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Modeling Non-Darcy Natural Convection Flow of a
Micropolar Dusty Fluid with Convective Boundary

Condition
F. M. Hady, A. Mahdy, R. A. Mohamed, Omima A. Abo Zaid

Abstract—A numerical approach of the effectiveness of numerous
parameters on magnetohydrodynamic (MHD) natural convection
heat and mass transfer problem of a dusty micropolar fluid in
a non-Darcy porous regime is prepared in the current paper.
In addition, a convective boundary condition is scrutinized into
the micropolar dusty fluid model. The governing boundary layer
equations are converted utilizing similarity transformations to a
system of dimensionless equations to be convenient for numerical
treatment. The resulting equations for fluid phase and dust phases
of momentum, angular momentum, energy, and concentration with
the appropriate boundary conditions are solved numerically applying
the Runge-Kutta method of fourth-order. In accordance with the
numerical study, it is obtained that the magnitude of the velocity
of both fluid phase and particle phase reduces with an increasing
magnetic parameter, the mass concentration of the dust particles, and
Forchheimer number. While rises due to an increment in convective
parameter and Darcy number. Also, the results refer that high values
of the magnetic parameter, convective parameter, and Forchheimer
number support the temperature distributions. However, deterioration
occurs as the mass concentration of the dust particles and Darcy
number increases. The angular velocity behavior is described by
progress when studying the effect of the magnetic parameter and
microrotation parameter.

Keywords—micropolar dusty fluid, convective heating, natural
convection, MHD, porous media.

I. INTRODUCTION

M ICROPOLAR fluids are treated as a model of

non-Newtonian fluids models which do not adhere

to the Newtonian law of the viscosity. As well micropolar

fluids are seen as consisting of suspended particles in a

viscous medium and these particles are in the form of

solid particles, spherical particles or random-oriented with

their private spins and microrotations. In addition, micropolar

fluids are characterized by microstructures. Eringen [1], [2]

introduced the theory of thermomicropolar and micropolar

fluids which can be utilized to portray fluid conduct in a lot

of practical applications. Out of many of these applications

animal blood, liquid crystal and the mathematical model for

fluids with the suspensions as real fluids, colloidal fluids, and

polymeric fluids. It is worth mentioning that a comprehensive

and excellent review of microbial fluid mechanics and its
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applications was displayed by Ariman et al. [3], [4]. When

studying micropolar fluids, it was found that there are many

mathematical models for the natural convection flow of a

micropolar fluid. The problem of natural convection boundary

layer flow of micropolar fluids over a vertical cylinder has

been analyzed by Rani and Kim [5]. Cheng [6] investigated

boundary layer flow around natural convection heat transfer

of a micropolar fluid with the power-law variance in surface

temperature near a vertical truncated cone. A numerical

discussion was prepared by Damseh et al. [7] about unsteady

natural convection in the boundary layer flow of a micropolar

fluid with fixed heat flux over a vertical surface. The natural

convection flow problem of a micropolar fluid over a vertical

plate and permeability in a porous medium with uniform heat

flux has been studied by Hassanien et al. [8]. Ferdows and Liu

[9] presented the natural convective flow of micropolar fluid

past a vertical plate in the presence of a magnetic field effect.

Recently, Unsteady MHD natural convection boundary layer

flow over a radiated stretching sheet in a micropolar fluid with

viscous dissipation and thermal radiation has been grasped by

Rao et al. [10].

Based on the many MHD applications, it is studied to

understand fluid motion behavior where it is studying the fluid

attitude electrically conducting and the magnetic properties.

Among of MHD applications are mention as plasma, power

generation, liquid metals, etc. Numerous analyses have been

executed with various aspects of unsteady MHD flows of

Newtonian and non-Newtonian fluid [11]-[15]. Sheri and

Shamshuddin [16] discussed the influences of a chemical

reaction and viscous dissipation on mass and heat transfer

flow of magnetohydrodynamic (MHD) of micropolar fluid.

An investigation has been done by Shehzad et al. [17] into

the magnetohydrodynamic flow problem of non-Newtonian

nanofluid with convective boundary conditions.

