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Modelling Sudoku Puzzles as Block-world Problems

Abstract—Sudoku is a kind of logic puzzles. Each puzzle consists
of a board, which is a 9× 9 cells, divided into nine 3× 3 subblocks
and a set of numbers from 1 to 9. The aim of this puzzle is to
fill in every cell of the board with a number from 1 to 9 such
that in every row, every column, and every subblock contains each
number exactly one. Sudoku puzzles belong to combinatorial problem
(NP complete). Sudoku puzzles can be solved by using a variety of
techniques/algorithms such as genetic algorithms, heuristics, integer
programming, and so on. In this paper, we propose a new approach for
solving Sudoku which is by modelling them as block-world problems.
In block-world problems, there are a number of boxes on the table
with a particular order or arrangement. The objective of this problem
is to change this arrangement into the targeted arrangement with the
help of two types of robots. In this paper, we present three models
for Sudoku. We modellized Sudoku as parameterized multi-agent
systems. A parameterized multi-agent system is a multi-agent system
which consists of several uniform/similar agents and the number of
the agents in the system is stated as the parameter of this system. We
use Temporal Logic of Actions (TLA) for formalizing our models.

Keywords—Sudoku puzzle, block world problem, parameterized
multi agent systems modelling, Temporal Logic of Actions.

I. INTRODUCTION

Sudoku is a kind of logic puzzles. Each puzzle consists of a
board, which is a 9×9 cells, divided into nine 3×3 subblocks
and a set of numbers from 1 to 9. The aim of this puzzle is to
fill in every cell of the board with a number from 1 to 9 such
that in every row, every column, and every subblock contains
each number exactly one. Sudoku puzzles first popularized
a Japanese puzzle company named Nikoli in 1986 and then
became known worldwide in 2005. Until now, this puzzle is
still very popular. It can be found, for example, in newspapers,
like the one given in Figure 1 which taken from one Indonesian
newspaper Kompas.

Fig. 1. A Sudoku puzzle (a) and its solution (b).

Sudoku puzzles belong to combinatorial problem (NP
complete) and can be solved by using a variety of tech-
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niques/algorithms such as genetic algorithms, heuristics, inte-
ger programming, and many more. In this paper we proposed a
new and different approach for solving Sudoku puzzles which
is by modelling them as block-world problems. Block-world
problem is known as one of the most famous planning domains
in artificial intelligence. Given a set of blocks that are arranged
in some vertical stacks/piles and some robots (possibly with
different task capability), the problem is to change the initial
arrangement into a new different arrangement. There have
been several approaches for the modelling and solving the
block-world problems ([13], [12]). Figure 2 gives an illustra-
tion of a block-world problem.

Fig. 2. An example of Block world problem.

The focus of our work is the modelling process and not the
techniques/algorithms for solving the Sudoku. We take three
simple techniques for solving Sudoku.

In this work, we use formal method approach for solving
Sudoku puzzles. Referring to formal methods approach for
system development, generally there are two important steps
in developing systems, which are modeling and verification.
A model (or specification) is a description of the behaviors
of the system and usually written in a particular specification
language. Verification is a process of proving the correctness
of the models. Verification can also be viewed as a process of
showing whether a model satisfies certain targeted behaviors
called properties or not. Regarding our problem definition,
which is solving the Sudoku puzzles, our frame of mind is by
having a specification which is a representation of a Sudoku
puzzle, the solution finding process can be done through
verification by proving the property that eventually the solution
is found. In this work, we are only focus on the modelling step.
we use Temporal Logic of Actions (TLA) as the specification
language.

