
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2240

Modeling Language for Constructing Solvers in
Machine Learning : Reductionist Perspectives

Tsuyoshi Okita

Abstract— For a given specific problem an efficient algorithm has
been the matter of study. However, an alternative approach orthogonal
to this approach comes out, which is called a reduction. In general
for a given specific problem this reduction approach studies how to
convert an original problem into subproblems. This paper proposes
a formal modeling language to support this reduction approach in
order to make a solver quickly. We show three examples from the
wide area of learning problems. The benefit is a fast prototyping
of algorithms for a given new problem. It is noted that our formal
modeling language is not intend for providing an efficient notation for
data mining application, but for facilitating a designer who develops
solvers in machine learning.

Keywords—Formal language, statistical inference problem, re-
duction.

I. INTRODUCTION

WHEN we use machine learning algorithms [10] as
a software component in commercial applications,

one of the typical difficulties has been the mechanism of
achieving reliability. For example in an application such as
speech recognition or handwritten digit recognition, the first
question from public is usually related to the accuracies of
their results. Traditionally this reliability has assessed by time
consuming simulations. However recently, statistical learning
methods, such as Support Vector Machines [4], kernel methods
[15], and variational methods [6], made a revolution how
to guarantee the reliability in a theoretical manner, which is
achieved by bounds. Therefore in the perspectives of software
reliability, statistical learning is the only promising clue at this
moment, which should be emphasized. However, there are two
immediate weaknesses.

Firstly the traditional approach to create a new algorithm for
a new arising problem has disadvantageous in time and human
power. Machine learning problems are continuously widening
and deepening according as the expansion of application
areas. All the more single problem requires various algorithms
depending on the criteria, not only the efficiency in speed, but
also efficiency in memory or power.

Secondly, the increase of the machine learning algorithms
and target problems makes application designers more con-
fused without using any synthetic design methodologies, such
as the Unified Modeling Language (UML) in the area of soft-
ware engineering. This is because there are several fundamen-
tal differences between the traditional methodology and that of
machine learning. The first difference is the way that machine

T. Okita is with Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brus-
sel, Belgium (phone: +32.2.629.37.24; fax: +32.2.629.37.08; e-mail:
Tsuyoshi.Okita@vub.ac.be).

learning bases on the algorithm induction. As we do not know
how to write algorithm directly, machine learning algorithm
learns its hypothesis from data. The second difference is that
this process has two steps: a learning phase and an application
phase (or training phase and test phase). Similarly, there are
crucial differences in terms of decomposition of problems and
the number of samples as well.

The first problem of continuously arising problems can be
solved by a recent appeared reduction approach [8]. Tradi-
tionally, for a given specific target problem, the creation of a
new algorithm is the matter of study. A reduction approach,
which is orthogonal to this traditional approach, breaks down
a problem into decomposed problems that can be solved by
already known algorithms, such as classification algorithms.
Together with the statistical learning perspective, if we de-
rive overall bounds from individual bounds of decomposed
subproblems, this could be the definitive advantage over the
traditional approach although this paper does not show this
point. For the second problem of paradigms the related work
is in Allison [2]. Allison formalizes the sample complexity
using a functional language Haskell. However, this approach
does not say anything about other aspects which we mentioned
before.

The contribution of this paper is 1) to construct a formal
modeling language in order to solve those two problems,
and 2) to show several examples using this formal modeling
language including new algorithms. The rest of the paper
is organized as follows. In Section 2 we show briefly our
new programming paradigm and our summary of language in
the following Section, including syntax and semantics of our
modeling language. In Section 4 we show several examples
using our modeling language and conclude.

II. INDUCTIVE INFERENCE PROGRAMMING PARADIGM

We introduce an inductive inference programming paradigm
as the background of our formal modeling language. Firstly,
we should separate an algorithm (or function) from an input,
while in the procedural language an algorithm is directly
connected with an input. This would be natural because
machine learning learns from data, whereas these data consist
of not only input data but also output data. At the same
time, this would be natural because we are in difficulties
in writing algorithms directly, which is the reason why we
use machine learning methods to ‘learn’ them. Secondly, we
should represent both of two phases, which consist of a
training phase and a test phase. The learning algorithms learn
hypotheses from data, but usually the second phase that uses

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2241

these hypotheses fulfills the function in an application. In sum,
a schema 1) shows a form of a traditional procedural language
and 2) shows that of ours.���

Output algorithm(Input)��� � Algorithm
TestOutput �TestInput � TrainingInput �

III. OUR MODELING LANGUAGE

The aim of our modeling language is to describe (induc-
tive / statistical) inference problems in the area of machine
learning, especially to describe the necessary and sufficient
input / output information. Therefore based on the inductive
inference programming paradigm we introduced above, we
can formalize this problem description as a specification of a
problem. The core of this modeling language is to introduce A)
the notation of data structures, B) relationships between those
data structures, especially inference relations, C) rewriting
rules between problems, and D) semantics of rewriting rules,
especially related to the number of samples.

A. Data Structures

We introduce a sequence and a (directed) graph. Although
we do not describe an undirected graph in here for the sake
of brevity, it is a direct extension of our framework. For a se-
quence we denote by 	�
������ a sequence ��� ��� ��� � ����� � �
�� .
For a (directed) graph we denote by ����� � � a pair of a DAG�! "�#� �%$ � and a joint probability distribution � of the
random variables in some set � , where � is a finite and
nonempty set whose elements are called nodes, and $ is a
set of ordered pairs of distinct elements of � . Sometimes in
order to emphasize that the nodes in a DAG comprise � � , we
write �&�'�#� � � � � � instead of �&��� � � .

TABLE I

DATA STRUCTURES IN OUR MODELING LANGUAGE

symbols meaning

data structures(*)
i-th sample of

((,+)�-
i-th variable in

(. (/)
a sequence of observation02130 (/)5476 894
a pair of a DAG of samples

(
in topological order and

correspondent probabilities.02130 (:+)�- 4&6 894
a pair of a DAG of variables in

(
in topological order

and correspondent probabilities.; (:+)�-
union of variables

B. Relationships between Data Structures (Problem)

The summary of notation is shown in Table I and II. Among
them we define by ‘ � ’ the (inductive / statistical) inference
relations, which is a natural extension of ‘ <=�?>@�#A �%B � � ’.
This notation compresses a training and a test process. Firstly,
training examples are put at the right-hand side and a resulting
hypothesis is put at the left-hand side. We will use capital
letters for training examples (which signifies random variables)
and lower case letters for test examples (which signifies values

of random variables). Secondly, a test example is shown in the
second element at the left-hand side and the name of the output
by this test example is in the first element. This notation does
not lose the implication of the number of samples. Now we
show several examples.

TABLE II

RELATIONSHIPS BETWEEN DATA STRUCTURES

symbols meaning

inductive inference relationsC3DFE an hypothesis C is (inductively / statistically) inferred by
the given training set E .CHG�I C�JKDLE an hypothesis CMG�I C�J which Outputs CMG for the given test
example C J is (inductively / statistically) inferred by the
given training set E .C3DFE9G�I ENJ an hypothesis C is (inductively / statistically) inferred by
the training set E9G , each of which is given with a labelE�J or a model E�J .

relations between observationsO
OR of observation

, multi-view of observation

independenciesPP
independencies in observation02130 (*)�4&6 8945QQSR 0T130 (/)5476 894

satisfies the Markov condition.

Example 1 (Classification problem): A classification prob-
lem is defined as ‘ UV� <S�W�X� Y ’.
In this case, an hypothesis UV� < which outputs U for the given
test example < is (inductively / statistically) inferred by the
given training set � , each of which is given with the label Y .

A clustering problem is to place a label U for the given test
example < based on the observation � [15] [14], usually with
assuming the resulting cluster number Z . It is noted that some
classical clustering algorithm such as k-means clustering may
not place labels on new test example, but only on training
examples, which may easily be extended.

Example 2 (Clustering): A clustering problem is defined as
‘ U[� <S�\� ’. (U^]FY , Y_ `� � � ����� � Z � when Z is known).

A sequential prediction problem is defined in Conditional
Random Fields (CRF) [7]. In a training phase, we take a
sequence of words with labels 	@�a�X� Y � as training examples.
In a test phase, we predict a sequence of labels 	FU based on
the test sequence of words 	F< . In summary,

Example 3 (Sequential prediction): A sequential prediction
problem is defined as ‘ 	b�aU[� < � �W	@�#�c� Y � ’.