Darcy’s law has been discovered to study the flow

of fluids through porous media in 1856 and the Darcy

equation is defined as strong to describe this flow. According

to Lee and Yang [18], the flow of fluids through a

bank of circular cylinders was studied and they modeled

it as Darcy-Forchheimer drag. As for the equations of

Darcy-Brinkman-Forchheimer have been applied by Prasad

and Kladias [19] to solve the heat transfer problem in

horizontal porous layers which are heated from below under

the impacts of boundary viscous diffusion and Inertia. Dye et

al. [20] presented a description of fluid flow over the systems

of porous medium for a set of Reynolds numbers congruous
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to both Darcy and non-Darcy regimes. Mixed convection

problem from a vertical plate in a non-Darcy porous medium

saturated with a non-Newtonian fluid under the effects of both

magnetic field and melting has been analyzed by Prasad and

Hemalatha [21]. It can be noted that a public pattern of the

porous media is utilized to investigate the problem of the

flow of Darcy and non-Darcy regimes in an axisymmetric

porous cavity by Nithiarasu et al. [22]. Bakier [23] explained

the problem of mass and heat transfer by natural convection

with thermophoresis and radiation effects in a micropolar

fluid through a non-Darcy porous medium. He found out that

the dimensionless velocity and the function of mass transfer

increase with enhancement thermophoresis, while reduces

angular velocity and temperature. There are researches that

have been displayed [24]-[26] about the flow of non-Darcy

natural and mixed convection.

On the other hand, dusty fluid can be defined as due to

the addition of dust particles in the size of the micrometer to

the base fluids in nature. In addition, the dust fluid improves

the thermal conductivity and heat transfer process of these

fluids. The phenomenon of natural convection was associated

with dusty fluid flow in problems addressed by Siddiqa et

al. [27]-[29]. Also, Unsteady natural convection flow problem

in a rectangular channel of a dusty fluid has been studied

by Dalal et al. [30]. The problem of flow MHD boundary

layer over a semi-infinite surface of dusty fluid under induced

magnetic field effects was examined by Silu et al. [31]. There

is an issue that deals with the influences of Biot number and

magnetic field on the flow of the boundary layer and heat

transfer over a stretching surface of dusty fluid containing

silver (Ag) nanoparticles have been investigated by Gireesha

et al. [32]. Recently, Krishnamurthy [33] presented a study

on MHD flow of nano micropolar fluid in the presence of

dust particles over a permeable stretching sheet in a porous

medium. Finally, the objective of the current investigation is

to present a discussion about magnetohydrodynamic (MHD)

natural convection boundary layer flow and mass and heat

transfer of a dusty micropolar fluid in a non-Darcy porous

regime in the presence of a convective boundary condition. In

other words, it is to present a discussion about the impacts

of a magnetic field and a convective boundary condition

on incompressible boundary layer flow and heat transfer

of a dusty micropolar fluid through a non-Darcy porous

regime. Non-linear equations of momentum, heat and mass

transfer and angular momentum are solved numerically using

the fourth-order Runge-Kutta method by software algebraic

Matlab.

II. MODEL FORMULATION

The mathematical description of the current problem of

natural convection laminar boundary layer flow of a micropolar

fluid in a non-Darcy porous medium in the presence of

dust particles and magnetic field with a convective boundary

condition is explained in this section. Characterized by this

fluid as viscous, incompressible and electrically conducted

because of an applied magnetic field B0 in the ŷ direction,

as well as the flow is in two dimensional and stable. Fig.

1 displays the physical diagram and coordinate system of

this problem. Cartesian coordinates x̂ and ŷ are used such

that x̂ is along the vertical surface and ŷ perpendicular it.

It is assumed that T∞ and C∞ are the ambient temperature

and species concentration, respectively, n is a constant lay

between 0 and 1 (0 � n � 1), Tw is the surface temperature

which will determine later result from a convective heating

process which is described by heat transfer coefficient hf and

temperature Tf , and Cw represents stationary value of C at

ŷ = 0. Based on using approximations of the boundary-layer

and Oberbeck-Boussinesq and assumption that number density

of the dust particle remains constant during the flow and the

dust particles have the same size, the governing equations of

the fluid phase and particle phase follow the next system of

equations:

Fig. 1 Physical diagram representation for the problem

For the fluid phase:

∂û
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û− b

K
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(ûp − û)
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For the dust phase:

