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Abstract—In this paper we present modeling and simulation for 

physical vapor deposition for metallic bipolar plates. In the models 

we discuss the application of different models to simulate the 

transport of chemical reactions of the gas species in the gas chamber. 

The so called sputter process is an extremely sensitive process to 

deposit thin layers to metallic plates. We have taken into account 

lower order models to obtain first results with respect to the gas 

fluxes and the kinetics in the chamber. 

The model equations can be treated analytically in some 

circumstances and complicated multi-dimensional models are solved 

numerically with a software-package (UG unstructed grids, see [1]). 

Because of multi-scaling and multi-physical behavior of the models, 

we discuss adapted schemes to solve more accurate in the different 

domains and scales. The results are discussed with physical 

experiments to give a valid model for the assumed growth of thin 

layers. 

Keywords—Convection-diffusion equations, multi-scale 

problem, physical vapor deposition, reaction equations, 

splitting methods. 
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I. INTRODUCTION 

E motivate our studying on simulating a thin film 

deposition process that can be done with PVD (physical 

vapor deposition) processes. In the last years the 

research on producing thin films to metallic plates has been 

increased. Novel deposition methods are low temperature and 

low pressure processes, that can be controlled by an 

underlying plasma, see [3], [2]. The interests on standard 

applications to TiN and TiC are immense but recently also 

deposition processes with new material classes known as 

MAX-phases are important. The MAX-phase are nanolayered 

terniar metal-carbides or -nitrids, where M is a transition metal, 

A is an A-group element (e.g. Al, Ga, In, Si, etc.) and X is C 

(carbon) or N (nitrogen). Such materials with nanolayed 

MAX-phase films can be used in the production of metallic 

bipolar plates, where the new thin film is at least noncorrosive 

and a metallic conductor. 

We present models, that can be used to control flow and 

transport of gaseous species to the deposition layer, see [2] 

and [21]. 

We deal with a continuous flow model, while we assume a 

vacuum and diffusion dominated process. Such models can be 

solved with convection-diffusion equations. Further, we deal 

with kinetic models to understand the material fluxes in the 

PVD processes, see [3]. 

To solve the model equations we use analytical as also 

numerical methods to be as efficient as possible in the solver 

process, see [13]. 

To be precise, for numerical methods, we apply finite volume 

discretizations for the spatial terms and the backward Euler 

method or the Crank-Nicolson method for the time 

discretization. 

To couple analytical and numerical solvers we apply 

operator splitting methods as effective coupling schemes. 

Such splitting methods can be seen as microscopic decoupling 

schemes to understand complicate mixed physical effects, e.g. 

flux streams of the species, reactions between the species and 

retardation processes. This can be helped to discuss each 

dominant physical effect in a separate decoupled model, see 

[14]. 

The paper is outlined as follows: 

In section 2 we present our mathematical model and a 

possible reduced model for the further approximations. To 

solve our model equations we apply various analytical and 

numerical methods, which are presented in section 3. The 

decomposition methods to separate the singular and non-

singular reaction systems are explained in section 4. The 

numerical experiments are given in section 5. In the contents, 

that are given in section 6, we summarize our results. 

II. MATHEMATICAL MODEL 

In the following the models are discussed in two directions 

of far field and near field problems: 

1. Reaction-diffusion equations, see [15] (far-field problem); 

2. Boltzmann-Lattice equations, see [21] (near-field 

problem). 

The modeling is considered by the Knudsen Number (Kn), 

which is the ratio of the mean free path over the typical 

domain size L. For small Knudsen Numbers Kn  0.01 1.0, 

we deal with a Navier-Stokes equation or with the convection-

diffusion equation, see [16] and [18], whereas for large 

Knudsen Numbers Kn  1.0, we deal with a Boltzmann 

equation, see [19]. 

