
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:12, 2007

1767

Models to Customise Web Service Discovery Result
using Static and Dynamic Parameters

Kee-Leong Tan, Cheng-Suan Lee, and Hui-Na Chua

Abstract—This paper presents three models which enable the

customisation of Universal Description, Discovery and Integration
(UDDI) query results, based on some pre-defined and/or real-time
changing parameters. These proposed models detail the requirements,
design and techniques which make ranking of Web service discovery
results from a service registry possible. Our contribution is two fold:
First, we present an extension to the UDDI inquiry capabilities. This
enables a private UDDI registry owner to customise or rank the query
results, based on its business requirements. Second, our proposal
utilises existing technologies and standards which require minimal
changes to existing UDDI interfaces or its data structures. We believe
these models will serve as valuable reference for enhancing the
service discovery methods within a private UDDI registry
environment.

Keywords—Web service, discovery, semantic, SOA, registry,
UDDI.

I. INTRODUCTION
ERVICE-LEVEL discoverability is one of the primary
principles within a Service Oriented Architecture (SOA).

Due to the convergence of key technologies and popularity of
Web service, most service-oriented enterprises are taking
advantage of Web services capabilities to improve corporate
agility, time-to-market for new products or services, reduce IT
costs and improve operational efficiency. Among the major
benefits of Web services are features such as pervasive, simple
and platform-neutral. [1]

Implementing discoverability on SOA level basically
requires the use of registry or directory technologies such as
UDDI [2]. The interaction between UDDI and other
components within web services architecture is shown in Fig.
1. Web services architecture consists of specifications such as
Simple Object Access Protocol (SOAP), Web Service
Description Language (WSDL) and UDDI. All these
components support the interaction of a service requester with
a service provider and the potential discovery of the Web
service description. The provider typically publishes a WSDL
description of its Web service, and the requester accesses the
description using a UDDI or other type of registry, and
requests the execution of the provider's service by sending a
SOAP message to it.

All authors are members of Mobile Web Service Team, Asian Research

Centre, British Telecommunications Group, 63000 Cyberjaya, Selangor,
Malaysia (e-mails: keeleong.tan@bt.com, chengsuan.lee@bt.com,
hui.chua@bt.com).

Fig. 1 Basic Web service architecture

However, present UDDI specification still has limitations,

particularly on semantics information retrieval. Hence, unlike
WSDL and SOAP, UDDI has not yet attained industry-wide
acceptance, and remains an optional extension to SOA. For
example, the present UDDI standard does not provide a built-
in mechanism to personalise or rank its query results, and its
search capabilities are unable to extend beyond the keyword-
based matches [3]. To address some of these limitations, there
are many on going research and standardisation activities
within the SOA and semantics web communities which result
in the introduction of semantic service markup language such
as DAML-S and OWL-S [4]. Besides that, XML based
languages for business process are also expanding, such as
WSFL, ebXML, BPML, RuleML, and BPEL4WS.

Despite the limitations mentioned above, and the slow
adoption of public UDDI implementation, private UDDI has
gained success within inside-the-enterprise technology and
support from major vendors such as Oracle, Microsoft and
IBM. Based on this, UDDI will be the most popular candidate
for SOA registry implementation. One recent announcement
by Oracle to include UDDI-based registry as part of their
latest Oracle Application Server 10g Release 3 further support
this future trend. [5]

II. PROBLEM DESCRIPTION
As UDDI has gained support from enterprises and major

vendors, it's usage will be not be limited to business to
business (B2B) scenario, but also into the area of business to
customers (B2C) and peer to peer interaction. Within the B2C
context, a business entity owns or implements private or semi-

S

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:12, 2007

1768

private UDDI registries. The business entity will have
certain business rules or interests to follow, to customise the
results of Web service discovery. For example a business
entity who own private UDDI, may wish to have a control on
the way UDDI query results are displayed to the service
requestor.

Let us consider the following example which illustrates this
scenario. We have a telecommunication service operator who
owns a private UDDI registry to store details of mobile
services it offers. Besides its in-house developed services, it
also hosts some third party or vendor developed services. Now
consider a case when a mobile consumer browses the service
category he intend to subscribe or purchase, result shows there
are more than one available service under the chosen category.
The registry will display a list of services and the final choice
will be made by the customer.