This paper is organized as follows. Section II describes
briefly parameterized multi-agent systems, in particular the
TLA general formula for writing a specification of parameter-
ized systems. Section III explains the how to model Sudoku
puzzles as block world problems. The specifications of our
proposed models are given in Section IV. Section V discusses
how each model works. Section VI gives some related work.
Conclusions and future work are given in Section VII.
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II. PARAMETERIZED MULTI-AGENT SYSTEMS

In this work, multi-agent systems are viewed as parame-
terized systems. We call this kind of systems ”parameterized
multi-agent systems”. A parameterized system is a system con-
sisting of a number of similar components (subsystems) that
work together, the number of the components is expressed as
input parameter of the system. Furthermore, we only consider
a class of parameterized systems which are interleaving (at
any time there is only one active component).

Let M denote a finite and non-empty set of agents running
in the system. A parameterized multi-agent system can be
described as a formula of the form:

v[k] ∧ L(k).

where
• Init is a predicate describing the status of the initial

conditions,
• Next(k) is an action (transition function) which states

the relation next-state of a process k,
• v is a function of the status of the states variables of the

system, and
• L(k) is a formula that states the condition liveness

expected from the process of subsystems k.

III. FROM BLOCK WORLD-PROBLEMS TO SUDOKU
PUZZLES

Following [4], in this work we use the following definition
for Sudoku puzzle.

Definition 1 Given an n2×n2 cells divided into n×n distinct
subblocks, the aim of Sudoku puzzle is to fill each cell so that
the following three criteria are met:

1) Each row of cells contains the integers 1 through to n2

exactly once.
2) Each column of cells contains the integers 1 through to

n2 exactly once.
3) Each subblock contains the integers 1 through to n2

exactly once.
In this paper we focus on n = 3.

In order to model Sudoku puzzles as block-world problems,
the first step is to analyze the components of a block-world
problem. The components of a block-world problem is a
number of robots, a number of boxes and a table. All the
boxes are on the table and initially they are arranged into a
number of piles. The task of the robots is to change this initial
arrangement of these piles into a particular arrangement called
final arrangement. Each robot has a different task (capability).
The first robot is only capable to take a box from a table and
put it on another box, whereas the second robot is capable to
take a box from a top of a pile and put it on the table. It is
assumed that every time only one robot that can make a move.
Figure 2 shows an example of block world problem.

Viewing this problem as a multi-agent system, we may say
that the agents are the robots and the environment consists
of a number of boxes and a table. In [12] we have modeled
block-world problem as parameterized multi-agent systems.

The main actions of this specification are move(k) and
free(k) representing the task of the first and the second robot,
respectively. The reader may consult [12] for more detailed
explanation.

Now let’s change the setting of block world problem as
follows:

• The number of boxes on the table is 9× 9.
• Each box has number on it, which is between 1 and 9.
• For every number, from 1 to 9, there are 9 boxes with

each number.
• There is a special part of the table called board which

consists of 3× 3 grids. Each grid is called subblock and
consists of 3× 3 smaller grids called cells.

• Initially some of the boxes are already placed on those
cells and the rest are outside the board. The boxes that
are outside the board are organized in nine pile according
to their numbers.

We also make some changes of the behaviour of the robots:
• The first robot is capable of taking a box that are outside

the board and putting this box on a cell of the board so
that the condition in Definition 1 are satisfied.

• The second robot is capable of taking a box from the
board and putting it back on the pile according to its
number.

By changing the setting of block-world problems as ex-
plained, the problem has turned into a Sudoku problem. Then
we may say that Sudoku puzzle is a variant of block-world
problems.

IV. PROPOSED MODELS

A. First Model
Now we will design a scenario how the system works, in

particular the task and the schedule of the robots. For the first
model, we take a backtracking style. Our approach can be
described as follows:

• The first robot gets the first turn. It is responsible for
filling in the board with boxes which are still outside
the board. This is done by searching an empty cell of
the board, finding a box that can be placed on that cell,
and putting the box on the cell. The first robot will do it
repeatedly, until one of two conditions is reached:

– All the cells are filled with boxes (which means no
more boxes outside the board). At this situation the
first robot will report that the job is done.