A. Model for Small Knudsen Numbers (Far Field Model) 

When gas transport is physically more complex because of 

combined flows in three dimensions, the fundamental 

equations of fluid dynamics become the starting point of the 

analysis. For our models with small Knudsen numbers we can 

assume a continuum flow and the fluid equations can be 

treated with a Navier-Stokes or especially with a convection-

diffusion equation. 

Three basic equations describe the conservation of mass, 

momentum and energy, that are sufficient to describe the gas 

transport in the reactors, see [19]: 

W
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1. Continuity: The conservation of mass requires that the net 

rate of the mass accumulation in a region is equal to the 

difference between the inflow and outflow rate. 

2. Navier-Stokes: Momentum conservation requires that the 

net rate of momentum accumulation in a region is equal to 

the difference between the in and out rate of the 

momentum plus the sum of the forces acting on the 

system. 

3. Energy: The rate of accumulation of internal and kinetic 

energy in a region is equal to the net rate of internal and 

kinetic energy in by convection plus the net rate of heat 

flow by conduction, minus the rate of work done by the 

fluid. 

We will concentrate on the conservation of mass and 

assume that the energy and momentum is conserved, see [15]. 

Therefore the continuum flow can be described as convection-

diffusion equation given as: 

0,  in 0, ,gc F R T
t

 (1) 

,F D c

0, ,  on ,c x t c x  (2) 

1, , ,  on 0, ,c x t c x t T   (3) 

where c is the molar concentration and F the flux of the 

species. D is the diffusivity matrix and gR is the reaction term. 

The initial value is given as 0c  and we assume a Dirichlet 

Boundary with the function 1 ,c x t sufficient smooth. 

III. DISCRETIZATION METHODS 

In this section, we deal with the discretisation methods that 

we use to discretize ODE and PDE systems. 

A. Analytical Solution to the systems of ordinay differential 

equations of first order 

The following ODE system is given : 

dc
A c t b t

dt
 (4) 

We assume the matrix A is constant and non-singular. Further 

we assume that b t is a smooth function of t. 

For the solution we obtain the method of integrating factor and 

a transformation to eigenvalues. 

We have  

homo ,pc t c t c t  (5) 

where
0 0.c t t c

For the homogeneous part we have: 

homo 0
exp ,cc t W t t c  (6) 

where 1

0cc W c and

0
exp t t

1 0

2 0

0

exp 0 0

0 exp 0

0 0 0

0 0 exp n

t t

t t

t t

 (7) 

For the inhomogeneous part we have: 

exp ,p cc t W t u t  (8) 

where
0

1
1exp

t

c
t

u t t W b t dt and the integration 

can be done approximately with an numerical integration 

method, e.g. [22]. 

We obtain the solution : 
1

0 0
exp exp ,c c cc t W t t W c W t u t  (9) 

where 0c is the initial condition. 

Remark 1. The solution can be used if we have non-singular 

matrices, or if the reactants have a successor. Otherwise we 

obtain fast numerical solvers. 

B. Numerical Methods to ODEs 

Here we introdue our numerical methods, which we apply 

to solve the underlying ODEs for their singular reaction matrix 

with det 0A .

We apply the following methods: 

We use the implicit trapezoidal rule 

0   

1
1

2

1

2

1

2

1

2

(10) 

Further we use the following implicit Runge-Kutta methods: 

Lobatto IIIA  

0 0 0 0 

1

2

5

24

1

3

1

24

1
1

6

2

3

1

6

1

6

2

3

1

6

(11) 

Remark 2. We can also apply integration methods for the right 

hand side. 

C. Numerical Methods to the PDEs 

We consider the numerical treatment of the advection 

equation takes the form 

0,  , 0, ,tR u vu t x T  (12) 

10, 0, ,  x ,u x U x  (13) 

Dirich

2, , ,  , 0, ,u t x U t x t x T  (14) 
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The initial conditions are given by 0,U x and ,U t is

explicitly given for 0t at the inflow boundary ,in

where : ,  n v<0 .in x We have Dirichin .