However, the operator may wish to prioritise the list of
services to be displayed. Some scenarios such as showing only
selected services or rank all services according to pre-defined
business rules such as preferred vendor or service popularity.
Assuming this private registry is owned and hosted by a
business entity, this requirement should be automated and its
mechanism should be transparent to the consumers. With the
present UDDIv3 capabilities [6], there is no direct approach to
achieve this, and this limitation formed the motivation of our
research problem description.

III. RELATED WORKS
Most efforts to customise Web service discovery results

focused on creating semantic extensions to UDDI, pioneered
by K.Sivashanmugam, et al. [7] and Paolucci, et al. [7][8]. It
took advantage of DAML ontology to implement a matching
algorithm used to enhance UDDI registries with additional
semantic layer; this also allowed metadata pattern based
matching. The work carried out also described how service
capabilities within DAML-S can be mapped into UDDI
records, which lead to a new technique to record semantic
information within UDDI records. To achieve more accurate
matching results, an algorithm was proposed to rank the level
of matching for DAML-S description, where the result was an
aggregation of several pre-defined individual verification and
matching stages [9]. These approaches however are not
suitable for private registry environment as effort to customise
registry to support additional ontology languages like DAML-
S will require too much modification effort and amplified
system complexity.

Rama, et al. [3] questioned the effectiveness of these
semantic extensions and argued a better approach would be to
extend the UDDI API schema to enable a service requestor to
specify the semantic properties. This approach will require
new parameters to be added to UDDI API. For discovery,
selection and combination of services according to the special
preferences of an individual user, [10] introduced an algorithm
for selection of appropriate service using cooperative
databases and collaborative filtering techniques. However, we
foresee these approaches will not gain wide industry
acceptance as changes to existing UDDI API and data

structures will add to the complexity of existing system and
they do not conform to existing standards.

With regards to customisation by ranking of web services,
there were several proposals such as [11] which introduced the
use of agent to automatically establish ranking capabilities to
web services and [12] described a framework for ontology-
based discovery of semantic web services and allowed user to
specify personalised ranking criteria as part of query result
based on ontology. In [14], taxonomy for non-functional
attributes namely QoS was proposed. The UX architecture
[13] suggested an approach to use dedicated server to collect
feedback of users and predict the future performance of
published services.

In this paper, we propose three practical approaches to
customise the registry query result according to certain
criteria. We use static and dynamic parameters values to
formulate the criteria to achieve the customisation of UDDI
query results. Our approaches are represented by three
alternative models which adhere to present UDDI standard.
Further details of each model will be discussed in the next
sections.

IV. MODEL ARCHITECTURE
We propose three models to achieve the customisation of

UDDI query results. All three share some common
architecture components as shown in Fig. 2. They are: UDDI
server, UDDI Proxy and User Interface. These components
will interact with other external components. In this paper, we
assume the customisation criteria required is the ranking of list
of business or service list to User Interface. Load balancing
also can be improved by keeping the User Interface and UDDI
Proxy on separate servers.

Fig. 1 Proposed model architecture

UDDI server is a server-side application that fully supports

the UDDI API specification. Examples are Microsoft
Enterprise UDDI Services, IBM Websphere UDDI Registry,
Oracle AS UDDI Registry, webMethods GLUE and jUDDI
[14]. User interface allows a requester (or comsumer) to
manually locate and select a service description that meets his
desired functional and criteria. It could be a web browser or
standalone application accessed via mobile devices or desktop
computers. The User Interface support two types of user
access: (a) public access - for registry service browsing,
accessible by everyone; and (b) administrator access - for

UDDI
Proxy

External files

UDDI
Server

Logs

Registry

User Interface

Public Administrator

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:12, 2007

1769

UDDI Proxy configuration and parameters settings, restricted
user access. The UDDI Proxy acts as an intermediary between
the User Interface and the UDDI Server. It supports two
important features to make the customisation ranking of UDDI
query results possible. First, if there is more than one record
within the list, before returning the result to User Interface, it
rearranges the records based on certain pre-defined criteria.
The criteria can be created either at design time or run time.
Secondly, UDDI Proxy will provide a mechanism (more
details for each model to be explained in section V) to
automate the update of parameter values which will be used to
form the criteria.

V. PROPOSED MODELS
The most basic feature of UDDI is to allow businesses to

publish their services in a directory and enable other business
representatives to locate partners and to form business
relationships based on the web services they provide. In this
section, we propose three alternative models to extend its
basic feature to allow personalisation of UDDI query result
based on criteria managed by the UDDI administrator. The
criteria consist of certain parameters which will determine its
outcome. Here, we introduce two types of parameter: static
and dynamic.