∂ûp

∂x̂
+

∂v̂p
∂ŷ

= 0 (6)

ûp
∂ûp

∂x̂
+ v̂p

∂ûp

∂ŷ
= − 1

τm
(ûp − û) (7)



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:14, No:2, 2020

55

ρpcs

(
ûp

∂Tp

∂x̂
+ v̂p

∂Tp

∂ŷ

)
= −ρpcs

τT
(Tp − T ) (8)

Here, û, v̂, ûp and v̂p are the components of velocity in

two phases fluid and dust along x̂ and ŷ axes, respectively,

ρ and ρp reference the density of fluid and dust particles,

respectively, k∗ and ν are the coefficient of rotational and

kinematic viscosity, respectively, g refers to the acceleration

of gravity vector, σ signify to the fluid electrical conductivity,

B0 gives the strength of the magnetic field, β and β∗

present the coefficient of thermal and concentration expansion,

respectively, b points out the Forchheimer constant, K
represents the permeability of the porous medium, k gives

the thermal conductivity of the fluid, E refers to the angular

velocity, C refers to the species concentration, D points out the

coefficient of mass diffusion, j is the density of micro-inertia,

ε represents the viscosity of spin gradient, T and Tp determine

the temperature of fluid and dust particles, respectively, cp and

cs give the specific heat of fluid and dust particles, respectively,

(ρcp)f indicates the heat capacity of the fluid, τm and τT aim

the velocity relaxation time and thermal relaxation time of the

dust particle, respectively and τT = 3
2
cs
cp
Prτm. Based on the

following boundary conditions:

û = U0, v̂ = 0, −k
∂T

∂ŷ
= hf (Tf − T )

C = Cw, E = −n
∂û

∂ŷ
, ŷ = 0

(9)

û, ûp −→ 0, v̂p −→ v̂, T, Tp −→ T∞
C −→ C∞, E −→ 0, ŷ −→ ∞ (10)

The dimensionless form for a micropolar dusty fluid flow

equations of momentum, angular momentum, energy, and

concentration with previous conditions can be reached by

introducing the following transformations:

ψ =
(√

2νx̂U0

)
f(η) =

(√
2νx̂U0

)
F (η),

θ(η) =
T − T∞
Tf − T∞

, θp(η) =
Tp − T∞
Tf − T∞

,

φ(η) =
C − C∞
Cw − C∞

, E(η) =

(√
U0

2νx̂

)
U0S,

η =

(√
U0

2νx̂

)
ŷ (11)

where η represents the transverse coordinate in non-dimension

form, ψ is the stream function such that û = ∂ψ
∂ŷ and

v̂ = −∂ψ
∂x̂ , f and F are the stream function in non-dimension

form for fluid phase and particle phase, respectively, φ points

out concentration function in non-dimension form, θ and θp
indicate the temperature function in non-dimension form for

fluid phase and particle phase, respectively, S gives the angular

velocity in non-dimension form.

Now the dimensionless form of the system of above

equations with the corresponding boundary conditions are:

For the fluid phase:

f ′′′ + ff ′′ +BS′ +Grθ +Gmφ− 1

DaRe
f ′ −Mf ′−

Fs

Da
f ′2 +Dραd(F

′ − f ′) = 0

(12)

λS′′ − 2
λ

G∗ (2S + f ′′) + f ′S + fS′ = 0 (13)

θ′′ + Prfθ′ +
2

3
Dραd(θp − θ) + PrDραdEc(F ′ − f ′)2 = 0

(14)

φ′′ + Scfφ′ = 0 (15)

For the dust phase:

FF ′′ + αd(f
′ − F ′) = 0 (16)

Fθ′p +
2

3

1

ΓPr
αd(θ − θp) = 0 (17)

Transformed boundary conditions are:

f ′ = 1, f = 0, θ′ = −Bi(1− θ)

φ = 1, S = −nf ′′, η = 0
(18)

f ′, F ′ −→ 0, F −→ f, θ, θp −→ 0

φ −→ 0, S −→ 0, η −→ ∞ (19)

where λ = ε
ρjν and G∗ = εU0

k∗νx̂ represented the micropolar

material parameters, B = k∗
ρν expresses the coupling constant

parameter, Da = K
L2 points out the Darcy number, Re = U0L

2

2νx̂

gives the local Reynolds number, M =
νσB2

0

ρU2
0

refers to the

magnetic parameter, Fs = 2bx̂
L2 denotes the Forchheimer

number, Sc = ν
D presents the Schmidt number, Pr =

μcp
k defines the Prandtl number, Gr =

gβν(Tf−T∞)