The exact solution of (12) can be defined directly using the so 

called “forward tracking” form of characteristics curves. If the 

solution of (12) is known for some time point 0 0t and for 

some point iny , then u remains constant 

for 0t t along the characteristic curve 

X X t i.e.,
0

, ,u t X t u t y and

0

0; , .

t

t

v X s
X t X t t y y ds

R X s X s
 (15) 

The characteristic curve X t starts at time 0t t in the point ,y

i.e. 0 0; , ,X t t y y and it is tracked forward in time for 0.t t

Of course, one can obtain that ,X t i.e. the characteristic 

curve can leave the domain through out .

Consequently, one has that
0 0

, ; , , ,u t X t t y U t y where 

the function 0,U y is given for 0 0t and y by initial 

conditions (12) and for 0 0t and iny by the inflow 

boundary conditions (12). The solution ,u t x of (12) can be 

expressed also in a “backward tracking” form that is more 

suitable for a direct formulation of discretization schemes. 

Concretely, for any characteristic curve X X t

; ,X t s Y that is defined in a forward manner, i.e. 

; ,X s s Y Y and t s , one obtains the curve 

; ,Y Y s Y s t x , which is defined in a backward manner, 

i.e. ; ,Y t t X X and s t . If we express Y as function of 0t

for 0t t , one obtains from (15) 

0

0 0; ,

t

t

v X s
Y t Y t t x x ds

R X s X s
 (16) 

and one has 0 0, , .u t x u t Y t

To simplify our treatment of inflow boundary conditions, 

we suppose that 1/2, constnU t U for in  and 

1

0 , .n nt t t  Moreover, we define formally for any in

and 1

0 ,n nt t t that for 0.
nt s t

In [12], the so called “flux-based (modified) method of 

characteristics” was described that can be viewed as an 

extension of standard finite volume methods (FVMs). The 

standard FVM for differential equation (12) takes the form 
1

1 , ,

n

n
jk

t

n n

j j j j j j j j j

k t

R u R u n v u t d dt

(17) 

The idea of flux-based method of characteristics is to apply 

the substitution , , ; ,n nu t u t Y t t in (17). 

Particularly, for the integration variable 1,n nt t t and for 

each point out ,j the characteristic curvesY s are tracked 

backward starting in at s t and finishing in .ns t One must 

reach a point nY Y t such that inY orY . In the first 

case ,nu t Y is given by the inflow concentration 

, ,n nU t Y U in the latter one by , .nu t Y

The integral in right hand side of (17) can be solved exactly 

for the one dimensional case with general initial and boundary 

conditions, see e.g. [20]. For general 2D or 3D case, a 

numerical approximation of 0 0, ,u t Y t respectively of 

0 ,Y t shall be used. 

IV. SPLITING METHODS 

In the following splitting methods of first order are 

described. We consider the following ordinary linear 

differential equations: 

,tc t A c t B c t  (18) 

where the initial conditions are given as .n nc c t The 

operators A and B are assumed to be bounded linear operators 

in the Banach space X with , : .A B X X In applications the 

operators correspond to the physical operators, e.g. the 

convection- and the diffusion-operator. 

The operator-splitting method is introduced as a method 

which solves two equation parts sequentially, with respect to 

initial conditions. The method is given as following 
*

* *,  with n nc t
A c t c t c

t
 (19) 

**

** ** * 1,  with ,n nc t
B c t c t c t

t

where the time-step is given as 1 .n n nt t The solution of 

the equation (18) is 1 ** 1 .n nc c t

The splitting-error of the method is derived with Taylor-

expansion, cf. [10]. 

We obtain the global error as 

1
exp exp expn n n n

n A B B A c t

21
, ,

2

n n nA B c t O  (20) 

where ,A B AB BA is the commutator of A and .B We get 

an error nO t if the operators A and B do not commute, 

otherwise the method is exact. 