The static parameter will hold certain values which has been
fixed and do not change during run-time. Only Administrator
access can modify its values. Examples of static parameter are
vendor ranking (for business), cost per transaction and
advertisement priority (for service). Vendor ranking refers to
priority values assigned for different vendors, based on certain
business requirements. For example the most preferred vendor
will be given value of 1, second be given value of 2, and so
on.

Unlike static, the dynamic parameter will be used to store
value which is real-time changing and gets updated during
run-time. The updating frequency will depend on mechanism
defined within the criteria. One usage of dynamic parameter is
to keep track of service or business popularity, where it stores
the total number of request to invoke or subscribe a specific
service. The mechanism to determine the frequency of this
update is described in more details in section 5A. The function
is similar to webpage ‘hits counter’. Usage described here can
also be extended to track business or vendor popularity – to
know how popular a vendor compared to others. Another
example of dynamic parameter usage within a registry is to
monitor service traffic load, where it can store data containing
total number of concurrent users accessing a specific service at
any point of time. The parameter examples described above
are summarised in Table I.

TABLE I
EXAMPLE OF PARAMETERS CATEGORIZED ACCORDING TO BUSINESS AND

SERVICE ENTITY

 Static Parameter Dynamic Parameter

Business Vendor ranking Vendor popularity

Service Service cost,
advertisement

Service popularity,
service load.

In our proposed models, we assume the private registry is
owned by a business entity that has control over the service
discovery results. The criteria used to customise the UDDI
query results will be represented by static and dynamic
parameters. The key differences between each model are (1)
the location on where the parameter values are stored and
retrieved; and (2) ranking mechanism. Each model’s
requirements, ranking mechanisms, advantages and
disadvantages will be further elaborated in the following
sections.

A. Model Where Parameters are Saved and Retrieved from
UDDI Server

In this first model, we propose the use of only UDDI Proxy
and UDDI Server components (Fig. 3), where the parameters
will be saved inside the UDDI server itself. This will require a
new tModel definition to describe the parameters information.
Each business entity and service will then contain a reference
to this tModel in their record. For example, the reference can
be inserted as one of the element inside the identifier bag of
businessEntity, or its service tModel identifier bag. The term
“bag” indicates a generic container of multiple values, and
enables a company to register multiple business identifiers.

Fig. 3 Model 1 proposes parameter values to be saved and

retrieved from UDDI server

i. tModel Definition
Here we show an example of the proposed tModel

definition to represent static vendor ranking parameter for the
businessEntity record. A new tModel will have to be created
for each parameter type.

Name: uddi-org:types
Description: Business parameters: static: vendor

ranking. To store vendor priority level
data. Highest=1 and lowest=5.

UDDI Key (V3): uddi:uddi.org:categorization:types
Evolved V1,V2
format key:

uuid:C1ACF26D-9672-4404-9D70-
39B756E62AB4

Categorisation: Categorisation
Checked: Yes

ii. tModel V3 Structure
This vendor ranking tModel is represented with the

following structure:

UDDI
Proxy

UDDI
Server

Registry

User Interface

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:12, 2007

1770

<tModel
tModelKey="uddi:uddi.org:ubr:categorization:static:v
endorranking:2005">
<name>vendor ranking</name>
<description xml:lang="en">Business Taxonomy: Static
Vendor Ranking Parameter </description>
<overviewDoc>
<overviewURL useType=“text”>
http://bull.dot.com/uddi/taxonomy/parameters/static.
htm#vendor_ranking
</overviewURL>
</overviewDoc>
...
</tModel>

iii. Example of Use
From the tModel definition above, a businessEntity record

includes a reference to vendor ranking tModel in its identifier
bag, as below.

<businessEntity
businessKey="xxx-yyy-zzz-ac09-9955cff462a3"
operator="UDDI Department,Company Bull dot Com"
authorizedName="Tan KL">
<name>Bull dot Com</name>
...
<identifierBag>

<keyedReference
tModelKey="uuid:8609c81e-ee1f-4d5a-b202-
3eb13ad01823"
keyName="D-U-N-S" keyValue="22-333-444" />

<keyedReference
tModelKey="uddi:uddi.org:ubr:categorization:static:v
endorranking:2005" keyName=”vendor ranking”
keyValue=”3” />

</identifierBag>
...
</businessEntity>

iv. Retrieving Parameters Values
In this model, all the parameter values are stored using

XML schema inside the UDDI server. Whenever a request is
made by consumer to get a list of services, the UDDI Proxy
will invoke the UDDI Find functions of the inquiry API.
Certain Find Qualifiers can also be used to enable more
precise search criteria. Let us take an example of mobile user
who requests for online stock quote service. If there are 4
registered vendors providing the service, the UDDI Proxy will
receive a list as shown in Table II.

