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Abstract—Active vibration control is an important problem in 

structures. The objective of active vibration control is to reduce the 

vibrations of a system by automatic modification of the system’s 

structural response. In this paper, the modeling and design of a fast 

output sampling feedback controller for a smart flexible beam system 

embedded with shear sensors and actuators for SISO system using 

Timoshenko beam theory is proposed.  FEM theory, Timoshenko 

beam theory and the state space techniques are used to model the 

aluminum cantilever beam. For the SISO case, the beam is divided 

into 5 finite elements and the control actuator is placed at finite 

element position 1, whereas the sensor is varied from position 2 to 5, 

i.e., from the nearby fixed end to the free end. Controllers are 

designed using FOS method and the performance of the designed 

FOS controller is evaluated for vibration control for 4 SISO models 

of the same plant. The effect of placing the sensor at different 

locations on the beam is observed and the performance of the 

controller is evaluated for vibration control. Some of the limitations 

of the Euler-Bernoulli theory such as the neglection of shear and 

axial displacement are being considered here, thus giving rise to an 

accurate beam model.  Embedded shear sensors and actuators have 

been considered in this paper instead of the surface mounted sensors 

and actuators for vibration suppression because of lot of advantages. 

In controlling the vibration modes, the first three dominant modes of 

vibration of the system are considered. 

Keywords—Smart structure, Timoshenko beam theory, Fast 

output sampling feedback control, Finite Element Method, State 

space model, SISO, Vibration control, LMI.

I. INTRODUCTION 

N recent years, smart materials for vibration control of 

structures have attracted much attention in the field of 

vibration control and considerable effort has been focused 

on the development of smart materials and structures.   These 
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structures have the ability to adapt to their environments 

through shape or material property modifications using 

piezoelectric sensors and actuators. Smart materials such as 

Piezoelectrics, MR Fluids, Piezoceramics, ER Fluids, Shape 

Memory Alloys, PVDF, make the structure intelligent, smart 

and self-adapting. The application of this technology is 

numerous and they include vibration control in aircrafts, 

active noise and shape control, acoustic control, control of 

antennas, control of space structures and in the control of 

flexible manipulators.  Beams are subjected to vibrations 

when external forces act upon them as shown in Fig. 1 and 

they have to be controlled.  The smart materials embedded 

inside the structure generate another response, which in turn 

interacts with the original response of the system, thereby 

reducing the vibrations using destructive interference.  

Fig. 1  A flexible sandwiched Timoshenko beam with embedded 

shear sensor and actuator with disturbing force applied at free end 

A large number of applications of piezoelectric actuators 

and sensors have been proposed and demonstrated for 

vibration suppression in recent years. The early studies are 

mostly focused on surface glued piezoceramics which has 

some disadvantages such as difficulties to protect the ceramics 

and the connection wires, bad coupling with only on surface 

glued on the base materials, low-signal-to-noise ratio, e.t.c.,. 

These problems can be solved with the embedded 

piezoceramics. This paper deals with the active vibration 

control using embedded piezoelectrics as both actuators and 

sensors. The greatest advantage provided by the adaptive 

sandwich beam with embedded shear sensors / actuators is, 

the sensors and actuators being protected from the external 

environment. Since piezo-ceramics are very brittle, high 

stresses are detrimental to the structural integrity of the 

actuator.

Long-term usage of the actuator can be ensured if stresses 

in the actuator are low. For the sandwich structure, the 

actuator sustains the lowest bending stress level within the 
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structure because the piezoelectric core is located near the 

neutral plane of the beam. For the surface mounted actuation 

beam, the piezoelectric actuators bear the largest bending 

stress level in the structure since the actuators are located at 

the farthest locations from the neutral plane and the fault 

occurs at the piezo-patches.

Numerous identification and control techniques have been 

proposed for active vibration suppression of smart flexible 

structures by various researchers.  Some of the various 

methods used for active vibration control in systems are the 

Periodic Output Feedback (POF) control [23], sliding mode 

control (continuous, discrete, higher order), 2H and

∞H control, Fast Output Sampling  (FOS) feedback control 

[20] [21] [25], independent modal space control method, 

modified independent modal space control method, positive 

position feedback control and the PID control.  

In this paper, a flexible aluminum cantilever beam of 

suitable dimensions is considered. The beam is divided into 5 

finite elements and shear PZT’s are embedded into the master 

structure. The actuator is sandwiched in between the 2 

aluminum beam layers at finite element position 1 and the 

sensor is moved from 2nd position to the 5th position, thus 

giving rise to 4 SISO models of the same plant. These models  

are obtained using the theory of piezoelectric bonding, the 

Timoshenko beam theory, FEM technique and the state space 

techniques by considering the first 3 dominant vibratory 

modes 1ω , 2ω  and 3ω  [26], [27], [33].  An external force 

input extf  is applied at the free end of the beam for all the 4 

models of the plant. There are two inputs to the plant. One is 

the external force input extf , which is taken as a load matrix 

of 1 unit in the simulation. The other input is the control input 

u  to the actuator from the controller. 

The paper is presented in the following sequence. A brief 

review of related literature about the types of beam models 

and embedded shear actuation is given in section 2. Section 3 

gives a brief introduction to the modeling technique (finite 

element model, sensor and actuator model, state space model) 

of the smart flexible cantilever beam using Timoshenko beam 

theory. A brief review of the controlling technique, viz., the 

fast output sampling feedback control technique and the 

design of the proposed controller to control the first three 

dominant modes of vibration of the system for different 

embedded sensor locations along the length of the beam for 

the various SISO models of the same plant is discussed in 

Section 4. The control simulation results and discussions are 

presented in Section 5.  Section 6 concludes the paper with 

conclusions. 