A. Splitting with respect to the numerical and analytical 

methods

Here we present a splitting method with respect to the 

numerical and analytical methods for the differential equations. 

Often an analytical method can be used to solve more efficient 

parts of the full equation system, see [10]. The other parts can 

be solved more efficiently by numerical methods. 
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In our following example we split a system of ODEs with 

respect to an analytical method (transformation to an 

eigenvalue problem) and a numerical method (Trapeziodal 

rule). 

We deal with the following system of ODEs: 

,
dc

M c
dt

 (21) 

00 ,c c  (22) 

where 1, ,
t

nc c c c is the solution vector of the ODE system. 

The reaction matrix M is given as: 

1 2 ,M M M  (23) 

where M is the full matrix of the ODE system and 1M is the 

part of the analytical method, where 2M is the part of the 

numerical method. 

So 1det 0M and 1det 0,M which means for the 1M

matrix we can obtain a transformation to an eigenvalue 

equation, where for 2M we can not use the transformation to an 

eigenvalue problem and apply the numerical methods. 

Our algorithm is given as: 

Algorithm 1  

1.) Split the reaction matrix :M 1 :M Matrix with non zero 

eigenvalues, 2 :M Matrix with zero eigenvalues 

2.) Compute the equation part 

1
,

dc
M c

dt
 (24) 

00c c  (25) 

with the analytical method, see section 3. 

3.) Compute the equation part 

2 ,
dc

M c
dt

 (26) 

00c c  (27) 

with the numerical method, see section 3. 

4.) The result is given as: , .c c c

V. EXPERIMENT FOR THE SPUTTER PROCESS 

In the following section we present the various sputter 

processes and discuss the numerical experiments. 

A. Sputter Reactions 

In the following experiments we discuss the reaction 

models of the sputter process. 

i) Experiment 1: High Energy Level  

In this model one assumes a high energy level for the 

sputtering process, based on the work of [3]. 

We deal with the following reaction scheme: 
0.95 0.095

0.05 0.005 0.05        

tot BA

surface

c c c

c

The initial conditions are given with ,0 1.0,totc

,0 ,0 surface,0 0A Bc c c and we can deal with the following 

reaction equations: 

,tot
tot

dc
c

dt
 (28) 

0.95 0.1 ,A
tot A

dc
c c

dt
 (29) 

0.095 0.05 ,B
A B

dc
c c

dt
 (30) 

surface 0.05 0.005 0.05 ,
tot A B

dc
c c c

dt
 (31) 

where the total particle density is given as ,totc the single 

particles are given as Ac and Bc and the surface particle density 

is given as surface.c

As a result of the computation we show the Fig. 1. 

Additionally we present the hysteresis of Ac and surfacec in Fig. 2. 

Remark 3. The model can be used to have an overview to 

horizontal gas flows across the thin layer. We can compute the 

growth rate depending on the amount of the velocity and 

diffusion. The simulations are done with Maple and 

Mathematica. 

ii) Experiment 2: Low Energy Sputtering  

In the next experiment we deal with a lower energy level 

and assume the resting of the molecules to a later time at the 

target layer. For the low energy sputtering we assume a 

reaction scheme given in [3]: 
0.9

1

0.58 0.4

0.42 0.95 0.6
2 30.05

             u    

                   

surface

tot lost
u

u

u u u

The initial conditions are given with ,0 1.0totu  and 

1,0 2,0 3,0 surface,0 lost ,0 0u u u u u and we can deal with the 

following reaction equations: 

2
0.05 ,tot

tot

du
u u

dt
 (32) 

1
1

0.58 0.9 ,
tot

du
u u

dt
 (33) 

2
20.42 ,tot

du
u u

dt
 (34) 

3
2 3

0.95 ,
du

u u
dt

 (35) 

surface
1 3

0.9 0.4 ,
du

u u
dt

 (36) 

lost
30.6 .

du
u

dt
 (37) 

As a result of the computation we get the graphs shown in Fig. 