Using Hidden Markov Models (HMMs) we can solve a
couple of different kinds of problems. One problem is solved
by the Viterbi algorithm [13], which associates an optimal
sequence of states to a sequence of observations, given the
parameters of a model of HMMs. More formally, for a given
model �&�'�#� � � � � � and a sequence of observations 	edgf&hji9U � ,
we choose the optimal state sequence 	lk�f&h�m:< � .

Example 4 (Path selection): A path selection problem is
defined as ‘ �a	 k f h�m < � � ���Tn[�#< � � � o � �p	 i f hji Y � �q�&�'�#� � � � � � ’.

We show various problems in Table VI.

C. Syntax of Rewriting Rules

From now on we consider a problem with an algorithm.
Rewriting rules are shown in Table III and IV, where an

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2242

arrow shows a transition. There are several categories of
rewriting rules: 1) � (logical ’OR’), 2) independencies, and 3)
dimensionality transformation. An algorithm might be altered
when examples are split in the case of the rewriting rule
(1), and when different hypotheses are merged in the case
of the rewriting rule (13) and (14). It is noted that one famous
example that uses sequence dimensional reduction is CRFs
[7].

TABLE III

REWRITING RULES WHERE WE HANDLE PROBLEMS WITH ALGORITHMS

rewriting rules

1
�

algorithm AC3D 0 E O�� 4���
algorithm A� G�� 0 C*D�E 4 O �

algorithm A� J	� 0 C3D � 4 O �
algorithm B� � � G O � J

[OR separation]

2
�

algorithm AC3D�E � �
algorithm AC*D 0 E O
� 4

3
�

algorithm AC3D�E I � � �
algorithm AC*D 0a0 E9G�I � G 4 O 0 ENJ I � J 454�� 0 E G ; E�J	��E 4

[OR separation]

4
�

algorithm A
problem I

� �
algorithm B
problem I

[algorithm conversion]

5
�

algorithm AjI � +)�- D (I � � �
algorithm A I � D (I �

[equalization of training and test set]

6
�

algorithm A. 0 jI � 4 D . 0 (I � 4�� �
algorithm AjI � D . 0 (I � 4

[sequence dim-reduction]

7
�

algorithm A0 jI � 4 D . 0 (I � 4 � �
algorithm A. 0 I � 4 D . 0 (I � 4

[sequence dim-augmentation]

8
�

algorithm A. I 021 . �)54 D . 0 (I � 4�� �
algorithm AjI � D (I �

[graph dim-reduction]

9
�

algorithm AjI � D (I � � �
algorithm A. jI 130 . �)a4 D . 0 (I � 4

[graph dim-augmentation]

D. Semantics of Rewriting Rules

Rewriting rules related to decomposition and merge has two
semantics : 1) decomposition semantics and 2) semantics of
the number of samples.

Decomposition semantics relates to the fact that we decom-
pose the input or the output examples instead of algorithms.
This is due to the fact that an algorithm in machine learning
consists of learned hypotheses, which are usually not able to
decompose, which is different from the traditional decomposi-
tion of algorithms, such as parallelization of algorithms. In this
reason, correspondent algorithms when decomposed should
be carefully chosen based on the original algorithm. Assume
that we divide an original training set into two sets. After
learning an individual training set, we have to choose carefully
how to merge those two hypotheses, where there are many
possibilities in this merge. Similarly, correspondent algorithms
when merged should be carefully chosen. Semantics of the
number of samples can be used for the calculation of overall
bounds from individual bounds.

TABLE IV

REWRITING RULES CONTINUED FROM THE PREVIOUS TABLE

rewriting rules

10
�

algorithm A0 .�� G)�4 I � D (I .�� G �)a4 ��� algorithm A050 . J G)54 I � D (I . J G �)54a4 O 6 6 6 O0a0 .����� G)a4 I � D (I .����� G �)a4a4
with

130 (/)545QQ R
[decomposition by Markov property]

11
�

algorithm A0 ;�� G +) - 4 I �,D (I � � � algorithm A0 + G - I � D (I � 4 O 6 6%6 O0 + � - I � D (I � 4
with

130 (,+) - 45QQ R
[decomposition by d-separation]

12
�

algorithm AjI � ��� D (I � �58 � �
algorithm AjI � D (I �

[marginalization of hidden variables]

13
�

algorithm A0a0) I �)a4 D . 0 (/) I �)#4a4 O 6 6 6 O 050 �� I ��� 4 D . 0 (��I ��� 4a4� �
algorithm B. �) �) 0 jI � 4 D . 0 (*) I �)#4

