3\left(x_{2}+2\right)+$
$x_{2}-7 Z=>-2 x_{2}-13$
61) $x_{2}=0=>x_{1}=2, Z=-13$

Therefore, optimal result is attained from (55), (59):
62) $x_{1}=2, x_{2}=0, x_{3}=1, x_{4}=$ $1, Z=-10$
63) $x_{1}=1, x_{2}=0, x_{3}=1, x_{4}=$ $0, Z=-10$

End of example B.
C. Example for "Case B(1)" :

$$
\begin{aligned}
& \text { MIN } Z=10 x_{1}+14 x_{2}+21 x_{3} \\
& \text { s.t: } \\
& \text { 64) }\left\{\begin{array}{l}
-8 x_{1}-11 x_{2}-9 x_{3} \leq-12 \\
-2 x_{1}-2 x_{2}-7 x_{3} \leq-14 \\
-9 x_{1}-6 x_{2}-3 x_{3} \leq-10 \\
\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right) \in \mathrm{W} ; \mathrm{W}=\{0,1,2, \ldots\}
\end{array}\right.
\end{aligned}
$$

Resolve:
65) $\left\{\begin{array}{c}10 x_{1}+14 x_{2}+21 x_{3} \leq Z \\ -8 x_{1}-11 x_{2}-9 x_{3} \leq-12 \\ -2 x_{1}-2 x_{2}-7 x_{3} \leq-14 \\ -9 x_{1}-6 x_{2}-3 x_{3} \leq-10\end{array}\right.$

Omitting x_{1} in apparatus (65), then having:
66) $\left\{\begin{aligned} x_{2}+39 x_{3} & \leq 4 Z-60 \\ 4 x_{2}-14 x_{3} & \leq Z-70 \\ 66 x_{2}+159 x_{3} & \leq 9 Z-100\end{aligned}\right.$

Omitting x_{3} in apparatus (66), then having:
67) $\left\{\begin{array}{c}170 x_{2} \leq-3570+95 Z \\ 1560 x_{2} \leq-12530+285 Z\end{array}\right.$
$=>\left\{\begin{array}{l}102 x_{2}+2142 \leq 57 Z \\ 312 x_{2}+2506 \leq 57 Z\end{array}\right.$
68) $x_{2}=0=>Z \geq 44=>$

$$
\begin{cases}10 x_{1}+21 x_{3} & \geq 44 \\ 8 x_{1}+9 x_{3} & \geq 12 \\ 2 x_{1}+7 x_{3} & \geq 14 \\ 9 x_{1}+3 x_{3} & \geq 10\end{cases}
$$

69) $x_{3}=0=>x_{1} \geq 7=>$
$x_{1}=7, Z=70$
70) $x_{3}=1=>x_{1} \geq 4=>$

$$
x_{1}=4, \quad Z=61
$$

71) $x_{3}=2=>x_{1} \geq 1=>$
$x_{1}=1, \quad Z=52$
Continuing current operation leads to
Increasing " $\mathrm{Z} "$, so not to raising " x_{3} ".
72) $x_{2}=1=>Z \geq 50=>$

$$
\left\{\begin{array}{cl}
10 x_{1}+21 x_{3} & \geq 36 \\
8 x_{1}+9 x_{3} & \geq 1 \\
2 x_{1}+7 x_{3} & \geq 12 \\
9 x_{1}+3 x_{3} & \geq 4
\end{array}\right.
$$

73) For satisfying (72), x_{1} and x_{3} must be like $\left\{\begin{array}{l}x_{1} \geq 0 \\ x_{3} \geq 2\end{array}\right.$ or like $\left\{\begin{array}{l}x_{1} \geq 3 \\ x_{3} \geq 1\end{array}, \quad\right.$ therefore, having $\mathrm{Z}=56$ using 2 first constraints and having $\mathrm{Z}=65$ using 2 second constraints, which both of them are not optimum.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942
Vol:3, No:3, 2009

Not to continuing these steps because it leads to raising value of Z over 52.

$$
\text { 74) } x_{1}=2=>\quad Z \geq 55
$$

[2] F. S. Hillier and G. Y. Lieberman," Introduction to Operations Research," $8^{\text {th }}$ edition, Mc Graw - Hill, ISBN 0-07-123828-X.
[3] G. B. Dantzig., B. C. Eaves, Fourier and Motzkin, "Elimination and its dual," Journal of Combinatorial Theory (A), 1973, pp.288-297.
[4] H.A. Taha," Operations Research: An Introduction," 8th ed., Prentice Hall, 2007, ISBN 0-13-188923-0.

Hence:

$$
\begin{aligned}
& x_{1}=1, x_{2}=0, x_{3}=2, x_{4}=0, Z= \\
& 52
\end{aligned}
$$

End of example C.
D. Example for "Case B(2)"

$$
\begin{aligned}
& \text { MIN } Z=2 x_{1}-3 x_{2}-4 x_{3} \\
& \quad \text { S.t: } \\
& \text { 75) }\left\{\begin{array}{l}
-x_{1}+x_{2}+3 x_{3} \leq 8 \\
3 x_{1}+2 x_{2}-x_{3} \leq 10 \\
\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right) \in \mathrm{W} ; \mathrm{W}=\{0,1,2, \ldots\}
\end{array}\right.
\end{aligned}
$$

Resolve:
76) $\left\{\begin{array}{c}2 x_{1}-3 x_{2}-4 x_{3} \leq Z \\ -x_{1}+x_{2}+3 x_{3} \leq 8 \\ 3 x_{1}+2 x_{2}-x_{3} \leq 10\end{array}\right.$

Omitting x_{2} in apparatus (76), then having:

$$
\text { 77) }\left\{\begin{array}{c}
-x_{1}+5 x_{3} \leq 24+Z \\
13 x_{1}-11 x_{3} \leq 30+2 Z
\end{array}\right.
$$

Omitting x_{1} in apparatus (77), then having:

$$
\begin{aligned}
& \text { 78) }\left\{\begin{array}{c}
5 Z \geq 18 x_{3}-114 \\
x_{3}=0=>Z \geq-22=>Z=-22+K, K=0,1,2, \ldots
\end{array}\right. \\
& \text { 79) }\left\{\begin{array}{c}
2 x_{1}-3 x_{2}=-22+K \\
-x_{1}+x_{2} \leq 8 \\
3 x_{1}+2 x_{2} \leq 10
\end{array}\right\}=> \\
& \left\{\begin{array}{c}
3 x_{2}=2 x_{1}+22-K \\
x_{2} \leq 5=>3 x_{2} \leq 15
\end{array}\right. \\
& =>2 x_{1}+22-K \leq 15=>K \geq 2 x_{1}+7
\end{aligned}
$$

By a brief research, finding out optimal result:

$$
x_{1}=0, \quad x_{2}=5, x_{3}=1, \quad Z=-19
$$

End of example D.

IV. Conclusion

The effectiveness of the implied method is that with the aid of simple software, we can make an improvement in the process of solving the pure integer programming problems.

References

[1] A. Schrijver, "Theory of Liner and Integer Programming," John Wily \& Sons, 1998, ISBN 0-471-98232-6.