U3
0

and

Gm = gβ∗ν(Cw−C∞)
U3

0
indicate the local Grashof number and

modified Grashof number, respectively, Ec =
U2

0

cp(Tf−T∞)

Known as the Eckert number, αd = 2x̂
U0

1
τm

determines fluid

particle interaction parameter, Dρ =
ρp

ρ signify to the mass

concentration of the dust particles, Γ = cs
cp

represents the

specific heat ratio of the mixture and Bi =
hf

k

√
2νx̂

U0
=

hf

k

L√
Re

gives the Biot number.

III. NUMERICAL METHOD

The set of ordinary and nonlinear differential equations

(12)-(17) with the boundary conditions (18) and (19) have

been solved numerically utilized the Runge-Kutta method

of fourth-order. Our equations are dealt with in a Matlab

based on the fact that each nth-order equation is mutated

into n of the first-order equations. Then using the bvp4c

function, the system of first-order equations is solved. The

edge of the boundary layer at infinity (η∞) was selected

in this method equal to ηmax = 8 that correctly assures

that each numerical solutions approach the asymptotic values.

Additionally, numerical solutions have not a salient significant
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change when rising values of ηmax. In order to clarify this

method more, we rewrite the momentum equation (12) as an

example as follow:

TABLE I
VALUES OF −θ′(0) AND f ′′(0) FOR DIFFERENT VALUES OF THE

PARAMETERS

Pr M Gr Bi n Dρ B Da −θ′(0) f ′′(0)
0.7 2 6 10 0.5 1 0.5 0.3 0.42101 -0.94268
0.8 0.44981 -0.96026
0.9 0.47688 -0.97672
1 0.50249 -0.99222
0.7 0 6 10 0.5 1 0.5 0.3 0.43955 -0.44823

2 0.42101 -0.94268
4 0.40443 -1.38461
6 0.38960 -1.78554

0.7 2 5 10 0.5 1 0.5 0.3 0.40739 -1.19047
6 0.42101 -0.94268
7 0.43294 -0.69666
8 0.44346 -0.45223

0.7 2 6 1 0.5 1 0.5 0.3 0.28648 -1.32278
5 0.39950 -1.00117
10 0.42101 -0.94268
∞ 0.44527 -0.87766

0.7 2 6 10 0 1 0.5 0.3 0.42225 -0.81574
0.3 0.42101 -0.94268
0.5 0.42101 -0.94268
1 0.41931 -1.11652

0.7 2 6 10 0.5 0 0.5 0.3 0.43908 -0.92639
1 0.42101 -0.94268
4 0.36992 -0.99253
10 0.28059 -1.09575

0.7 2 6 10 0.5 1 0.5 0.3 0.42101 -0.94268
5 0.40258 -0.57653
7 0.38523 -0.88054
9 0.37554 -0.81323

0.7 2 6 10 0.5 1 0.5 0.3 0.42101 -0.94268
0.4 0.44243 -0.32777
1 0.48892 1.16705
1.1 0.49196 1.28521

f ′′′ = −ff ′′ −BS′ −Grθ −Gmφ+
1

DaRe
f ′ +Mf ′+

Fs

Da
f ′2 −Dραd(F

′ − f ′)

(20)

The following system of equations represents how to place

the momentum equation in MATLAB.

F (1) = Y (2),

F (2) = Y (3),

F (3) = −Y (1)Y (3)−BY (9)−GrY (4)−GmY (6)+

(1/DaRe)Y (2) +MY (2) + (Fs/Da)Y 2(2)−
Dραd(Y (11)− Y (2)) (21)

where

f = Y (1),

f ′ = Y (2) =
dY (1)

dη
= F (1),

f ′′ = Y (3) =
dY (2)

dη
= F (2),

f ′′′ =
dY (3)

dη
= F (3),

S′ = Y (9),

θ = Y (4),

φ = Y (6),

F ′ = Y (11) (22)

Values of the local Nusselt number −θ′(0) and skin friction

coefficient f ′′(0) for some parameters at Gm = 6, G∗ =
0.2, Re = 0.4, Fs = 0.5, Ec = 2, Sc = 5, αd = 0.1, λ =
1,Γ = 0.1 have been estimated in Table I.