– It is unable to find a box that can be placed on an
empty cell. If this happens, then it will report that
there is a failure and give the turn to the second
robot.

For the process of searching an empty cell, the first robot
will take the empty cell with the lowest position. We
define the the lowest and highest position as (1, 1) and
(9, 9), respectively. The first robot records all the empty
and not empty cells from the beginning until the end of
the process.

• The second robot will be active whenever a failure
happens. It is responsible for taking a box from the board
and put it back on its correspoding pile.

parMAS ≡ ∀k ∈ M : Init(k) ∧�[Next(k)]
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The reason for this action is based on the fact that the
existence of this failure is because of the wrong choice
made by the first robot. This implies that at least one of
the boxes on the board is not the correct one and it must
be taken away from the board. Since the first robot has
no capability to take a box from a board, it gives a sign to
the second robot to do this job. In our model, the second
robot will take the last box put by the first robot. As
consequence, the second robot needs information about
the order of the box put on the board.

Now we ready to write the specification of our first model.
As mentioned before, following [12], we will model Sudoku
as parameterized multi-agent systems and will use the formula
(1) for writing the specification for this problem.

Before that, we have to define the system’s variables that
will be used in the specification. There are seven variables
used in the specification, namely:

1) Board
Board represents the Sudoku’s board. It is a 2-
dimensional array of integers. Each element of Board
represents a cell at a particular position according to
the row and column. For example, if the value of
Board[3][5] is 6 then it means that the cell of third
row and fifth column is already filled with a box with
number 6. If the value of an element is equal 0 then it
means that there is no box on that cell.

2) numbers
numbers represents the piles of boxes that are not yet
placed on the board. It is an array of integer. The indices,
which are from 1 to 9, represent the box number and the
value of the element represents the number of the boxes.
For example, numbers[5] = 3 means that there are 3
boxes with number 5 that are still outside the board.

3) FC
FC is used to store the free/empty cells. A free cell is
a board’s cell without a box on it. There are two kind
of free cells. The first kind is a cell that has never been
used, whereas the second kind is a free cell that has been
used already.
FC is organized as an array. Each element of FC is a
triple of integers. The first and second elements of each
triple represent the cell’s position (row and column) on
the board. The third element is used to record the box
number that has been put on that cell. For example, an
element 〈3, 5, 6〉 informs that the cell at the third row
and the fifth column contains a box with number 6.
As explained, the both robots need information about
empty cells for doing its task. FC is used for this
purpose. It is assumed that initially FC contains the
empty cell

4) First and Last
F irst and Last is a non-negative integer representing
the index of the first the last empty cell of the board,
respectively. At the beginning, the value of First is
1 and Last is the number of the empty cells on the
board. The value of First will be changed (increased
or decreased) depends on the actions taken by the robots.

Fig. 3. Initial conditions of Board, FC, numbers, F irst, and Last.

The value of Last, on the contrary, is fixed.
5) isBackTrack

isBackTrack is a boolean variable representing the
failure signal that is raised by the first robot as explained
above. The first robot will set this variable to TRUE
whenever it is failed to find a box to be put on a
particular free cell. The second robot will only be active
if isBackTrack is TRUE. After doing its job, the second
robot is responsible to reset this variable.

6) isDone
isDone is a boolean indicating whether the finding
solution process is finished or not.

It is assumed that at the beginning, the variables Board,
numbers, and FC already contain values corresponding to
the puzzle to be solved.

As illustration, the initial conditions/values of Board, FC,
numbers, First, and Last corresponding to the puzzle in
Figure 1 are given in Figure 3.

The specification of our first model is given in Figure 4.
The value of M represents the number of robots in the system,
which in this case is 2. The main actions of the specification
are PutOn(k) and TakeBack(k). Besides them, we also
define some functions, namely:

1) isEmpty(x, y)
isEmpty is a boolean function for checking whether a
cell at the position (x, y) is empty or not.