3. We present the hysteresis of 1u and 3u in Fig. 4. 
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iii) Experiment 3: Energy level with precursor gas or offsets  

In this model one assumes an energy level and a precursor 

gas for the sputtering process, based on the work of [3]. 

In this experiment we deal with the following reaction: 
0.10.001 0.01

1 2 0.002
c c

The initial conditions are given with 1,0 2,01.0,  0.1c c and we 

deal with the following reaction equations: 

1
1

0.01 0.001,
dc

c
dt

 (38) 

2
1 2

0.01 0.1 0.001.
dc

c c
dt

 (39) 

As a result of the computation we get the graphs shown in the 

Fig. 5 and 6. 

By changing the reaction coefficients we get the following 

reaction:
0.80.02 0.5

1 2 0.01
c c

The initial conditions are given with 1,0 2,01.0,  0.1c c and we 

get the following reaction equations: 

1
10.5 0.02,

dc
c

dt
 (40) 

2
1 2

0.5 0.8 0.02.
dc

c c
dt

 (41) 

As a result of the computation we get the graphs shown in Fig. 

7.

Remark 4. In the model we assume a homogeneous and 

inhomogeneous reaction. Because of the small offset of the 

inhomogeneous reaction, we nearly obtain the same results. 

iv) Experiment 4: Energy level with precursor gas and 

linear offsets 

In this model one assumes an energy level and a precursor 

gas for the sputtering process, based on the work of [3]. Here 

we have a linear offset for the precursorn gases. 

We can also analyze a variation of this reaction where we have 

an time dependent inhomogenous part. The reaction is then 

given with: 
0.10.001 0.01

1 2 0.002

t

t
c c

The initial conditions are given with 1,0 2,01.0,  0.1c c and we 

can deal with the following reaction equations: 

1
10.01 0.001 ,

dc
c t

dt
 (42) 

2
1 2

0.01 0.1 0.002 .
dc

c c t
dt

 (43) 

As a result of the computation we get the graphs shown in Fig. 

8.

Remark 5. In the model we assume a homogeneous and 

inhomogeneous reaction. Because of the small offset of the 

inhomogeneous reaction, we nearly obtain the same results. 

B. Reactive Sputtering Process 

A simple model of reactive sputtering given by [?] can 

describe the understanding of the hysteresis and other 

properties of the reactive sputtering deposition. 

We have the following equations:  

target target target target
1

t r r i c
n i s

substrate ,  t 0, ,i m T  (44) 

subsrate substrate substrate target
1 t

t r r i c

s

A
n i s

A

substrate
,  t 0, ,t

i m

s

A
T

A
 (45) 

target substrate1 1 ,t r r r t sN s A A  (46) 

substrate target
,

sput i m c
 (47) 

where
target

and substrate are the fraction of the target and 

substrate areas, which is covered by the compound 

film. m and c are the yields for sputtering the metal and the 

compound from the target. 

We have i and r the incident ion and reactive gas 

molecule fluxes. rs is the sticking coefficient of a reactive 

molecule on the metal part of the target. Further tA and sA are

the target and the substrate areas. The total number of reactive 

gas molecules per second that are consumed to form the 

compound deposited on the substrate is .rN The target 

sputtering flux is sput

For our experiments we use the following parameters, while 

we variate the parameters ,  ,  .r r i i ms c

1,

1,

0.25,

0.75,

t s

t

s

n n

i

A

A

where the starting conditions are given with target ,0 1.0 and

substrate,0 0.1.

i) First Experiment:  

In our first experiment the variable parameters are given 

with:

0.1,

0.07,

0.05.

r r

i c

i m

s

We get the following simplified system of ODEs: 

target target substrate0.17 0.05 0.1,t  (48) 

substrate target substrate

0.07 0.35
0.1,

3 3
t  (49) 

target substrate0.025 0.075 0.1,t rN  (50) 

sput target substrate0.07 0.05 ,  t 0, .T  (51) 