IV. RESULTS AND DISCUSSION

Herein we examine the induced results from the impact

of dimensionless governing parameters on different physical

quantities in the dimensionless form such the velocity and

temperature for fluid phase and particle phase, too on species

concentration function and angular velocity (micro-rotation)

function. Our parameters values range as follows magnetic

parameter (0 � M � 6), mass concentration of the dust

particles (0 � Dρ � 10), fluid particle interaction parameter

(0.01 � αd � 0.1), Forchheimer number (0.5 � Fs � 5),
Darcy number (0.3 � Da � 1.1), convective parameter

(1 � Bi � ∞), local Grashof number (5 � Gr � 8),
modified Grashof number (1 � Gm � 6), Prandtl number

(0.7 � Pr � 1), constant parameter (microrotation parameter)

(0 � n � 1) and coupling constant parameter (0.5 � B � 9).
But the other parameters remain constant in our numerical

computations as follows the micropolar material parameters

λ = 1 and G∗ = 0.2, local Reynolds number Re = 0.4,

Eckert number Ec = 2, Schmidt number Sc = 5 and the

specific heat ratio of the mixture Γ = 0.1.
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Fig. 2 Impact of Dρ on velocity profile F ′(η) and temperature profile
(θ(η), θp(η))

Foremost we display the effecting of dust parameters on the

velocity and temperature profiles. Fig. 2 represents the extent

of influence of mass concentration of the dust particles Dρ

versus η on the magnitude of the dimensionless velocity and

temperature distribution for fluid phase and particle phase. It is
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Fig. 3 Impact of αd on velocity profile F ′(η) and temperature profile θp(η)

observed that the velocity (F ′) and temperatures (θ, θp) reduce

with an increase in values of Dρ. In other words, increasing

the mass concentration of the dust particles leads to the lack

of movement and increase the rate of heat transfer as a result

of improved thermal conductivity of the particle phase. It is

interesting to observe that putting Dρ = 0 represents viscous

micropolar fluid without dust particles. Fig. 3 refers that the

velocity and temperature of the dust particles enhance as

fluid-particle interaction parameter αd increases. This behavior

may be attributed to the fact that the interaction between fluid

and particles is large and hegemony of thermal conductivity of

the particle phase then the particle phase reduces the velocity

of the fluid till it reaches the same fluid velocity. This means

a decrease in fluid velocity and an increment in dust particles

velocity.
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Fig. 4 (a-b) Impact of Bi and B on temperature profile (θ(η), θp(η))
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Fig. 5 Impact of M on velocity profile f ′(η) and temperature profile
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As shown in Fig. 4 (a), Biot number Bi improves the

temperature profiles in two phases fluid and dust (θ, θp).
This shows that increasing the convective parameter leads to

that fluid temperature approaching from the isothermal case.

Hence the thickness of the thermal boundary layer rises due to

interchange in convective heat. The temperature distributions

(θ, θp) for various values of coupling constant parameter B
are presented in Fig. 4 (b). From this depiction, it is clearly

shown that there is progress in the temperatures under the

influence of B. The dimensionless velocity and temperature

profiles in both phases fluid and dust for different values of

the magnetic parameter M are displayed in Fig. 5. It is obvious

that there is shrinking in the dimensionless velocity (f ′) with

rising values of M . While the dimensionless temperatures (θ)
and (θp) growing with M . Physically this behavior is due to

that an application of a magnetic field produce Lorentz force

which represents the opposite force to the flow and this force

increases with the enhancement of magnetic field parameter

which leads to diminishing motion and improves the thermal

boundary layer thickness.

When studying the Darcy number Da and Forchheimer

number Fs on the velocity and temperature profiles for

fluid and particle phases in Figs. 6 and 7, it is found that

the dimensionless velocity (f ′) rises with the enhancement

of Darcy number but reduces with Forchheimer number.