TABLE II

INITIAL LIST RECEIVED AT UDDI PROXY

As shown above, all static and dynamic parameters related

to the services (as discussed in section V) are embedded in the
list. This is very important as the UDDI Proxy will use some

of this parameter values as ranking criteria. Based on the
criteria preferences defined by administrator, if the ranking
feature is enabled, the UDDI Proxy will further process the list
accordingly, using the embedded parameters values.

Once processing is done, the new list which contains ranked
and sorted services will be sent to user interface, all the
parameters values will be discarded. This process is presented
in Fig. 4.

1. After receive UDDI query result, check if ranking criteria is
required. If not, proceed to step 8.

2. Store the all result (except for parameter values) into one
temporary array column. Each parameter value is stored in one
column.

3. Determine which ranking criteria to be used.
4. For each record in the array, perform a sort function based on

ranking criteria determined in step 3.
5. If parameter value for current record is higher than previous,

move current record up the list.
6. Start over with step 4 until reach last record.
7. Make necessary formatting on the query list.
8. Send the list to User Interface.

Fig. 4 Algorithm to rank UDDI query result

In this example, if the registry owner wish to default the

ranking criteria based on ‘vendor ranking’, hence the
processed list sent to User Interface will be as shown in Table
III.

TABLE III
PROCESSED LIST SENT TO USER INTERFACE

v. Saving Parameters Values
Saving of parameters values to UDDI Server will be

handled by the UDDI Proxy using the Save functions of the
UDDI publishing API.

For static parameters, its values can be edited only by the
administrator. This can be achieved by having UDDI Proxy to
display and save the parameter values directly to UDDI
server. The save frequency is solely depending on the registry
administrator. As for the dynamic parameters, its values will
be updated each time the Proxy detect a request has been made
to access the respective business or service links. If the
dynamic parameter is used to store an incremental number
such as vendor ranking or popularity, first the UDDI Proxy is
required to read the current parameter value, increment the
value by 1 before it invoke the save function.

The main advantage of the first model is the criteria data are
stored and bind with its associated business or service entity.
This will be beneficial for private registry operator who
wishes to extend UDDI capabilities to support ranking with
minimal changes to his present system architecture. However,
there might be certain performance issue if the Proxy accesses
launch too many queries, too frequently to the UDDI server.

Service Name Vendor
Ranking

Service
Popularity

Traffic
Load

Ant Quotes 5 4 12
Bull Stock2U 3 2 30
Cat Stock 1 3 34
Deer online stock 2 1 22

No Service Name
1 Cat Stock
2 Deer online stock
3 Bull Stock2U
4 Ant Quotes

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:12, 2007

1771

B. Model Where Parameters are retrieved from Server
Logs

A private registry system normally consists of several
application and server components. A typical UDDI server is
often hosted together with application server (JBOSS, Apache
Tomcat) and SOAP server (Apache Axis) or being part of a
integrated solution package (Microsoft Enterprise Server,
GLUE). As with the UDDI server, these servers do provide
cross-language logging services for purposes of application
debugging and auditing. Web service log data could provide
information such as Web service usage, supporting
information concerning business transaction and quality of
service [15]. These logs data could provide useful semantic
information for ranking criteria.

Fig. 5 shows the components and data flow of this second
model. Note this model does not support the retrieving or
saving of static parameters.

Fig. 5 Model 2 proposes dynamic parameter values to be retrieved

from logs data

i. Retrieving Dynamic Parameter Values
In this second model, we propose the creating of dynamic

parameter values by extracting and processing the data from
log files of SOAP server, application server and UDDI server.
A function to search, match and count for each parameter type
is required within the UDDI Proxy. Examples of unique
identifications are businesskey and servicekey, both assigned
by UDDI. Our algorithm (Fig. 6) shows the necessary steps to
be performed by UDDI Proxy in order to achieve this.

1. After receive UDDI query result, check if ranking criteria is
required. If not, proceed to step 8.

2. Perform keyword search to identify all the businesses or services
received in the list.

3. Group and store business/service unique identification (UID)
into a temporary array. Create parameter value column(s) for
each UID.