For the solving of the equations we apply the eigenvalue 

transformation. For solving the coupled equations we apply 

our algorithm 1. 
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We present the hysteresises of target with substrate , t rN with

sput and rN with sput in the Fig. 9, 10 and 11.  

ii) Second Experiment:  

In our second experiment the variable parameters are given 

with:

0.05,

0.02,

0.1.

r r

i c

i m

s

We get the following simplified system of ODEs: 

target target substrate0.07 0.1 0.05,t  (52) 

substrate target substrate

0.02 0.35
0.05,

3 3
t  (53) 

target substrate0.0125 0.0375 0.05,t rN  (54) 

sput target substrate0.02 0.1 ,  t 0, .T  (55) 

For the solving of the equations we apply the eigenvalue 

transformation. For solving the coupled equations we apply 

our algorithm 1. 

We present the hysteresises of target with substrate , t rN with

sput and rN with sput in the Fig. 12, 13 and 14. 

iii) Third Experiment:  

In our third experiment the variable parameters are given 

with:

0.05,

0.1,

0.02.

r r

i c

i m

s

We get the following simplified system of ODEs: 

target target substrate0.15 0.02 0.05,t  (56) 

substrate target substrate

0.1 0.17
0.05,

3 3
t  (57) 

target substrate0.0125 0.0375 0.05,t rN  (58) 

sput target substrate0.1 0.02 ,  t 0, .T  (59) 

For the solving of the equations we apply the eigenvalue 

transformation. For solving the coupled equations we apply 

our algorithm 1. 

We present the hysteresises of target with substrate , t rN with 

sput and rN with sput in the Fig. 15, 16 and 17. 

VI. CONCLUSIONS AND DISCUSSIONS 

We present a continuous model, due to a far and near field 

idea for a flow field in a PVD apparatus. Based on different 

models we can predict the flow of the reacting chemicals on 

the different scales of the chemical reactor. For the 

mesoscopic scale model we discuss the discretization and 

solver methods. We contribute a coupling algorithm to mix 

analytical and numerical solutions in our models. Such 

schemes have benefits in computations and improve the 

accuracy.

Numerical examples are presented to discuss the influence 

of near-continuum regime at the thin film. The modeling of 

various inflow sources can describe the growth of the thin-film 

at the wafer. In future, we will analyze the validity of the 

models with physical experiments. 

Fig. 1 1D Experiment of the heavy particle transport. 

green: ctot, red: cA, blue: cB, magenta: csurface

Fig. 2 Hysteresis of the concentrations ca and csurface

Fig. 3 1D Experiment of the heavy particle transport. 

green: utot, red: u1, blue: u2, magenta: usurface, black: ulost

Fig. 4 Hysteresis of the concentrations u1 and u3
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Fig. 5 1D Experiment of the heavy particle transport.  

green: c1, red: c2

Fig. 6 1D Experiment of the heavy particle transport.  

green: c1, red: c2

Fig. 7 1D Experiment of the heavy particle transport. 

green: c1, red: c2

Fig. 8 1D experiment of the heavy particle transport. 

green: c1, red: c2

Fig. 9 First experiment: hysteresis of
target

(c1) with substrate (c2)

Fig. 10 First xperiment: hysteresis of t rN (c1) with sput (c2)

Fig. 11 First experiment: hysteresis of rN (c1) with sput  (c2)
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Fig. 12 Second experiment: hysteresis of
target

 (c1) with substrate  (c2)

Fig. 13 Second experiment: hysteresis of t rN  (c1) with sput  (c2)

Fig. 14 Second experiment: hysteresis of rN  (c1) with sput  (c2)

Fig. 15 Third experiment: hysteresis of target  (c1) with substrate  (c2)

Fig. 16 Third experiment: hysteresis of t rN  (c1) with sput  (c2)

Fig. 17 Third experiment: hysteresis of rN  (c1) with sput  (c2)
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