[merge sequences]

14 � algorithm A0a0 +) - I � +) - 4 D . 0 (,+) - I � +) - 454 O 6 6 6 O050 + � - I � + � - 4 D . 0 (:+ � - I � + � - 454� � algorithm B; �)��) 0 I � 4 D ; �)��) (*) I ; �) �) �)
[merge variables]

15
�

algorithm AC3D ; (,+) - I ; � + � - 0 (,+) - �5(,+ � -"! (4 � �
algorithm AC/D (

[superset]

IV. EXAMPLE OF REWRITING

In this section we show several examples of reduction of a
source problem into a destination problem. The first example
shows a parallelization of SVMs [11]. It is noted that there
are many other ways to decompose this problem other than
our examples.

Example 5: (Parallelization of SVMs) A problem U[� < ��X� Y with � ��## �%$, �'& � (## �'& $ (with SVMs is equivalent
to the following decomposed problems.)******+ ******,

� SVMs algorithm- � pU[� < � �p� � � Y �H�� SVMs algorithm- �, pU[� < �,�p� �j� Y � �� boosting algorithmUV� <S� - � � - � �
with � �.## �%$, �/& ��(## �'& $ (and with � �10 � � , where Y � is
a label for � � and Y�� is a label for � � , and � W� � ; � � .

Rewriting Procedure 5: First we decompose examples �
into � � and � � . It is noted that in the schema the number
shows the number of rewriting rules in Tables.

� SVMs algorithmUV� <S�W�c� Y2 &43 (� SVMs algorithmUV�q�a< � �S< � � � � �#� � � Y � � ���a� � � Y � � �

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2243

2 &�� (
)******+ ******,
� SVMs algorithm- � \UV� < � �\� � � Y �H�� SVMs algorithm- � \UV� <��:�\� � � Y�� �� boosting algorithmU[� <L� - � � - � �

Next example rewrites from a path selection problem into
a sequential prediction problem.

Example 6: A path selection problem�a	 k f h�m < � � �q�#n �a< � � � o � � 	FY � ��� � �#� � � � � � (
� �#� � � QQ R)

with the Viterbi algorithm can be reduced into a sequential
prediction problem ��� �aUV� < � � 	@�#�X� Y � (

� �#� & � (� QQ R) with
CRF algorithm.

Rewriting Procedure 6: Using the rewriting rule (9), a path
selection problem can be decomposed into the following
problems:� Viterbi algorithm�5	�k�f7h�m,< � � �q�#n �a< � � � o � � 	�Y � �q� � �#� � � � � �2 &����	��
 (� Viterbi algorithm	@�#< � � � 	@�a< � � o � � � 	�Y � � 	@�a� � � � � �2� & ��� (� Viterbi algorithm)+ , < ���N� �q�a< � � o � � � Y � ���#� ����� � � ���N� ������<�� ���#<���� � � o���� � � �pY���� � �q�a��� � ��� �2�� & � � (� CRF algorithm	@�#< ���N� � < �%� o � � �_�a	�Y � � � ���N�M� � ����� �%�2 & � � (� CRF algorithm	@�#< ���N� � < � � � �5	@�aY � � � ���N� � �

V. OVERVIEW EXAMPLE

We first define a structure discovery problem. We define it
as the combination of the learning Bayesian networks from
data and the Bayesian inference using Bayesian networks. We
denote by < � the � th example and by � & ��(the � th random
variable. A Bayesian network is defined as a pair ��� � o � , where� _��� �%$ � is an acyclic directed graph.

Definition 1 (Structure Discovery (+ Inference) Problem):
Let � ��< � � ����� � < � � be training examples, where each< has ! dimensions. The first phase is to learn a Bayesian
networks from data, where we consider the problem of
analyzing the distribution over a set of random variables�/& � (� ����� � �'&�� (, based on a fully observed training examples
where each < � is a complete assignment to the variables�/& � (� ����� � �'&�� (. The second phase is to determine various
probabilities of interest based on the constructed Bayesian
networks.

