
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:1, 2012

6

Abstract—Wireless mobile communications have experienced

the phenomenal growth through last decades. The advances in
wireless mobile technologies have brought about a demand for high
quality multimedia applications and services. For such applications
and services to work, signaling protocol is required for establishing,
maintaining and tearing down multimedia sessions. The Session
Initiation Protocol (SIP) is an application layer signaling protocols,
based on request/response transaction model. This paper considers
SIP INVITE transaction over an unreliable medium, since it has been
recently modified in Request for Comments (RFC) 6026. In order to
help in assuring that the functional correctness of this modification is
achieved, the SIP INVITE transaction is modeled and analyzed using
Colored Petri Nets (CPNs). Based on the model analysis, it is
concluded that the SIP INVITE transaction is free of livelocks and
dead codes, and in the same time it has both desirable and
undesirable deadlocks. Therefore, SIP INVITE transaction should be
subjected for additional updates in order to eliminate undesirable
deadlocks. In order to reduce the cost of implementation and
maintenance of SIP, additional remodeling of the SIP INVITE
transaction is recommended.

Keywords—Colored Petri Nets, SIP INVITE, state space, dead
marking

I. INTRODUCTION

IRELESS mobile communications have experienced the
phenomenal growth through last decades [1]. The first

decade can be characterized by simple circuit-switched service
voice, using Global System for Mobile (GSM)
communications or Code Division Multiple Access (CDMA)
standard, and rapid adoption of services based on Short
Message Service (SMS). While the second decade has been
driven by the initial adoption of Internet Protocol (IP)-based
packet services, using low-rate General Packet Radio Service
(GPRS) or CDMA2000 radio access networks, the next
decade of evolution will see rapidly increasing of mobile
broadband services, using High Speed Packet Access (HSPA),
Worldwide Interoperability for Microwave Access (WiMAX),
or Long-Term Evolution (LTE) radio access networks.

These advances in wireless mobile technologies have
brought about a demand for high quality multimedia
applications and services. The important issue is how the

Sabina Baraković is with the Department for Informatics and

Telecommunication Systems, Ministry of Security of Bosnia and
Herzegovina, Trg BiH 1, 71000 Sarajevo, Bosnia and Herzegovina (e-mail:
barakovic.sabina@gmail.com).

Dragan Jevtić is with the Faculty of Electrical Engineering and Computing,
University in Zagreb, Unska 3, 10000 Zagreb, Croatia (e-mail:
dragan.jevtic@fer.hr).

Jasmina Baraković Husić is with BH Telecom d.d Sarajevo, Joint Stock
Company, Obala Kulina bana 8, 71000 Sarajevo, Bosnia and Herzegovina (e-
mail: jasmina.barakovic@bhtelecom.ba).

service quality can be maintained at a level similar to which
users have come to expect. Different multimedia applications
have very diverse Quality of Service (QoS) requirements. In a
wireless environment, users are mobile and move between
wireless technologies where the available resources are scarce
and dynamically change over time. Under these conditions it
is difficult to provide any QoS guarantees. The QoS topic
therefore remains the most important issue to be dealt with in
the design and development of multimedia applications and
services.

For such applications and services to work, signaling
protocol is required for establishing, maintaining and tearing
down multimedia sessions. A number of different
communities put forward solutions, each colored by their own
priorities and interests. The Internet Engineering Task Force
(IETF) offered Session Initiation Protocol (SIP) [2], which is
based on request/response transaction model. Each transaction
consists of a client request that invokes a particular method on
the server and at least one response. Two main SIP
transactions are defined in Request for Comments (RFC)
3261, the INVITE transaction for setting up a session, and the
non-INVITE transaction for maintaining and tearing down a
session.

In this paper, the INVITE transaction is chosen to be
considered since it has been recently modified in RFC 6026
[3]. In order to help in assuring that the functional correctness
of this modification is achieved, the INVITE transaction is
modeled and analyzed using Colored Petri Nets (CPNs). The
analysis of performance properties is beyond its scope. Since
CPNs are successfully applied as the modeling and analyzing
apparatus in many research areas, functional properties of
INVITE transaction are investigated using well-developed
software tool, the CPN Tools [4]. However, to our best
knowledge, only a few papers on analyzing SIP using CPNs
have been published [5, 6, 7, 8]. CPNs have been used for
verification of the INVITE transaction when the medium is
reliable [5] and unreliable [6].