4. For each of this UID, perform a search through the log files, and
count the UID match based on its ranking criteria.

5. For each match, store and increment the parameter value in the
array.

6. Start over with step 4 until all UIDs have been updated.
7. Sort the query list based on the final parameter values in the

array and make necessary formatting.
8. Send the list to User Interface.

Fig. 6 Algorithm to rank list using logs data

ii. Saving Dynamic Parameter Values
Since dynamic parameters values are extracted from the log

files and the log processing is handled by the respective server
logging services, there will be no saving mechanism
introduced here. The only important requirement is to ensure
all the servers logging service are turned on, or to the
minimum level where UUID will be created within the logs.

The main advantage of the second model is the criteria data
can be automatically generated from the server logs. This will
simplify implementation procedures and ensure data received
are the most recent. Registry administrator who does not
require static parameters for their criteria will find this model
suitable for their need. Besides, this model can be further
extended to monitor the health of registry servers as described
in [17].

C. Model Where Parameters Are Saved And Retrieved from
External File

In this model, we propose keeping both parameter values in
external files, one file for each parameter type. As shown in
Fig. 7, the files should be accessible directly from the Proxy,
outside the UDDI server. The flat ASCII file can either be in
pipe-delimited or even XML format. File A is used to store
values for static parameters and it can be modified by
administrator only. File B is used to store values for dynamic
parameters and gets updated by certain functions within the
UDDI Proxy, without the intervention of administrator.

Fig. 7 Model 3 proposes parameter values to be saved and

retrieved from external files (File A = Static, File B = Dynamic)

i. Retrieving Parameters Values
Parameters values for business and service ranking criteria

will be retrieved from an external file. Functions to open file,
search, match and count for a specific parameter are required
within the UDDI Proxy design. The algorithm in Fig. 8 shows
the necessary steps to be performed by the UDDI Proxy in
order retrieve both parameters values from external files.

UDDI
Proxy

B

External files

UDDI
Server

Registry

User Interface

A

Administrator

UDDI
Proxy

UDDI
Server

Logs

Registry

User Interface

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:12, 2007

1772

1. After receive UDDI query result, check if ranking criteria is

required. If not, proceed to step 11.
2. Perform keyword search to identify all the businesses or services

received in the list.
3. Group and store business/service unique identification (UID)

into a temporary array. Create parameter value column(s) for
each UID.

4. Check if ranking criteria is based on static or dynamic
parameter. If dynamic, proceed to step 7.

5. If static parameter, open File A. For each UID element in step 3,
perform a search through the File A, and count the UID match
based on its ranking criteria. Else, if

6. For each match in File A, store and increment the parameter
value in the array.

7. Repeat step 5 and 6 until all UIDs have been updated.
8. Proceed to step 10.
9. For dynamic parameter, repeat step 5 to 7 by referring to File B.
10. Sort the query list based on the final parameter values in the

array and make necessary formatting.
11. Send the list to User Interface.
Fig. 8 Algorithm to rank list using parameters stored in external files

ii. Saving Parameters Values
Unlike the first model where saving of parameter values

will be added to existing UDDI record based on XML schema,
this model will have its own data structure to store
business/service parameters values. An example of the data
structure is as follow:

UID serviceKey of the service
Name Service name
Parent UID businessKey of company who develop/own

the service
Popularity Real-time value of service access
Load Real-time value of concurrent user

To reduce complexity, we propose the data to be stored in

pipe-delimited or XML format. For static parameters (File A),
its values can be edited and saved from the administrator
interface. As for the dynamic parameters (File B), its values
will be updated each time the Proxy detects a request has been
made to access the respective business or service links. If the
dynamic parameter is used to store an incremental number
such as service load or service popularity, the Proxy first read
the current value, increment the value by one, before it
updates File B.

 The third model introduces distributed storage of the
parameters data, it has the advantages of lowering the UDDI
Server load, and gives administrator more control over the
external files. However, with more control available at the
administrator interface, the UDDI Proxy will have to provide
more complex functions to support these requirements and file
handling processing. This model will best suite registry
operator who has long list of criteria parameters, require full
control of the parameters data, and has to generate complex
criteria on the registry query results.

VI. COMPARISON OF THREE MODELS
Table IV summarises the main characteristics for each

models. Each model has been designed to address specific
usage scenarios and requirements for manual service
discovery using a private UDDI. The discussion on the usage
scenarios is beyond the scope of this paper.