Now we show the overview example. Although there exists
an algorithm for this structure discovery problem, we assume
that we just come up our mind of this problem. Hence we
assume that we have no solver for this problem in this world.
Possible approaches are 1) to create a new algorithm for this
problem (traditional approach), and 2) to take a reduction ap-
proach to decompose this problem into small subproblems. On
one hand a traditional approach would be beneficial in that we
might create an efficient solver for this problem, but it would
take time and human power. On the other hand a reduction
approach has two benefits in that we can immediately apply

this scheme (fast-prototyping) and that we can calculate the
overall bounds of this problem using individual bounds if we
apply a statistical learning in all of their solvers.

The first thing we should do is to decompose a problem into
small subproblems. In this process when we can decompose
using rewriting rules, we have to check the feasibility.

Example 7: A structure discovery problem; �$ �" < & $ (� ; ���
 < & � (� � (
� �a� � � QQ R) with an arbitrary

structure discovery algorithm is equivalent to #S��$&%(' �
number of multi-class classification problems where we
observe them in

; �'& ��(with a classification algorithm (and
the hypotheses merge with an arbitrary boosting algorithm).

Rewriting Procedure 7: Using the rewriting rule (10), a
structure discovery problem

; <�& $ (� ; <�&
 (� � can be de-
composed in a following manner.

� arbitrary structure
discovery algorithm; <�& $ (� ; < & � (�W� 2)� & � � (�

arbitrary structure
discovery algorithm)********+ ********,

)+ , <�&+* (� < &
 (�p������<�&+* (� < & � (�W������)+ , <�& � (� < &
 (�W������<�& � (� < & � (�W�
2 &�, (�

arbitrary structure
discovery algorithm)********+ ********,

)+ , < &+* (� <S�p�X� �'&+* (�����< &+* (� <S�p�X� �'&+* (�����)+ , < & � (� <F�\�X� �'& � (�����< & � (� <F�\�X� �'& � (
2�� & � 3 (

)********+ ********,
� multiclass classification /regression- $ p< &+* (� <S�p�X� �'&+* (������ multiclass classification / regression- � p< & � (� <S�W�X� �'& � (� arbitrary merge algorithm- - $ �l����� � - �

It is noted that if the value of � &�* (� ����� � �'& � (is real we do
regression, otherwise we do multiclass classification. As is
shown above, this rewriting is done in a minute, while it would
take at least a couple of months if we create a new solver. It is
noted that in order to supply the training examples for above
solvers, we need an efficient data converter.

Then we use this collective solvers to obtain results in
Table V. We use �-�/. * �+02143 on pentium III (800MHz) in the
line ‘comb’, while for the comparison as an original solver
we use the Probabilistic Network Library (PNL) at Intel in
the line ‘orig’. Datasets are from the UCI Machine Learning
Repository and the Statlib dataset at CMU. Table shows that
in all the items the original solver gives better results than ours
in this case. On the other hands, our lines of codes are far less
than the PNL, which should be emphasized, but this rewriting

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2244

is done in a minute if we have an efficient data converter,
while it would take at least a couple of months if we create a
new solver. Table also shows accuracies comparison and both
approaches are quite comparable.

It is noted that our collective solvers assume that the
existence of the base solvers from the beginning, which is
�-� . * ��02143 in this case. Otherwise our approach would lose the
fundamental assumption. Therefore, some might argue that we
should include the code size of �-�/. * �+02143 , which we believe
that although in this case we omit this this is a fair comparison.

TABLE V

EXPERIMENTAL RESULTS

Lines of Codes body library total
Ours (lines) 127 - 127
PNL (lines) 500 2400 2900

datasets / speed # sam-
ples

dim comb
-ined
(ours)
[s]

orig
(PNL)
[s]

alarm 10000 37 17 1
ionosphere 352 507 35 4
heart scale 270 13 1 0.2
breast cancer 699 10 1 0.2
iris 150 4 0.4 0.1
usps 2007 256 396 20
australian 690 15 2 0.4
dna 2000 180 185 10
diabetes 768 9 1 0.2
shuttle 43500 10 49 8
vehicle 846 9 56 0.5�������	� G�
�
�
�
 10000 784 107 15

datasets / accu-
racy

comb
-ined
(ours)
[s]

orig
(PNL)
[s]

alarm 83.4 89.0
ionosphere 87.3 87.0
heart scale 86.2 84.2
breast cancer 95.0 92.0
iris 93.0 92.0
usps 91.0 93.3
australian 85.2 82.9
dna 80.0 83.3
diabetes 82.0 78.2
shuttle 79.9 82.4
vehicle 74.2 79.5�������	� G�
�
�
�
 84.0 86.2