The paper is organized as follows. In Section II basic
principles of SIP protocol, and therefore, INVITE client and
server transactions are introduced. Section III presents
modeling methodologies and tools. CPN model of SIP
INVITE transaction over the unreliable transport medium is
described in Section IV, while the Section V gives the CPN
model analysis. Section VI concludes this paper.

II. SESSION INITIATION PROTOCOL OVERVIEW

SIP is an application layer signaling and mobility support
protocol that can establish, modify, and terminate multimedia

Sabina Baraković, Dragan Jevtić, and Jasmina Baraković Husić

Modeling of Session Initiation Protocol Invite
Transaction using Colored Petri Nets

W

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:1, 2012

7

sessions such as Internet telephony calls [2]. It is not a
vertically integrated communications system, but rather a
component that can be used with other IETF protocols to build
a complete multimedia architecture. Therefore, SIP should be
used in conjunction with other protocols, such as the Real-
time Transport Protocol (RTP), the Real-time Streaming
Protocol (RTSP), the Media Gateway Control Protocol
(MEGACO), and the Session Description Protocol (SDP), in
order to provide complete services to the users, although its
basic functionality and operation does not depend on any of
these protocols.

SIP is structured as a four-layer protocol, which means that
its behavior is decoupled in terms of a set of fairly
independent processing stages with only a loose coupling
between each stage (Fig. 1) [9]. The lowest layer of SIP is its
syntax and encoding. Its encoding is specified using an
augmented Backus-Naur Form (BNF) grammar. The second
layer from bottom to top of the structure is the transport layer,
and it is contained by all SIP elements. This layer describes
how a client sends requests and receives responses, and how a
server receives requests and sends responses over the network.
The layer above the transport layer is the transaction layer,
which handles application-layer retransmissions, matching of
responses to requests, and application-layer timeouts when
setting up and tearing down a session. On top of transaction
layer is a layer called transaction user (TU). The fourth layer
creates and cancels SIP transactions, and utilizes services
provided by the transaction layer.

Among all SIP layers, the transaction layer is the most
important, since SIP is a transaction-oriented protocol that
carries out tasks through different transactions. Specifically, a
SIP transaction consists of a single SIP request message and
any SIP response messages to that request, which include zero
or more provisional SIP response messages, and one or more
final SIP response messages (Table I). Transactions have a
client side and server side. The client side is known as a client
transaction and the server side as a server transaction [2]. The
client transaction sends the request and the server transaction
sends the response. The purpose of the client transaction is to
receive a request from the element in which the client is
embedded, and reliably deliver the request to a server
transaction. The purpose of the server transaction is to receive
requests from the transport layer and deliver them to the TU
and also, to accept responses from the TU and deliver them to
the transport layer for transmission over the network. There
are two types of client transactions, depending on the method
of the request passed by TU. One that handles INVITE
requests is an INVITE client transaction, and another type,
which handles all requests except INVITE and ACK, is non-
INVITE client transaction. As with the client transactions, we
distinguish INVITE and non-INVITE server transactions.

Fig. 1 Layered SIP structure

Legend: SIP (Session Initiation Protocol).

TABLE I
SIP RESPONSE MESSAGES

RESPONSE FUNCTION

1xx
Provisional – The request was received, but not yet
accepted

2xx
Success – The request was received successfully and
accepted

3xx
Redirection – A further action is required to complete
the request

4xx Client Error – Bad syntax found in the request

5xx Server Error – The server failed to answer the request

6xx Global Failure – No server can answer the request

Legend: SIP (Session Initiation Protocol)

A. INVITE Client Transaction

The INVITE client transaction is defined in [2] using state
machines and its modifications are presented in [3]. It is
created by TU at the client side. The transaction user creates
the INVITE client transaction when it wants to initiate a
session. Then it forwards an INVITE request to the
transaction. As shown on Fig. 2(a) the INVITE client
transaction can enter five different states: (1) Calling, (2)
Proceeding, (3) Accepted, (4), Completed, and (5) Terminated.