2) isSolved
isSolved is a boolean function which will return TRUE if
the first robot put all the boxes on the board successfully,
which means that there are no empty cells on the board.

3) isNeighbor(i, j)
isNeighbor is a boolean function. This function is used
to check whether two rows/column, i and j, are in the
same subblock.

4) isInRow(x, i)
isInRow(x, i) is a function for checking whether there
is a box with number i on the row x.

5) isInColumn(y, i)
isInColumn(y, i) is a function for checking whether
there is a box with number i on the column y or not.

6) isInSubBlock(x, y, i)
isInSubBlock(x, y, i) is a function for checking the
existence of a box with number i in a subblock which
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contains position (x, y).
7) isV alidPosition(x, y, i)

isV alidPosition(x, y, i) is a function for checking
whether a box with number i can be placed on a cell
with position (x, y) with respect to the Sudoku’s rules
as stated in Definition 1.

The main actions of this specification are PutOn(k) and
TakeBack(k). These actions can be taken only if the solution
finding process is not yet finished (¬isDone ∧ ¬isSolved).

Action PutOn(k) can be taken only by a type 1
robot (k = 1). If there is a box with number i
(numbers[i] > 0) that can be put on the first empty cell
(isV alidPosition(FC[First][1], FC[First] [2]) then the
robot takes that box from its corresponding pile (numbers′ =
[numbers EXCEPT ![i] = numbers[i] − 1]), puts the box
on the empty cell (Board’ = [Board EXCEPT ![FC[First][1]]
[FC[First][2]] = i]), records which box put on that cell
(FC ′ = [FC EXCEPT ![First][3]] and changes the first empty
cell’s pointer (First′ = First + 1). The robot also deter-
mines whether the process should be terminated or not by
checking the existence of boxes on the piles (∀p ∈ {1..9} :
numbers[p] = 0). If there is no such box, the robot will set the
failure sign (isBackTrack′ = TRUE). Notice that in choosing
a box, the robot will pick a box with smallest number (∀j ∈
1..i−1 : ¬isV alidPosition(FC[First][1], FC[First][2], j))
that has never been put on that cell (i > FC[First][3]).

Action TakeBack(k) can be taken only by sec-
ond type robots and only if the failure sign is set
isBackTrack = TRUE. If it is not possible to do the
backtrack (First = 0), the robot will terminate the so-
lution searching process isDone′ = TRUE. Otherwise,
it will take back the last box put by the first robot
(Board′ = [Board EXCEPT ![FC[oF ][1]][FC[oF ][2]] =
0]), put it back to its corresponding pile (numbers′ =
[numbers EXCEPT ![n] = numbers[m] + 1]), and change the
pointer of first empty cell (First′ = oF ).

We leave the values of Board, FC, numbers, and Last
empty in the specification. The values of those variables
depend on the problem instance at hand.

B. Second Model

Differ from the first model, for the second model we use
nine robots. Each robot is a first type robot, which is a robot
whose task is to put a box on the board. We use the fixed-point
principle for this model. The searching for the solution is done
by making iterations until a termination condition is reached.
In each iteration, every robot i tries to find an appropriate cell
or a valid position for a box with number i. If the searching
is success, then robot i puts a box with number i on it. After
doing its job, the robot i will give the turn to the next robot.

After the robot 9 does its job, it will be decided whether a
new iteration should be made or not. If in the last iteration,
all the robots cannot find appropriate cells, in other word, the
robots can not put any boxes on the board anymore, then the
process is terminated.