Finally we consider the overall bounds. As arbitrary classifi-
cation problems are independent, an arbitrary merge algorithm
is an ‘OR combination’ of these results in this case. Individual
bounds of SVMs are

� � f �#U cn[�#< �%��� �
'�� f � *$ N��� $�� �

'�� f � ��� ��� � � ���
� "! � �$#&% � �� '

from [15]. Hence using union bounds the overall bounds
become� � �aU Wn �a< � �'� � �� * � � f��#U Wn[�#< �%�

� � ��� * � �'�� f � *$ N�(� $�� �
'�� f � ��� ��� � � �)�

� *! � �+#,% � �� ' � �
We can calculate this figure. It is noted that as the number of
solvers grows, the bounds become very loose, which is one of

the demerits of a reduction approach.

VI. CONCLUSION

The contribution of this paper is to construct a formal mod-
eling language for a developer who write solvers in machine
learning. The syntax and semantics of this formal modeling
language are shown in Tables. We implement the interesting
aspects in this formal language, which we named the inductive
inference programming paradigm, such as training / test phase
separation, decomposition semantics, and separation of an
algorithm and input / output. Then we show three rewriting
examples. These examples show that for a given new problem
we might be able to rewrite a wide range of new problems into
easier problems, such as classification problems. Therefore
this reduction approach enables us to do a fast prototyping
of algorithms for a new problem.

This reduction approach has several merits. Firstly, once
we represent our problem by our modeling language, we can
obtain a fast-prototyping solver, based on the simple solvers
such as classification and boosting. However, this approach
might not achieve an efficiency in terms of speed. Secondly,
when we apply this method to statistical learning algorithms,
we can easily guarantee the reliability of the results by the
overall bounds. Then we can combine individual bounds
of these solvers into overall bounds, which enables us to
guarantee the overall reliability.

We implemented this reduction approach and did the experi-
ments, which is shown in the overall example. We checked that
our approach is far easier to implement without degradating its
accuracies although it has demerit in the speed of execution.
As is shown in the paper the result of rewriting boils down
to the combination of easy algorithms in statistical learning,
such as classification and boosting. Hence we can combine
individual bounds of classification and boosting into overall
bounds, which enables us to guarantee the overall reliability.

REFERENCES

[1] Abe, N., Zadrozny, B., and Langford, J. (2004). An Iterative Method for
Multi-Class Cost-Sensitive Learning. KDD ’04.

[2] Allison, L. (2003). Types and Classes of Machine Learning and
Data Mining. Twenty-Six Australasian Computer Science Conference
(ACSC2003), pp.207-215, Australia.

[3] Bartlett, P. L., Collins, M., McAllester, D., and Taskar, B. (2004). Large
margin methods for structured classification: Exponentiated Gradient
algorithms and PAC-Bayesian generalization bounds. NIPS Conference.

[4] Cristianini, N., Shawe-Taylor, J. (2000). Introduction to Support Vector
Machines. Cambridge University Press.

[5] Dietterich, T.G., and Bakiri, G. (1995). Solving Multiclass Learning Prob-
lems via Error-Correcting Output Codes. Journal of Artificial Intelligence
Research, 2:263-286.

[6] Jaakkola, T. (2000) Tutorial on Variational Approximation Method. In
Advanced Mean Field Methods: Theory and Practice, MIT Press.

[7] Lafferty, J., McCallum, A., Pereira, F. (2001). Conditional Random
Fields: Probabilistic Models for Segmenting and Labeling Sequence Data.
International Conference on Machine Learning (ICML).

[8] Langford, J., Beygelzimer, A. (2002). Sensitive Error Correcting Output
Codes.

[9] Lagoudakis, M.G.,Parr, R.(2003). Reinforcement Learning as Classi-
fication: Leveraging Modern Classifiers. Proceedings of the Twentieth
International Conference on Machine Learning (ICML-2003).

[10] Mitchell, T. (1997). Machine Learning. McGraw Hills.
[11] Okita, T., Manderick, B. (2003). Distributed Learning in Support Vector

Machines (poster), Conference On Learning Theory and Kernel Machines,
Washington.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2245

[12] Pednault, E., Abe, N., and Zadrozny, B. (2002). Sequential Cost-
Sensitive Decision Making with Reinforcement Learning. SIGKDD ’02.