The initial Calling state is entered when the INVITE client
transaction is created. The transaction delivers the INVITE
request generated by its TU to the transport layer for
transmitting to the server side, and starts Timer B (it controls
transaction timeouts). Timer A is started only if an unreliable
transport is being used (it controls request retransmissions).
When the INVITE client transaction is in the initial Calling
state, it can cause the occurrence of six events. Firstly, Timer
A may fire, forcing the transaction to reset the timer and
retransmit the INVITE request. Then, Timer B can fire,
thereby causing the transaction to change its initial state to the
Terminated state. When transport layer fails to send an
INVITE request over the network, i.e. transport error occurs,
the transaction enters the Terminated state and informs its TU.
In case of receiving a provisional response (1xx), the
transaction forwards the response to its TU and enters the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:1, 2012

8

Proceeding state [6]. When a final success response (2xx) is
received, i.e. the INVITE request is accepted by the server, the
transaction informs its TU about the response and enters the
Accepted state. On the other hand, when a final non-success
response (300-699) is received, i.e. the INVITE request is
received, but not accepted by the server, the transaction
forwards the response to its TU, creates an ACK, gives the
ACK to the transport layer, and finally enters the Completed
state.

When the transaction is in the Proceeding state it can
receive any number of provisional responses (1xx), inform its
TU about the response and remain in the Proceeding state.
Also, it can receive a final success response (2xx), forward it
to its TU and enter Accepted state, or receive a final non-
success response (300-699), pass through the previously
mentioned procedure and enter the Completed state.

The purpose of the Accepted state, which presents the
correction of INVITE client transaction according to RFC
6026, is to allow the client transaction to continue to exist to
receive and pass to its TU any retransmissions of the 2xx
response. When this state is entered, Timer M must be started.
This timer reflects the amount of time that the TU will wait for
retransmissions of the 2xx responses [3]. When Timer M fires,
transaction enters the Terminated state.

On the other hand, the purpose of the Completed state is to
soak up 300-699 responses retransmitted by the server. When
the transaction enters this state, Timer D must be started. This
timer reflects the wait time for 300-699 response
retransmissions. Before Timer D expires (the client transaction
enters the Terminated state), if any 300-699 response is
received, the transaction creates and sends an ACK and
remains in the Completed state. Also, in case of a transport
error while the transport layer is sending an ACK, the
transaction enters the Terminated state.

Finally, the instant the client transaction enters the
Terminated state, it must be destroyed in order to guarantee
correct operation [2].

B. INVITE Server Transaction

The INVITE server transaction is defined in [2] using state
machines, and its modifications are presented in [3]. It is
created by TU on the server side when it receives an INVITE
request. The INVITE server transaction generates a Trying
(100) response unless it knows that the TU will generate a
provisional or final response within 200 ms. This provisional
response is needed to quench request retransmissions rapidly
in order to avoid network congestion. As shown on Fig. 2(b)
the INVITE server transaction can enter five different states:
(1) Proceeding, (2) Accepted, (3) Completed, (4) Confirmed,
and (5) Terminated.

Initially, the INVITE server transaction enters the
Proceeding state when it is created. While in the Proceeding
state, several different events can occur. The transaction can
forward any provisional responses (101-199) generated by its
TU to the transport layer and remain in the Proceeding state.

Additionally, the server transaction remains in the Proceeding
state if it receives an INVITE request retransmitted by the
client transaction. In that case, the server transaction
retransmits the provisional response that it previously received
from its TU. When transport layer fails to send a response, i.e.
transport error occurs, the server transaction remains in the
Proceeding state and informs its TU. When the TU on the
server side forwards a final success response (2xx) to the
server transaction, the transaction delivers this response to the
transport layer for transmission and enters the Accepted state.
Retransmissions of the 2xx response are handled by TU, not
by the server transaction. On the other hand, when the TU on
the server side forwards a final non-success response (300-
699) to the server transaction, the response is delivered to the
transport layer for transmission and the server transaction
enters the Completed state.

The purpose of the Accepted state, which presents the
modification of INVITE server transaction according to RFC
6026, is to absorb retransmissions of an accepted INVITE
request. Any such retransmissions are absorbed entirely within
the server transaction. While in this state, if TU forwards a
2xx response, the server transaction must deliver the response
to the transport layer for transmission. Any ACKs received
from the network while in the Accepted state are forwarded
directly to the TU and not absorbed. Timer L is started when
the Accepted state is entered. This timer reflects the wait time
for retransmissions of 2xx responses [3]. When Timer L fires,
transaction enters the Terminated state.

Once the transaction enters the Completed state, Timer H is
started. This timer determines when the server transaction
abandons retransmitting the response [2], and when it expires
the server transaction enters the Terminated state. Also, if the
transport media is unreliable, Timer G is started in order to
control the time for each retransmission of the 300-699
response it previously received from its TU while in the
Proceeding state. While in this state, if an INVITE request
retransmission is received, the transaction delivers the
response to the transport layer for retransmission. Otherwise,
if an ACK is received, the transaction enters the Confirmed
state.