In this model, we use the following definition for the valid
position.

module Model 1
isEmpty(x, y) ≡ Board[x][y] = 0
isSolved ≡ ∀x, y : ¬isEmpty(x, y)
isNeighbor(i, j) ≡ ∃n : (i− 1) % 3 = n ∧ (j − 1) % 3 = n
isInRow(x, i) ≡ ∃y : Board[x][y] = i
isInColumn(y, i) ≡ ∃x : Board[x][y] = i
isInSubBlock(x, y, i) ≡ ∃j, k : ∧ 〈x, y〉 �= 〈j, k〉

∧ isNeighbor(x, j)
∧ isNeighbor(y, k)
∧ Board[j][k] = i

isV alidPosition(x, y, i) ≡ ∧ isEmpty(x, y)
∧ ¬isInRow(x, i)
∧ ¬isInColumn(y, i)
∧ ¬isInSubBlock(x, y, i)

PutOn(k) ≡
∧ k = 1 ∧ ¬isDone ∧ ¬isSolved
∧ IF ∃i : ∧ i > FC[First][3] ∧ i ≤ 9

∧ isV alidPosition(FC[First][1], FC[First][2], i)
∧ numbers[i] > 0
∧ ∀j ∈ 1..i− 1 :
∧ ¬isV alidPosition(FC[First][1], FC[First][2], j)

THEN ∧ Board′ = [Board EXCEPT ![FC[First][1]]
[FC[First][2]] = i]

∧ FC′ = [FC EXCEPT ![First][3] = i]
∧ numbers′ = [numbers EXCEPT ![i] =

numbers[i]− 1]
∧ First′ = First+ 1
∧ IF ∀p ∈ {1..9} : numbers[p] = 0

THEN ∧ isDone′ = TRUE
∧ UNCHANGED 〈Last, isBackTrack〉

ELSE UNCHANGED 〈Last, isDone, isBackTrack〉
ELSE ∧ isBackTrack′ = TRUE

∧ UNCHANGED 〈Board, FC, numbers, F irst〉
∧ UNCHANGED 〈Last, isDone〉

TakeBack(k) ≡
∧ k = 2 ∧ isBackTrack
∧ ¬isDone ∧ ¬isSolved
∧ isBackTrack′ = FALSE
∧ IF First = 0

THEN ∧ isDone′ = TRUE
∧ UNCHANGED 〈Board, FC, numbers, F irst, Last, 〉

ELSE LET oF = First− 1
n = FC[First− 1][3]
m = numbers[FC[First][3]]

IN ∧ Board′ = [Board EXCEPT ![FC[oF ][1]]
[FC[oF ][2]] = 0]

∧ numbers′ = [numbers EXCEPT ![n] =
numbers[m] + 1]

∧ First′ = oF
∧ UNCHANGED 〈FC,Last, isSolved〉

Init ≡ ∧ isBackTrack = FALSE ∧ isDone = FALSE
∧ isSolved = FALSE ∧ First = 0
∧ Last = ... ∧ Board = ...
∧ numbers = ... ∧ FC = ...

Next(k) ≡ PutOn(k) ∨ TakeBack(k)
L(k) ≡ WFv(PutOn(k)) ∧ WFv(TakeBack(k))
v ≡ 〈Board, FC, numbers, F irst, Last, isDone, isBackTrack〉

Sudoku1 ≡ ∧ Init
∧ �[∃k ∈ M : Next(k)]v
∧ ∀k ∈ M : L(k)

Fig. 4. The specification of the first model.
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Definition 2 A robot i will call a position (x, y) is valid for
box with number i if the following conditions hold:

1) It is empty.
2) The row x does not contain any boxes with number i.
3) The column y does not contain any boxes with number

i.
4) The subblock where (x, y) is located does not contain

any boxes with number i.
5) For every other row r in the same subblock there is a

box with number i.
6) For every other column c in the same subblock there is

a box with number i.

The specification of the second model is given in
Figure 5. The value M in this model is 9 and this
time it does not represent the robot type but the robot
identity. The system’s variables used in the specification
are Board, numbers, turn, isDone, and success. Variables
Board, numbers, and isDone are the same as the ones in the
first specification. turn is an integer variable used to manage
the scheduling of the robots and success is a boolean variable
indicating the success of some robots in putting boxes at a
certain position.