TABLE IV

MODELS MAIN CHARACTERISTICS COMPARISON

VII. CONCLUSION AND FUTURE WORK
In this paper, we have presented three alternative models to

customise private UDDI registry query results based on
business requirements such as ranking of service list.

All the models proposed are designed to suite different
practical needs of private registry systems. These models serve
as valuable reference for registry administrators to further
enhance the service discovery process within their private
UDDI registry environments.

Aiming to achieve complete service delivery assurance for a
private SOA system, our future work will focus on the
refinement and implementation of proposed models. Each
proposed model will be further tested on their complexity,
performance and suitability, to support a reliable service
discovery mechanism for occasionally connected computing
environment.

REFERENCES
[1] Eric Newcomer, Greg Lomow, Understanding SOA with Web Services

(Upper Saddle River, NJ: Addison Wesley Professional, 2004).
[2] Thomas Erl, Service-Oriented Architecture: Concepts, Technology, and

Design (Upper Saddle River, NJ: Prentice Hall, 2005)
[3] Rama Akkiraju, Richard Goodwin, Prashant Doshi, Sascha Roeder, A

method for semantically enhancing the service discovery capabilities of
UDDI. Proc. Workshop on Information Integration on the Web,
Acapulco, Mexico, 2003. 87–92

[4] Anupriya Ankolekar, Mark Burstein, Jerry Hobbs J, DAML-S: Web
service description for the semantic web. Proc. First Int'l Semantic Web
Conf. (ISWC02), Sardinia, Italy, 2002.

[5] Oracle Unveils Oracle(R) Application Server 10g Release 3. 19
September 2005.
http://biz.yahoo.com/prnews/050919/sfm087.html?.v=24

[6] OASIS. Introduction to UDDI: Important Features and Functional
Concepts. October 2004. http://lists.oasis-open.org/archives/uddi-
spec/200410/pdf00001.pdf

[7] K. Sivashanmugam, K. Verma, A. Sheth, J. Miller, Adding Semantics to
Web Services Standards, Proceedings of the 1st International
Conference on Web Services (ICWS'03), Las Vegas, Nevada, June
2003, 395 - 401.

 Model 1 Model 2 Model 3

Parameters
supported

Static &
Dynamic Dynamic only Static &

Dynamic

Model
Complexity Medium Low High

Effect on
registry
performance

High Medium Low

Parameters
location

Within
Registry

Within
Registry

Outside
Registry

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:12, 2007

1773

[8] OASIS. UDDI Version 3 Features List
http://uddi.org/pubs/uddi_v3_features.htm

[9] Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia
Sycara, Semantic Matching of Web Services Capabilities. The First
International Semantic Web Conference (ISWC), Sardinia (Italy), June,
2002.

[10] Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia
Sycara, Importing the Semantic Web in UDDI. In Web Services, E-
Business and Semantic Web Workshop, 2002.

[11] Luc Moreau, Simon Miles, Juri Papay, Keith Decker, Terry Payne,
Publishing Semantic Descriptions of Services, Semantic Grid Workshop,
Chicago, 2003, 48-54.

[12] Wolf-Tilo Balke, Matthias Wagner, Towards Personalized Selection of
Web Services, 12th International World Wide Web Conference,
Budapest, Hungary, 2003.

[13] Abdelmounaam Rezgui, Athman Bouguettaya, Privacy Ranking of Web
Service, ACM International Conference On Service Oriented
Computing, New York, NY, 2004.

[14] Jyotishman Pathak, Neeraj Koul, Doina Caragea, Vasant G Honavar, A
Framework for Semantic Web Service Discovery, ACM International
Workshop on Web Information and Data Management, Bremen,
Germany, 2005.

[15] Z.Chen, C.Liang-Tien, B.Silverajan, L.Bu-Sung, UX – An Architecture
Providing QoS-Aware and Federated Support for UDDI, Proc of
International Conference on Web Services, Las Vegas, Nevada, USA,
2003. CSREA Press 2003, ISBN 1-892512-49-1.

[16] OASIS. UDDI solutions: UDDI Products and Components.
http://www.uddi.org/solutions.html

[17] Serra da Cruz Serra da Cruz, Maria Luiza M. Campos, Paulo F. Pires,
Linair Maria Campos, Monitoring E-Business Web Services Usage
through a Log Based Architecture. IEEE International Conference on
Web Services, San Diego, CA, 2004, 61-69.