The purpose of the Confirmed state is to absorb any
additional ACK messages that arrive, triggered from
retransmissions of the final response. When this state is
entered, Timer I is started. Once timer I fires, the server
transaction enters the Terminated state [2].

The INVITE server transaction must not discard transaction
state based only on encountering a non-recoverable transport
error when sending a response. Instead, the associated
INVITE server transaction state machine remains in its current
state. This allows retransmissions of the INVITE to be
absorbed instead of being processed as a new request and
presents additional modification [3].

Finally, once the server transaction enters the Terminated
state, it is destroyed by the TU immediately [2].

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:1, 2012

9

Fig. 2 State machines defining SIP INVITE transaction according to RFC 6026

Legend: ACK (Acknowledgment), RFC (Request for Comments), SIP (Session Initiation Protocol), TU (Transaction User).

III. MODELING METHODOLOGIES AND TOOLS

Modeling always precedes system implementation, because
it provides visualization of an entire system, assessment to
different options, and communication with designs more
clearly before taking on the risks of actual construction. As a
protocol, SIP can be modeled in two ways. The first method
models the protocol itself, and thereby, focuses on call
flowing, states while running and timer mechanisms. The
second method puts a protocol into a network environment
and tests the whole network, interactions between different
protocols and evaluates performances [8].

Since this paper aims to assure the functional correctness of
the modified SIP INVITE transaction, i.e. the protocol itself,
Colored Petri Nets are chosen as a suitable modeling
methodology and CPN Tools [4] as an adequate supporting
tool suite.

A. Petri Nets

Petri Nets are presented by Carl Adam Petri during his
Ph.D. thesis in 1962 [10]. A Petri Net is a graphical and
mathematical tool to verify systems and protocols. In a
mathematical form Petri Net is like algebra and logic subject,
while in graphical form it is like flowchart and network
diagram. A formal definition of Petri Net is:

Definition 1:
In a formal way, A Petri Net is a tuple [11]:

() .,,, NATPPN = (1)

In the tuple,

1. P is a finite set of Places.
2. T is a finite set of Transitions.
3. A is a finite set of Arcs such that:

∅=∩=∩=∩ .ATAPTP . (2)
4. N is a set of Token.

There are two forms of Petri Nets: ordinary Petri Nets and

high level Petri Nets.

B. Colored Petri Nets

Colored Petri Nets belong to high level Petri Nets, i.e. they
combine the graphical components of ordinary Petri Nets with
the strengths of a high level programming language, making
them suitable for modeling complex systems, such as
distributed and concurrent processes with both synchronous
and asynchronous communication. A formal definition of
Colored Petri Net (CPN) is:

Definition 2:
In a formal way, A CPN is a tuple [11]:

().,,,,,,,, IEGCNATPCPN Σ= (3)

In the tuple,
1. ∑ is a finite set of non-empty types, also called colored

sets.
2. P is a finite set of Places.
3. T is a finite set of Transitions.
4. A is a finite set of Arcs such that:

 ∅=∩=∩=∩ .ATAPTP . (4)
5. N is a node function. It is defined from A into “colored

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:1, 2012

10

over arcs” .PTTP ∩∪×
6. C is a color function. It is defined from P into ∑”token”.
7. G is a guard function. It is defined from T into

expressions such that: “Boolean function with
probability”

 ()() ()()()[]Σ⊆∧=∈∀ tGVarTypeBtGTypeTt : . (5)

8. E is an arc expression function. It is defined from A into
expressions such that: i.e. (check nk =)

()() () ()()()[]Σ⊆∧=∈∀ aEVarTypepCaETypeAa MS: (6)

 , where P is the place of ()aN .

9. I is an initialization function. It is defined from P into
closed expression such that

()() ()[]MSpCpITypePp =∈∀ : . (7)

C. CPN Tools

CPN Tools is a tool suite for editing, simulation, state space
analysis, and performance analysis of CPN models [12]. A
CPN model of a system is an executable model representing
the states of the system and the events that can cause the
system to change state. In other words, CPN model is a
resulting model of combining Petri Nets, which provide the
graphical notation and basic primitives, and previously
mentioned high level programming language Standard ML,
which provides the primitives for the definition of data types,
describing data manipulation, and for creating compact
models.