In this model, not like in the first model, the robots do not
need any information about the empty/free cells. The searching
for a valid position is done by observing the board directly.
Each robot can freely choose any cell as long as it meets the
conditions in Definition 2.

Some functions used in this specification that are
not the same as or similar to the ones of the first
model are isInOtherRow(x, i), isInOtherColumn(x, i),
and isV alidPosition(x, y, i). These functions can be ex-
plained as follows:

1) isInOtherRow(x, i)
isInOtherRow(x, i) is a boolean function for checking
the existence of a box with number i in two other rows
in the same subblock with row x.

2) isInOtherColumn(y, i)
isInOtherColumn(y, i) is a boolean function for
checking the existence of a box with number i in two
other columns in the same subblock with column y.

3) isV alidPosition(x, y, i)
isV alidPosition(x, y, i) is a boolean function for
checking whether the position (x, y) is a valid position
for the box with number i according to the Definition 2.

The only main action in this specification is PutOn(k).
This action describes the working procedure of the robots.
Robot k can activate PutOn(k) only if it is in turn (k = turn)
and as long as the searching process has been not yet termi-
nated (¬isDone∧¬isSolved). If there is still a box with num-
ber k in its corresponding pile (numbers[k] > 0) and there is
a valid position for k (∃x, y : isV alidPosition(x, y, k)), the
robot takes the box (numbers′ = [numbers EXCEPT ![k] =
numbers[k] − 1]), puts the box on that cell (Board′ =
[Board EXCEPT ![x][y] = k]), and reports its success in doing
its job (success′ = TRUE). After that, the robot gives the turn
to the next robot (turn′ = turn + 1 or turn′ = 1). The last

module Model 2
isSolved ≡ ∀x, y : Board[x][y] �= 0
isNeighbor(i, j) ≡ ∃n : (i− 1) % 3 = n ∧ (j − 1) % 3 = n
isEmpty(x, y) ≡ Board[x][y] = 0
isInRow(x, i) ≡ ∃y : Board[x][y] = i
isInColumn(y, i) ≡ ∃x : Board[x][y] = i
isInSubBlock(x, y, i) ≡ ∃j, k : ∧ 〈x, y〉 �= 〈j, k〉

∧ isNeighbor(x, j)
∧ isNeighbor(y, k)
∧ Board[j][k] = i

isInOtherRow(r1, r2, x, y, i) ≡
∧ r1 �= r2 ∧ r1 �= x ∧ r2 �= x
∧ isNeighbor(r1, x) ∧ isInRow(r1, i)
∧ isNeighbor(r2, x) ∧ isInRow(r2, i)
isInOtherColumn(c1, c2, x, y, i) ≡
∧ c1 �= c2 ∧ c1 �= y ∧ c2 �= y
∧ isNeighbor(c1, y) ∧ isInColumn(c1, i)
∧ isNeighbor(c2, y) ∧ isInColumn(c2, i)
isV alidPosition(x, y, i) ≡
∧ isEmpty(x, y) ∧ ¬isInRow(x, i)
∧ ¬isInColumn(y, i) ∧ ¬isInSubBlock(x, y, i)
∧ ∃r1, r2 : isInOtherRow(r1, r2, x, y, i)
∧ ∃c1, c2 : isInOtherColumn(c1, c2, x, y, i)

PutOn(k) ≡
∧ ¬k = turn ∧ ¬isDone ∧ ¬isSolved
∧ IF numbers[k] > 0 ∧ ∃x, y : isV alidPosition(x, y, k)

THEN ∧ numbers′ = [numbers EXCEPT ![k] = numbers[k]− 1]
∧ Board′ = [Board EXCEPT ![x][y] = k]
∧ success′ = TRUE

ELSE UNCHANGED 〈Board, numbers〉
∧ IF turn < 9 THEN ∧ turn′ = turn+ 1

∧ UNCHANGED 〈success, isDone〉
ELSE ∧ IF ¬success THEN ∧ isDone′ = TRUE

∧ success′ = success
∧ turn′ = turn

ELSE ∧ turn′ = 1
∧ success′ = FALSE
∧ UNCHANGED 〈isDone〉

v ≡ 〈Board, numbers, turn, success, isDone〉
Init ≡ ∧ turn = 1 ∧ isDone = FALSE ∧ success = FALSE

∧ Board = ...
∧ numbers = ...

