
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:6, 2010

1049

Abstract—In order to assess optical fiber reliability in different

environmental and stress conditions series of testing are performed
simulating overlapping of chemical and mechanical controlled
varying factors. Each series of testing may be compared using
statistical processing: i.e. Weibull plots. Due to the numerous data to
treat, a software application has appeared useful to interpret selected
series of experiments in function of envisaged factors. The current
paper presents a software application used in the storage, modelling
and interpretation of experimental data gathered from optical fibre
testing. The present paper strictly deals with the software part of the
project (regarding the modelling, storage and processing of user
supplied data).

Keywords—Optical fibres, Computer aided analysis, Data

models, Data processing, Graphical user interfaces.

I. INTRODUCTION
IBER aging has been the subject of numerous studies
leading to theoretical models for lifetime assessment.
While ground observations do not contradict these

predictions, the accuracy of the models is questionable due to
the complexity of the aging mechanism. In this respect,
experiments implemented on a long time scale are likely to
bring new information. The better understanding of the factors
ruling aging and reliability of optical fibers should lead not
only to scientific advances, but also to economical spin-offs.

The technology evolution and the research for low cost
optical fiber solutions lead to use new fibers and new
components. Thus, polymeric fibers are being considered for
the local distribution, while Bragg grating fiber components
are now largely used in optical amplifiers. However, the
reliability of these new components has still to be evaluated.

In practice, optical fiber aging depends on various factors
that may decrease effective fiber strength: residual applied
stress, temperature and water. It is assumed that surface flaws
are enlarged, consequently promote crack growth. Maximum
water activity is in aqueous solutions and it is expressed by
the relative humidity (RH) in current atmosphere.

Various theoretical models are applied for mechanical
characterization of optical fibers [1, 2], but the most common
one is based on Weibull's statistics.

The Weibull law expresses the failure probability F of a
fiber with a length L subjected to an applied stress:

[])()(]
1

1[1
oLnLnm

F
Ln

L
Ln σσ −=⎥

⎦

⎤
⎢
⎣

⎡
⎭
⎬
⎫

⎩
⎨
⎧

−
 (1)

where m is a size parameter and σo is a scale parameter.

The evolution of ⎥
⎦

⎤
⎢
⎣

⎡
⎭
⎬
⎫

⎩
⎨
⎧

−
]

1
1[1

F
Ln

L
Ln in function of

Ln (σ) is known as the Weibull plot.

The values of m and σo are calculated from the slope of the
curve and the intersection with the stress axis. The m
parameter characterizes the defect size dispersion [2]. A high
m value indicates that the distribution of the defect size is
homogeneous while a low m value means that surface defects
are varying in size. When the curve appears as a broken line
with two distinct slopes – one small for low stress and the
second one large, respectively – one has assumed two
different families of defects, the first one corresponding to
large extrinsic defects, and the second one relating to intrinsic
flaws. Other plots encompass several straight lines relating to
different groups of defects. The failure probability F is
calculated from the relation:

N
iFi

5.0−
= (2)

where i represents the rank of the measurement and N the total
number of values. The σo parameter represents the stress
corresponding to the fiber cumulative fracture probability F of
is 50%.

Comparing the Weibull plots traced for different testing
conditions of optical fibers simulating harsh environmental
conditions allow identification of potential damage
responsible factors and understanding of reliability behaviour.
That’s why, a software application has been developed in
order to trace effectively the Weibull plots registered for
different aging schemes and to inter-compare the results.

The goal of the experiment is to analyze the behavior of
various types of commercial optical fibers when subjected to
different stress tests. In order to study this behavior we
resorted to a statistical analysis based on the study of the
fracture behavior of the optical fiber depending on stress and
test conditions. Correlation between fiber tension and the
probability of crack propagation for controlled conditions is
conducted by our software, which is referred to as PDEFO.
This correlation is represented in the form of curves called
Weibull plots.

The purpose of the application is to allow the introduction,
validation and sorting of data measured in the experiment (in
this case it is the stress in the optical fiber in each test run), the
obtainment of the probability Pk related to each test run, then
draw the graph that has as its axes the two values (adapted for

I. Severin1, M. Caramihai1, R. El Abdi2, M. Poulain2 and A. Avadanii1

Modelling Silica Optical Fibre Reliability:
A Software Application

F

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:6, 2010

1050

easy interpretation of the graph). The application must also
allow grouping of up to 50 experimental data sets (for each
test) and generate graphs for up to 12 simultaneous data sets.