Regarding the graphical notation, the states of the system
are presented with nodes called places (ellipses or circles),
while the events are presented with the nodes called transitions
(rectangular boxes). In order to constitute a net structure,
places and transitions must be connected with a number of
directed arcs. The CPN model contains textual inscriptions
next to the places, transitions and arcs. The inscriptions are
written in CPN ML programming language which is an
extension of the Standard ML language. Each place is marked
with one or more tokens, which have a data value attached to
it. This data value is called token color. When the system
performs an action, appropriate transition has to fire. When
firing, the transition removes tokens from its input places (the
places that have an arc directed from place to transition) and
adds those tokens to its output places (the places that have an
arc directed from transition to place). The colors of the tokens
that are removed and added are determined on arc inscription
basis.

The CPN Tools is used because it is possible to perform
investigation of modeled system design and behavior on a
simple manner. User interaction with this tool is based on
direct manipulation of the graphical representation of the CPN
model using interaction techniques, while the functionality of
the tool can be extended with user-defined Standard ML
functions [12].

IV. CPN MODEL OF SIP INVITE TRANSACTION

A. Modeling Assumptions

Since the modeling of SIP INVITE transaction is not a

straight translation from state machines to CPN model, the
following assumptions must be made:

• State machine for the INVITE client transaction given
on Fig. 2 shows that the transaction receives an
INVITE from TU and sends it to the transport layer
before it enters the Calling state. Since the transaction
cannot enter any state before it is created, it is assumed
that the transaction can receive an INVITE from TU
and send it to the transport layer only when it has been
created and is in the Calling state.

• State machine for the INVITE server transaction given
on Fig. 2 shows that the transaction receives an
INVITE request, forwards it to TU, and must generate
and send 100 Trying response within 200 ms if TU
does not before it enters the Proceeding state. It is
assumed that the server transaction does not know will
TU generate a response within 200 ms, and therefore, a
new state, called the TryProceeding, must be denoted.
The server transaction enters this state immediately
after it is created, and it can only send 100 Trying
response while in this state.

• When an unreliable medium is used as in this paper,
messages may be reordered, and thus, 1xx responses
may arrive at the client side after 2xx and 3xx
responses. It is assumed that when this situation occurs,
the client transaction stays in the correspondent state.

• Modeling assumptions related to timers A, B, D, G, H
and I and relations between them are the same as in [6].

• Unreliable transport medium is modeled as in [6].
While the previous assumptions are the same as in [6], the

following two are new and in accordance with the
modifications of the INVITE transaction made in [3]:

• According to the state machines shown on Fig. 2, when
the server transaction is in the Accepted state, Timer L
can fire. However, since the purpose of the Accepted
state is to absorb any retransmissions of the INVITE
requests, it is assumed that the Timer L can fire only if
there are no additional INVITE requests on transport
layer.

• Additionally, according to the state machines shown on
Fig. 2, when the client transaction is in the Accepted
state, Timer M can fire. Also, since the purpose of the
Accepted state is to absorb any retransmissions of 2xx
responses, it is assumed that the Timer M can fire only
if there are no additional 2xx or r1xx responses on the
transport layer.

B. CPN Model of the SIP INVITE Client Transaction

Before describing the CPN model of the modified SIP
INVITE client transaction shown on the Fig. 3, it is necessary to
point out that the model presents the update of the SIP INVITE
client transaction model in [6] in accordance with modifications
of the SIP INVITE transaction in given in [3].

The INVITE client transaction is modeled with places named
Client and No.INVITESent, together with the transitions
connected to them. The place Client is typed with color set
STATECLIENT and its initial marking is callingC (Table II). It

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:1, 2012

11

models the states of the INVITE client transaction. The place
No.INVITESent is typed with color set INT. It is used to count
the number of INVITE requests that have been transmitted and
retransmitted.

There are six transitions connected to the place Client: Send
Request, Receive Response, Timer A or B, Timer D, Timer M
and Client Transport Error. The transition Send Request models
how the transaction passes the original INVITE request to the
transport layer for transmission. This transition is enabled only
when the Client is marked with callingC and no INVITE
request has been sent. When this transition fires, the place
Client remains marked with callingC.

The transition Receive Response models how the client
transaction receives responses and sends ACKs to the transport
layer. It is enabled only when a response is received and the
place Client is not marked with terminatedC. When r100 or
r101 response is received, the place Client changes its marking
to proceedingC and no ACK is sent to the transport layer. Else,
if r2xx response is received, the place Client changes its
marking to acceptedC and, also, no ACK is sent to the transport
layer. Otherwise, if r3xx response is received, the place Client
changes its marking to completedC and an ACK is sent to the
transport layer. The arc from the transition Receive Response to
the place Client models the assumption made on reordering
medium.