Next(k) ≡ PutOn(k)

L(k) ≡ WFv(PutOn(k))
Sudoku2 ≡ ∧ Init

∧ �[∃k ∈ M : Next(k)]v
∧ ∀k ∈ M : L(k)

Fig. 5. Specification of the second model.

robot is responsible to decide whether a new iteration should
be made or not (IF ¬ success THEN isDone′ = TRUE).

C. Third Model

Basically, the third model is similar to the second one. The
difference is on the definition of a valid position.

Definition 3 A robot i will call a cell at (x, y) a valid position
if all the following conditions hold:

1) It is empty.
2) The row x does not contain any boxes with number i.
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3) The column y does not contain any boxes with number
i.

4) The subblock where (x, y) is located does not contain
any boxes with number i.

5) For every other row r in the same subblock there is a
box with number i or the cell at the position (r, y) is
not empty.

6) For every other column c in the same subblock there is
a box with number i or the cell at the position (x, c) is
not empty.

The specification for the third model is given in Fig-
ure 6. In principle, this specification is very similar to the
one of the second specification. The difference is only on
the definition of function isInOtherRow(r1, r2, x, y, i) and
isInOtherColumn(c1, c2, x, y, i). The difference between
these actions can be explained by using the Sudoku puzzle
in Figure 1 (a). Using model 2 and 3, a robot 4 can put a box
with number 4 at the location (3, 7). However with model 2
the robot 2 cannot put a box with number 2 at the location
(7, 3). This is because there is no box with number 2 in the
row 9. Model 3 enables the robot 2 to put the box on position
(7, 3) since the position (9, 3) is not empty so that the position
(7, 3) is the only candidate of a valid position for 2 in that
subblock.

V. DISCUSSION

We now make a brief analysis of the three proposed models.
Assuming that the puzzles always have solutions, like the one
in Figure 1, the first model will always find one the solutions.
This does not hold for the second and the third models.

Figure 7 shows 3 first iterations for the second model. In the
first iteration, the system can put 2 box on the board, which
are 4, and 8. In the second and third iteration, only robot 4 that
can do its job. After third iteration, the process is terminated.

Figure 8 shows 3 first iterations. In the first iteration, the
system can put 6 box on the board, which are 2, 3, 4, 5, 6, and
8. In the second iteration, only two robots can put their boxes,
which are 4 and 8. In the third iteration, three more boxes
can be put on the board, which are 3, 4, and 8. Continuing
the iterations, all the empty cells can be filled in 13 iterations.
Thus, the puzzle can be solved by the third model.

We may say that the third model is an improvement of the
second model. It is clear that in general the third model will
outperform the second model.

VI. RELATED WORK

There have been many work dedicated to Sudoku puzzles.
Most of them are related to the solution finding problem. Many
approaches have been proposed , such as genetic algorithms
([6], [7]), simulated annealing ([4], [8]), neural networks
([14], [9]), integer programming ([3], [1]), Particle Swarm
Optimisation ([11], [10]), SAT ([5]), and so on.