Also, it is noted from these figures Darcy number minimizes

the dimensionless temperatures while Forchheimer number

supports the temperature profiles. This behavior can be

indicated by the use of Forchheimer number, which represents

inertial drag and its rise leads to increase the flow resistance

making the movement in a low state, as for the increase in the

temperatures is due to that the energy deployed in the medium

represented in the form of heat.
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Fig. 6 Impact of Da on velocity profile f ′(η) and temperature profile
(θ(η), θp(η))
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Fig. 7 Impact of Fs on velocity profile f ′(η) and temperature profile
(θ(η), θp(η))

With the help of Grashof number Gr in Fig. 8, it is

reached that the Grashof number supports the velocity profiles

(f ′) and leads to shrinking the temperature profiles (θ, θp).
The temperature behavior can be attributed to the fact that

temperatures drop rapidly near the surface of the plate because

high values of Gr transfers heat away from the plate. In Fig.

9, the velocity of dust particles (F ′) and temperatures (θ, θp)
decrement with an increase of modified Grashof number Gm.
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Fig. 8 Impact of Gr on velocity profile f ′(η) and temperature profile
(θ(η), θp(η))

For different values of Prandtl number Pr as shown in

Fig. 10, we recognize that the excess in Pr leads to a

fall in the velocity profiles (f ′) and the temperature profiles

(θ, θp). Deflation behavior in the velocity and temperature

profiles is due to the thickness of the large fluid that tends

to the contraction of velocity due to the viscosity of the large

fluids and the thermal boundary layer thickness reduced (small

thermal conductivity) by increasing Pr, respectively.
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Fig. 10 Impact of Pr on velocity profile f ′(η) and temperature profile
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Fig. 11 Impact of M and n on angular velocity S.

Finally, we present the graphs that explain the behavior

of the angular velocity when studying some parameters such

as magnetic parameter M , constant parameter (microrotation

parameter) n, and Biot number Bi. In Fig. 11 the values of

the angular velocity mount with high values of M and n.

Taking n = 0 leads to S = 0 (no-spin condition) according to

the condition at the wall S(0) = −nf ′′(0) indicates that the

microelements in the flow of concentrated particles near the

wall surface can not able to rotate. Taking n = 0.5 (S can not

equal zero when f ′′(0) �= 0 ) refers that the part antisymmetric

from the stress tensor disappears and represents a weak

concentration. The particle spin for fine particle suspensions

is to be equal to the velocity of the fluid at the wall. Using

n = 0.5 it is potential to clarify the possibility of reducing

the ruling equations to the equations of the Newtonian fluid

(k∗ = 0). Taking n = 1 for the purpose of modeling the flows

of the turbulent boundary layer. The results obtained in Fig.

12 shows that the effect of Bi tends to dwindle the values of

angular velocity.
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Fig. 12 Impact of Bi on angular velocity S

V. CONCLUSION

The problem of MHD natural convection heat and mass

transfer of a dusty micropolar fluid in a non-Darcy porous

medium with a convective boundary condition has been

studied in the present paper. To solve the dimensionless

boundary layer equations we used the Runge-Kutta method

of fourth-order. A parametric study of our problem was

conducted to elucidate and discuss the effects of some

parameters on the magnitude of the velocity and temperature

distribution for the fluid phase and particle phase and on the

angular velocity. Important findings of this study are displayed

as follow:

1) The profiles of velocity for fluid phase f ′ reduce with

increasing magnetic parameter, Forchheimer number,

and Prandtl number. While an enhancement in values

of Darcy number and Grashof number increases the

dimensionless velocity.

2) The profiles of velocity for dust phase F ′ increment

with rising values of fluid-particle interaction parameter

and deteriorates by an enhancement in both the mass

concentration of the dust particles and modified Grashof

number.

3) The increment in magnetic parameter, Biot number,

Forchheimer number, and coupling constant parameter

lead to improving the profiles of temperature for both

fluid and dust phase (θ, θp). But a reduction takes

place with higher values of mass concentration of the

dust particles, Darcy number, Grashof number, modified

Grashof number, and Prandtl number.
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4) There is an elevation in the behavior of θp at studying

fluid-particle interaction parameter.

5) An increase in Biot number tends to diminish the

dimensionless angular velocity while this velocity

progress by augmentation the magnetic parameter and

microrotation parameter.
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