The transition Timer A or B models Timer A and Timer B. It
is enabled when the place Client is marked with callingC and an
initial INVITE request is sent (No.INVITESent contains
number equal or greater then 1). The initial marking of the place
No.INVITESent is 0. When Send Request or Timer A or B
fires, the integer value in No.INVITESent is incremented by 1.
According to the assumptions made in [6], Timer B can’t fire
until Timer A fires 6 times, i.e. the INVITE request is sent 7
times. Therefore, when an integer value in the place
No.INVITESent is less than 7, Timer A can fire and the
marking of the place Client isn’t changed, but the INVITE
request is sent to the transport layer. Else, Timer B occurs and
the marking of the place Client is changed to terminatedC, but
no INVITE request is passed to the transport layer.

The transition Timer D is enabled only when the place
Client is marked with completedC. The occurrence of this
transition changes the marking of the place Client to
terminatedC.

The transition Timer M is enabled only when the place
Client is marked with acceptedC and there are no r2xx or r1xx
responses left in the place Response. The second condition for
occurrence is modeled using the anti-place of restricted model
of the SIP INVITE transaction, which counts the number of
responses in the place Response. The restriction is modeled as
in [6]. These restrictions are made to avoid state space
explosion and losing generality.

The Client Transport Error transition is enabled when the
Client is marked with callingC or completedC. Its occurrence
changes the Client’s marking to terminatedC. When an error
occurs on the transport layer, the INVITE or ACK that has

been passed to the transport layer, based on the marking of the
place Client, are destroyed, and therefore, not sent to the
server side.

C. CPN Model of the SIP INVITE Server Transaction

The INVITE server transaction is modeled with places
Server and No.r3xx, together with transitions connected to
them. The place Server is typed by color STATESERVER and
its initial marking is Idle. It models the states of the INVITE
server transaction. The place No.r3xx is typed with color set
INT. It is used to count the number of r3xx retransmitted
responses when Timer G fires.

There are six transitions connected to the place Server:
Receive Request, Send Response, Timer G or H, Timer I,
Timer L, and Server Transport Error. The transition Receive
Request models how the server transaction receives the
INVITE or ACK requests. It is enabled when the place Server
isn’t marked with terminatedS or TryProceeding. When this
transition occurs upon receiving an INVITE request and when
the place Server is marked with Idle, the place Server changes
it’s marking to TryProceeding. In this case, the Receive
Request models the operation of the TU instead of the server
transaction of receiving an INVITE request from the client
side. Otherwise, when the place Server is marked with
proceedingS, acceptedS or completedS, and receives an
INVITE request retransmitted by the client, the occurrence of
the transition Receive Request results in sending the r101,
r2xx or r3xx, respectively. Also, another situation when this
transition models the operation of the TU is when it receives a
retransmitted INVITE request while the place Server is
marked with acceptedS. When this occurs, the transition
Receive Request puts r2xx in the place Response, leaving the
place Server marked with acceptedS. Additionally, while the
place Server is marked with completedS, if an ACK is
received, the occurrence of Receive Request changes the
Server marking to confirmedS. In any other situation, the
transition Receive Request doesn’t change the marking of the
place Server.

The transition Send Response models how the server
transaction sends the response. It is enabled when the place
Server is marked with TryProceeding and proceedingS. When
this transition occurs, r101, r2xx or r3xx response is put into
the place Response, which is presented with the inscription of
the arc from the Send Response to the place Response. The
marking of the place Server is then changed to proceedingS,
acceptedS or completedS, respectively.