Other features that the applications offers in order to
facilitate the input and manipulation of data:

• keyboard shortcuts for the most frequently used features;
• multiple/inverted selections;
• importing/exporting from/to Microsoft Excel documents

(.csv);
• ergonomic design.

II. SOFTWARE TECHNIQUES USED

Firstly, we chose to develop a stand-alone application,
which does not require other programs on the current machine
(e.g. the application does not require that Microsoft Office be
installed on the current PC).

In order to do this and save time on the GUI development
we turned to Microsoft’s .NET Framework (hence the
application requires .NET Framework 4.0, which is still an
acceptable compromise from our point of view since it is free
software, therefore there are no licensing issues).

The programming language chosen for the backend of the
application is C# because, for an application of such lengths,
automatic memory management allows us to write code
quickly and easily at the expense of a slight drop in
performance [3, 4, 5].

One of the most important factors in choosing the
programming language for the backend was the existence of a
free, preferably open-source, library that allows easy plotting
of graphs. The development of our own solution for charting
graphs would have taken too long and would have made us
miss our deadline.

Another argument that weighed heavily in our choosing
the C# programming language was the existence of extensive
online support for C#: from the most commonly encountered
issues to the large number of users that can answer specific
questions or help with solving certain errors encountered
during the development of the application.

Also, readily available classes for serialization and
complex data types (such as DataSets, ObservableCollections,
Hashtables, Dictionaries etc.) were a big plus. These features
helped us implement data saving, importing/exporting from/to
Microsoft Excel files with ease, as well as optimize memory
usage and response times.

Last but not least, being able to guarantee a consistent
experience on any Windows platform by using the .NET
framework was a welcome addition.

The Graphical User Interface (GUI) was made using
Windows Presentation Foundation (WPF), since the
installation of an additional library was not required.

Other factors we took into consideration when choosing
WPF were [6, 7]:

• WPF is a relatively new technology from Microsoft
which allows for easy creation of graphical
interfaces, at least as fast as the Windows Forms;

• WPF has a mechanism called binding, which makes
an automatic correlation between user inputted
values in the GUI and the mathematical model

implemented in the backend; this mechanism allows
automatic validation of data, its processing,
automatic posting etc;

• Thanks to the way WPF is designed, it allows for
complex calculations related to the GUI to be
performed by the processor of the video card,
sparing the CPU of these calculations and thus
ensuring a more rapid functioning of the program
(although this mechanism was taken into account
when we chose WPF for the GUI implementation, it
ended up not being used in the final
implementation);

• The possibility to rewrite the templates for all of the
basic controls (from statusbar to menus) - the
present application contains mostly modified
controls in order for it to have the desired look;

• Code for WPF is written in XAML, an XML-based
language defined by Microsoft, which made it
intuitive and easy to learn;

• Because we chose to edit the code in Visual Studio,
its IntelliSense feature has helped very much with
the development, decreasing the time required to
write the code.

Due to the fact that the application has a pronounced
mathematical character, we chose to start off by developing a
mathematical model of an experiment and implement it in C #,
planning to make the changes required for the communication
with the GUI later.

The backend programming consists of mainly two C#
files (Experiment.cs and ExperimentList.cs), each of them
implementing a class with the same name.

ExperimentList

The ExperimentList class implements a collection
(ObservableCollection) of Experiment objects (instances of
the Experiment class we will treat later on) and defines
methods for their management [8, 9, 10]

This class is only instantiated once (since one session
can only contain one list of experiments) and it is mainly used
for communication between the graphical interface and the
backend (data set deletion, document saving etc).
Experiment

This class is the application core. Since the rest of the
program consists of mainly GUI definitions and handlers, we
can say that the Experiment class implements the low-level
functions that execute at the atomic level.

The Experiment class implements:
• variables used for data storage (like fiber diameter,

temperature, duration etc.);
• variables used for enabling/disabling each of the

variables described above;
• a static structure of Dictionary type for Pk values’

storage (this way, every set of N Pk values is only
stored once in the memory and the set is accessible
by the very key N); this approach assures minimum

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:6, 2010

1051

memory usage and minimum process time spent on
computing these values;

• a structure of type ObservableCollection which
contains objects that store the data the user inputs
(the stress readings) during the experiment; the
object that store these values are actually instances
of another class called DoubleObject, used to
automatically communicate with the GUI via
binding-type mechanisms that are WPF-specific;

• a complicated ObservableCollection structure to
store the computed data (C, ln(C), Pk etc);