Besides, there are also plenty sites in the internet about
heuristics for solving Sudoku puzzle, for example [2]. The
heuristics used in this model work (for the second and third
model) are simple heuristics that can be viewed as a part of
the heuristics found in [2].

module Model 3
isSolved ≡ ∀x, y : Board[x][y] �= 0
isNeighbor(i, j) ≡ ∃n : (i− 1) % 3 = n ∧ (j − 1) % 3 = n
isEmpty(x, y) ≡ Board[x][y] = 0
isInRow(x, i) ≡ ∃y : Board[x][y] = i
isInColumn(y, i) ≡ ∃x : Board[x][y] = i
isInSubBlock(x, y, i) ≡ ∃j, k : ∧ 〈x, y〉 �= 〈j, k〉

∧ isNeighbor(x, j)
∧ isNeighbor(y, k)
∧ Board[j][k] = i

isInOtherRow(r1, r2, x, y, i) ≡
∧ r1 �= r2 ∧ r1 �= x ∧ r2 �= x
∧ isNeighbor(r1, x) ∧ isInRow(r1, i) ∨ ¬isEmpty(r1, y)
∧ isNeighbor(r2, x) ∧ isInRow(r2, i) ∨ ¬isEmpty(r2, y)
isInOtherColumn(c1, c2, x, y, i) ≡
∧ c1 �= c2 ∧ c1 �= y ∧ c2 �= y
∧ isNeighbor(c1, y) ∧ isInColumn(c1, i) ∨ ¬isEmpty(x, c1)
∧ isNeighbor(c2, y) ∧ isInColumn(c2, i) ∨ ¬isEmpty(x, c2)

isV alidPosition(x, y, i) ≡
∧ isEmpty(x, y) ∧ ¬isInRow(x, i)
∧ ¬isInColumn(y, i) ∧ ¬isInSubBlock(x, y, i)
∧ ∃r1, r2 : isInOtherRow(r1, r2, x, y, i)
∧ ∃c1, c2 : isInOtherColumn(c1, c2, x, y, i)

PutOn(k) ≡
∧ ¬k = turn ∧ ¬isDone ∧ ¬isSolved
∧ IF numbers[k] > 0 ∧ ∃x, y : isV alidPosition(x, y, k)

THEN ∧ numbers′ = [numbers EXCEPT ![k] = numbers[k]− 1]
∧ Board′ = [Board EXCEPT ![x][y] = k]
∧ success′ = TRUE

ELSE UNCHANGED 〈Board, numbers〉
∧ IF turn < 9 THEN ∧ turn′ = turn+ 1

∧ UNCHANGED 〈success, isDone〉
ELSE ∧ IF ¬success THEN ∧ isDone′ = TRUE

∧ success′ = success
∧ turn′ = turn

ELSE ∧ turn′ = 1
∧ success′ = FALSE
∧ UNCHANGED 〈isDone〉

v ≡ 〈Board, numbers, turn, success, isDone〉
Init ≡ ∧ turn = 1 ∧ isDone = FALSE ∧ success = FALSE

∧ Board = ...
∧ numbers = ...

Next(k) ≡ PutOn(k)

L(k) ≡ WFv(PutOn(k))
Sudoku3 ≡ ∧ Init

∧ �[∃k ∈ M : Next(k)]v
∧ ∀k ∈ M : L(k)

Fig. 6. Specification of the third model.

VII. CONCLUSION AND FUTURE WORK

We have shown that Sudoku problem can be modeled as
block-world problems by changing the setting of block-world
problems. In this work, three models for the Sudoku problem
have been developed. The first model uses a backtracking
technique and the rest models are based on simple heuristics
and fixed-point principle.

We have formally written our models in Temporal Logic of
Actions. The correctness of these models are not yet proved.
In our next work we will do the verification by using model
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Fig. 7. First iterations of the second model.

Fig. 8. First iterations of the third model.

checking or another verification technique. Following [12] we
have modeled the Sudoku puzzles as multi-agent systems.
However, in this paper, we have not yet explored the issues
related to multi-agent systems. Currently, we are developing
a program that implement the models. In this implementation
we consider more about these issues. Furthermore, using this
program and a set of Sudoku puzzles, an experiment will be
conducted to analysis the performance of each model.
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