The transaction Timer G or H models Timer G and Timer H. It
is enabled when the place Server is marked with completedS.
According to the assumptions made in [6], Timer H can’t fire
until Timer G fires 10 times, i.e. the r3xx response is sent 10
times. Therefore, when an integer value in the place No.r3xx is
less than 10, Timer G can fire and the marking of the place Server
isn’t changed, but the r3xx response is sent to the transport layer.
Else,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:1, 2012

12

Fig. 3 CPN model of modified SIP INVITE transaction

Legend: CPN (Colored Petri Net), SIP (Session Initiation Protocol)

TABLE II
DECLARATIONS OF CPN MODEL

colset STATECLIENT = with callingC | proceedingC | acceptedC |
completedC | terminatedC;

colset STATESERVER = with Idle | TryProceeding | proceedingS |
acceptedS | completedS | confirmedS | terminatedS;

colset REQUEST = with INVITE | ACK;

colset RESPONSE = with r100 | r101 | r2xx | r3xx;

colset Response = subset RESPONSE with [r101 | r2xx | r3xx];

colset INT = int with 0..10;

var cc: STATECLIENT;

var ss: STATESERVER;

var req: REQUEST;

var res: RESPONSE;

var re: Response;

var a,b: INT;

 Legend: CPN (Colored Petri Net)

Timer H occurs and the marking of the place Server is changed

to terminatedS, but no r3xx response is passed to the transport
layer.

The transition Timer I is enabled only when the place
Server is marked with the confirmedS. The occurrence of this
transition changes the marking of the place Server to
terminatedS.

The transition Timer L is enabled only when the place Server
is marked with accepted S and there are no INVITE requests
left in the place Request. The second condition for occurrence is
modeled using the anti-place of restricted model of SIP INVITE
transaction, which counts the number of requests in the place
Request. The restriction is modeled as in [6]. As previously

mentioned, these restrictions are made to avoid state space
explosion and losing generality.

The Server Transport Error transition is enabled when the
Server is marked with proceedings, acceptedS or completedS.
Its occurrence does not change the Server marking to
terminated, according to [3]. When an error occurs on the
transport layer, the response that has just been put into Response
is removed, and therefore, not sent to the server side.

V. CPN MODEL ANALYSIS

The analysis of the CPN model of the SIP INVITE
transaction includes investigation of properties such as
absence of deadlocks, absence of livelocks, and absence of
dead codes. A deadlock is an undesirable terminal state of a
system [6]. In terms of CPN model of the system, deadlocks
appear as dead markings in the state space of the model. A
marking of a CPN model is dead if no transitions are enabled
in it [6]. An undesirable terminal state for the SIP INVITE
transaction must have either a client or the server transaction
in a state which differs from Terminated state. However,
besides the undesirable, there is desirable terminal state for the
SIP INVITE transaction. This state must have both, the client
and the server transactions in Terminated state, and ideally no
messages left on the transport layer, i.e. in places Request and
Response. A livelock is a cycle of the state space that once
entered can never be left, and within which no progress is
made in respect to the purpose of the system [6]. In terms of
CPN model of the system, the absence of livelocks is given
with the equal number of nodes and arcs in Strongly
Connected Components (SCC) graph and in the state space.
The absence of dead codes presents absence of actions that are

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:1, 2012

13

specified, but never executed. In terms of CPN model of a
system a dead code is shown as a dead transition of the model.

In order to investigate previously mentioned properties, the
state space analysis method of CPNs [12] with the support of
the CPN Tools [4] is used. This paper analyses the CPN model
which is restricted using the same principles as in [6]. Also, it
is assumed that the unreliable medium may only reorder
messages and no messages are lost, which correspondents to
analysis of the restricted model without transitions Lose REQ
and Lose RES. Analyzing the restricted model with these
transitions is not performed, because behavior of the medium
may mask the problems of transaction itself.

The state space report generated by CPN Tools shows that
full state space has 145240 nodes and 410455 arcs (Table III).
The number of nodes and arcs contained in the SCC graph is
the same as in the state space, which implies that the SIP
INVITE transaction has no livelocks. Also, the report shows
no dead transitions, which implies that the SIP INVITE
transaction has no dead codes. However, the state space report
shows there are 18914 dead markings. Only 0.66 % of all dead
markings represent the undesirable terminal states, i.e. the
client or the server transaction is not in Terminated state.
Among those 125 undesirable terminal states, 124 of them are
the states in which the client is in the Proceeding state, and the
server is in the Terminated state. This deadlock is caused by
transport error at the server side, and expiration of Timer L
and Timer H. It is undesirable because when the server
transaction is destroyed, no responses can be received by the
client transaction, thus it cannot exit the Proceeding state.
Only one dead marking represents the situation in which the
client transaction is in Terminated state, and the server
transaction is in Idle state, which is caused by the transport
error at the client side. Among all dead markings, 99.33 %
represent the desirable terminal states, i.e. the client and the
server transactions are in Terminated state. Among 18789
desirable terminal states, only 1.78 % is ideally terminal states
with no messages left in the communication channel. This
small amount is the consequence of transport errors on both
sides, and situations when final non-success responses are
sent.