• a constructor without parameters;
• a constructor that accepts a CSV line parameter and

parses the data, easing the creation of a new
Experiment object from a CSV file;

• a static constructor which allocates the memory for
the static variables;

• properties that make the variables available for
reading and/or writing depending on the specific
needs for each variable;

• public methods for experiment data alteration,
deletion, data recalculation or data export;

• the implementation of theInotifyPropertyChanged
property, needed for using this class instances within
the GUI directly (by binding to them);

• the class also implements the ISerializable interface,
which makes saving or reading the data to/from a
file almost trivial;

• the memory used by the instances of this class
represents quite a big percentage of the total
memory the application uses, therefore optimizing
this class in terms of memory usage was mandatory
in order to keep it under a decent limit.

 The front-end programming (the graphical user interface)
represents quite a large part of the code itself and it is located
in the UI directory [6, 7]. Although the software design
pattern we chose is not modular (like MVC for example), we
tried to separate the backend programming (mainly consisting
of mathematical calculations and data manipulation) from the
GUI, which is usually not difficult, but complex because of its
size.
 The .xaml files located in the UI directory, along with the
.cs files associated, implement the interface and the specific
functions (windows, controls, handlers, security mechanism
like preventing exit if the file was changed etc.)

III. FUNCTIONALITY AND SCREENSHOTS
The main application window is presented below:

The four areas highlighted in the image are as follows:
1. Status bar – Indicates the number of selected experiment

sets, the total number of experiments in the current
session as well as the outcome of the last import/export
command executed;

Fig. 1 The application main window

2. Experiment list – Contains all the experiments uniquely

identified by their name and special testing conditions (if
any are applicable). Within this list, every experiment can
be expanded in order to display the data associated with
it. Also, multiple experiments can be selected by left
clicking on the checkbox or by right clicking them. To the
right of each experiment there is a greyed out wrench
icon which opens the experiment editing window.

Fig. 2 Multiple experiment selection

3. Toolbar – Contains shortcuts to the most used menu entries
(open, import/export, save, add experiment etc.). These
buttons are only available when the associated action
makes sense.

4. Menu – Used to access every feature of the application. The
menu entries are only available when the associated
action makes sense.

Further below you can see the Add/Edit Experiment window
(Fig. 3):

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:6, 2010

1052

Fig. 3 Add/Edit Experiment Window

Each test condition in a particular experiment can be

enabled or disabled via a checkbox called "Enabled". Once a
property has been activated, it can also be changed. The only
mandatory property is the breaking speed of the current test.
The data is introduced at the bottom of the window (the values
of the stressing fiber). If the program detects an error
regarding the consistency of the data, the value is flagged as
being wrong.

After inputting several sets of data, the graph containing
the Weibull curves can be plotted for one or more of the sets.
To do this, in the main window, we select the experiments for
which we wish to plot the graph by either right-clicking or
ticking their checkboxes, and then we call the Plot (Ctrl+F2)
function. The result is shown below (in Fig. 4):

Fig. 4 Experiments data plot

To plot this graph we used the ZedGraph.dll open source
library, which offers many options, such as:

• Possibility of zooming in / out, resetting the zoom;
• Automatic scaling of the axes;
• Resizing the graph when the parent window is

resized;
• Possibility of printing the graph;

• Possibility of saving the graph in various formats

ACKNOWLEDGMENT
The following students were involved in the software
application development: Alexandru Avădănii (Team leader),
Iordache Florin (GUI programmer), Petrea Adrian (C#
programmer).

REFERENCES
[1] J. Zarzycki, Les verres et l’etat vitreux, Ed. Masson, (1982)
[2] A. C. Wright, The structure of some simple amorphous network solid
 revisited, J. Non-Cryst. Solids, 129, p. 213 (1991)
[3] R. L. Mozzi, B. E. Warren, The structure of vitreous silica, J. Appl.
 Cryst., 2, p. 164-172 (1994)
[4] J. K. West, L. L. Hench, Silica fracture: part I, A ring contradiction
 model, J. Mat. Sci. 29, p. 3601-3606, (1994)
[5] S. H. Garofalini, D. M. Zirl, Onset of alkali adsorption on the vitreous
 silica surface, J. Vac. Sci. Tech. A6, p. 975-981, (1988)
[6] http://msdn.microsoft.com/en-us/default.aspx
[7] http://zedgraph.org/wiki/index.php?title=Main_Page
[8] http://www.codeproject.com/?cat=3
[9] http://bea.stollnitz.com/blog/
[10] http://www.codeplex.com/wpf