[13] Rabiner, L. R. (1989) A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition. Proceedings of the IEEE, VOL. 77,
No. 2, February 1989.

[14] Scholkopf, B., Williamson, R.C., Smola, A.J., Shawe-Taylor, J. (2000).
Support Vector Method for Novelty Detection. In Neural Information
Processing Systems.

[15] Shawe-Taylor, J., Cristianini, N. (2004). Kernel Methods for Pattern
Analysis. Cambridge University Press.

[16] Zadrozny, B. (2001). Reducing Multiclass to Binary by Coupling
Probability Estimates. In Neural Information Processing Systems.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2246

TABLE VI

TABLE SHOWS AN EMPIRICAL STUDY OF VARIOUS INDUCTIVE INFERENCE PROBLEMS IN MACHINE LEARNING: 1. MCMC, IMPORTANCE SAMPLING. 2.

SPECTRAL CLUSTERING, 1-CLASS CLASSIFICATION, GAUSSIAN MIXTURE. 3. LEARNING BAYESIAN NETWORKS FROM DATA. 4. SEMI-SUPERVISED

LEARNING. 5. SVM, BOOSTING, GAUSSIAN PROCESS. 6.
���

-HMM, STRUCTURED CLASSIFICATION. 7. CRF. 8. BI-GRAM. 9. VITERBI. 10.

REINFORCEMENT LEARNING. 11. CO-TRAINING. 12. [STEREOPSIS, LEARNING FUNDAMENTAL MATRIX]. 13. [STATISTICAL MACHINE TRANSLATION].

14. [MEDICAL IMAGE REGISTRATION]. 15. TEXTURE PERCEPTION. 16. FACE RECOGNITION

problems Aim (inductive inference) indepen-
dence

correspon-
dences

1-view problems

1 sampling � D ((/) PP (��
-

2 clustering I � D ((/) PP (��
-

3 structure discovery
; � + � - I ; � + � - D (130 (:+ � - 4aQQFR -

4 semi-supervised learning jI 0 � G O ��J 4 D 050 (G�I � 4 O 0 (J 454 (*) PP (��
-

5 classification I � D (I � () PP (��
-

6 structured classification I � D . 0 (I � 4 130 ([+) - 4aQQLR
-

7 sequential prediction
. 0 jI � 4 D . 0 (I � 4 130 ()54aQQ R

-
8 sequential prediction

. 0 jI � 4 D . 0 (I � 4 130 ()54aQQ J -
9 path selection

0 .�� f��	� �)a4 I 0�
H0 �)54&6 �j4 D.� f�� � �) I 0�� 0 (/)54&6 894 130 (/)54aQQ R
-

10 path selection
0 . � f��	� �)a4 I 0�
H0 �)54&6 �j4 D 0�� O.� f � � �)a4 I 0�� 0 (/)5476 894 130 (/)54aQQ R

-

2-view problems

11 co-training I 0a0 � G � ��J 4 O � � 4 D 050 (G �a(J I � 4 O (� 4 (*) PP (�� (G�� (J
12 disparity � I � G � ��J�D (G �5(J I � (*) PP (�� (G�� � (J
13 matching search � G I ��J ������� ����� D (G �a(J I � ��� ����� (*) PP (�� (G�� � (J
14 registration

� I � G � � J D (G �a(J (*) PP (�� (G � � (J
hiearchical problems

15 texture perception
0a0! I "7C � ��� �#� 4 O 0 "7C � I � G 4 O 0 � �$� I ��J 4a4 D0a0 (G�I E9C � 4 O 0 (J I ���#� 4 O 0 E C � � ���#� I �K4a4 (*) PP (�� E C � � � ���$�

16 cascade classification
0a0 � I % �'& �)(4 O 0 %�I � G 4 O 0 & I ��J 4 O 0 (I � � 4a4D 0a0 (G I * 4 O 0 (J I � 4 O 0 (� I ��4 O0 *.	% � �+�,� % � �-��� /. I 0 C � % 4a4

(*) PP (�� *.1%
� � ��2� %�+�,� %
� � �-��� /.�-�3� /.
� �4*.1%

distributed problems

17 distributed classification jI � G � ��JWD 050 I � GcD (G�I � 4 O 0 I ��JWD(J I � 4a4 (*) PP (�� (G�� (J