TABLE III
STATE SPACE REPORT FOR THE RESTRICTED CPN MODEL OF SIP INVITE

TRANSACTION

Occurrence Graph

Nodes: 145240

Arcs: 410455

Secs:1859

SCC Graph

Nodes: 145240

Arcs: 410455
Secs:12

Dead Markings
18914 [99992,99989,99987,99985,

99982,...]

Dead Transitions Instances None
Legend: CPN (Colored Petri Net), SCC (Strongly Connected Components),
SIP (Session Initiation Protocol).

VI. CONCLUSION AND FUTURE WORK

In this paper, SIP INVITE transaction over an unreliable
medium is modeled and analyzed, since it has been recently

modified in RFC 6026. Colored Petri Nets are chosen as an
appropriate modeling methodology. After creating a CPN
model of the SIP INVITE transaction, the analysis is carried
using a restricted CPN model which was more suitable for
investigating the most scenarios. Based on the model analysis,
it is concluded that the SIP INVITE transaction is free of
livelocks and dead codes, and in the same time it has both
desirable and undesirable deadlocks. Therefore, SIP INVITE
transaction should be subjected for additional updates in order
to eliminate undesirable deadlocks.

Modeling and analyzing SIP specification using formal
methods can help in assuring correctness, unambiguity, and
clarity of the SIP protocol. Since a well-defined and verified
protocol specification can reduce the cost for its
implementation and maintenance, modeling and analysis are
important steps of the protocol development life-cycle from
the point view of protocol engineering. Therefore, the need for
additional SIP protocol verification is identified. Finally, the
intention is to remodel future modifications of the SIP
INVITE transaction and perform verification using Timed
CPNs.

ACKNOWLEDGMENT

This work was carried out within research project 036-
0362027-1640 "Knowledge-based network and service
management", supported by the Ministry of Science,
Education and Sports of the Republic of Croatia.

REFERENCES
[1] M. Grayson, K. Shatzkamer, and K. Wierenga, Building the Mobile

Internet. Cisco Press, 2011.
[2] J. Rosenberg, et al., “SIP: Session Initiation Protocol,” Technical Report

RFC 3261, Internet Engineering Task Force (IETF), June 2002.
[3] R. Sparks and T. Zourzouvillys, “Correct Transaction Handling for 2xx

Responses to Session Initiation Protocol INVITE Request,” Technical
Report RFC 6026, Internet Engineering Task Force (IETF), Sep. 2010.

[4] Home Page of the CPN Tools, http://cpntools.org/. Accessed on Sep
20th, 2011.

[5] L. G. Ding and L. Liu, “Modelling and Analysis of the INVITE
Transaction of the Session Initiation Protocol Using Coloured Petri
Nets,” Lecture Notes in Computer Science, Springer, 2008, pp. 132-151.

[6] L. Liu, “Verification of the SIP Transaction Using Coloured Petri Nets,”
in Proc. of the 32nd Australasian Computer Science Conference,
Wellington, New Zealand, Jan. 2009.

[7] S. Kızmaz and M. Kırcı, “Verification of Session Initiation Protocol
Using Timed Colored Petri Net,” International Journal of
Communication, Network and System Sciences, vol. 4, pp. 170-179,
Mar. 2011.

[8] Y. Ding, G. Su, and H. Wan, “SIP Modeling and Simulation,” SIP
Handbook: Services, Technologies, and Security of Session Initiation
Protocol, CRC Press, Taylor & Francis Group, USA, 2009, pp. 373-396.

[9] J. I. Agbinya, IP Communications and Services for NGN. Aurebach
Publications, CRC Press, Taylor & Francis Group, USA, 2010.

[10] V. Gehlot and C. Nigro, “An Introduction to Systems Modeling and
Simulation with Colored Petri Nets,” in Proc. of Winter Simulation
Conference, Baltimore, Maryland, USA, Dec. 2010, pp. 104-118.

[11] Y. Xu and X. Xie, “Modeling and Analysis of Security Protocols Using
Colored Petri Nets,” Journal of Computers, vol. 6, no. 1, pp. 19-27, Jan.
2011.

[12] K. Jensen, L. Kristensen, and L. Wells, “Coloured Petri Nets and CPN
Tools for Modelling and Validation of Concurrent Systems,”
International Journal on Software Tools for Technology Transfer, vol. 9,
no. 3, pp. 213-254, 2007.