II. A BRIEF REVIEW OF BEAM MODELS

The study of physical systems such as beams frequently 

results in partial differential equations, which either cannot be 

solved analytically, or lack an exact analytic solution due to 

the complexity of the boundary conditions. For a realistic and 

detailed study, a numerical method must be used to solve the 

problem. The finite element method [35] is often found the 

most adequate. Over the years, with the development of 

modern computers, the finite element method [35] has become 

one of the most important analysis tools in engineering. 

Basically, the finite element method consists of a piecewise 

application of classical variational methods to smaller and 

simpler sub domains called finite elements connected to each 

other in a finite number of points called nodes. A precise 

mathematical model is required for the controller design for 

vibration control to predict the structure’s response. Two 

beam models in common use in the structural mechanics are 

the Euler-Bernoulli beam model and the Timoshenko beam 

model, which are considered here below. 

A. Euler-Bernoulli Model 

In this model [2] [3] [5] [10], bending effects on stresses, 

moments and deformations are considered.  The effect of 

shear, axial displacement is neglected as a result of which 

accurate model of the system is not available for sophisticated 

control. The assumption that we make while developing this 

model is that the cross sections of the beams remain plane and 

normal to the deformed longitudinal axis before and after 

bending as shown in Fig. 2. The total rotation θ  is due to 

bending stress alone neglecting transverse shear stress. This 

rotation occurs about a neutral axis that passes through the 

centroid of the cross section. Euler-Bernoulli beam theory 

gives inaccurate results for very higher modes of vibration 

because the shear forces and the axial displacements are 

neglected; therefore, a controller based on Euler Bernoulli 

Beam Theory will not perform satisfactorily in controlling  the 

higher modes of vibration of a structure. This assumption is 

valid if length to thickness ratio is large and for small 

deflection of beam. However, if length to thickness ratio is 

small, plane section before bending will not remain normal to 

the neutral axis after bending.  

Many researchers have extensively worked on the active 

vibration control of structures using the Euler-Bernoulli 

method. To mention a few, Crawley et.al. [2] have presented 

the analytical and experimental development of piezoelectric 

actuators as elements of intelligent structures. The difficulty 

in the smart structure FE model faced by the control system 

engineers and the advantage offered in structural mechanics 

point of view and the method to get a reduced order model can 

be seen in [11]. A number of experiments were performed by 

Fanson et.al. [34] with piezoelements using positive feedback. 

Yang and Lee [1] developed an analytical model for structural 

control optimization in which both the non-collocated sensor / 

actuator placement and feedback control gain were considered 

as independent variables. Continuous time and discrete time 

algorithms were proposed to control a thin piezoelectric 

structure in [4].

The concept of smart structures was presented in the survey 

paper by Culshaw [22] and Rao [6]. Smart structures and its 

numerous applications was presented by Baily and Hubbard 

[5].  Hwang and Park [10] presented a new FE modeling 

technique for flexible beams.  An effective vibration control 
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scheme using periodic output feedback technique was 

presented by Manjunath and Bandyopadhyay in [23]. The 

effect of failure of one of the actuators in a multivariable 

smart system and its control using the periodic output 

feedback control law was discussed in [24].  In [25], 

Manjunath and Bandyopadhyay presented the best model for 

the best location of the placement of sensor / actuator out of 

the different models for three types of systems. 

Current configuration Current

cross

section

� �Z( ) ( )X X�

u XY( )

X,x

Y,y

Motion

Reference configuration Reference

cross

section

u XX( )

X

Fig. 2 Euler-Bernoulli beam model 

B. Timoshenko model 

This model [8] [9] [12] - [15], [37] takes into account the 

axial displacement and the shear into consideration while 

developing the model for the structure and thus corrects the 

drawbacks and the assumptions made in Euler-Bernoulli 

model Theory.  The cross sections remain plane and rotate 

about the same neutral axis as the Euler-Bernoulli model, but 

do not remain normal to the deformed longitudinal axis as 

shown in Fig. 3. The deviation from normality is produced by 

a transverse shear that is assumed to be constant over the cross 

section. The total slope of the beam consists of two parts, one 

due to bending θ , and the other due to shear β . Because of 

the above-mentioned reasons, the Timoshenko Beam model is 

far more superior to the Euler-Bernoulli model in precisely 

predicting the beam response.  Timoshenko Beam theory is 

used in the present work to generate the FE model of a 

flexible cantilever beam with embedded shear piezoelectric 

patches in between two flexible aluminum beams.  Further, 

the fast output sampling feedback control design and its 

application to control the structural vibration modes of a smart 

cantilever beam are considered.  

A survey of some advances in the embedded technology of 

smart structures is done here. Aldraihem et al. [13] have 

developed a laminated beam model using two theories; 

namely, Euler-Bernoulli beam theory and Timoshenko Beam 

theory.  Abramovich [14] has presented analytical formulation 

and closed form solutions of composite beams with 

piezoelectric actuators, which was based on Timoshenko 

beam theory. Using a higher-order shear deformation theory, 

Chandrashekhara and Varadarajan [12] presented a finite 

element model of a composite beam to produce a desired 

deflection in beams with clamped-free (C-F), clamped-

clamped (C-C) and simply supported ends. Shear embedded 

piezoelectrics are used nowadays to suppress the vibrations.  

Sun and Zhang [9], [15] suggested the idea of exploiting the 

shear mode to create transverse deflection in sandwich 

structures. Here, he proved that embedded shear actuators 

offer many advantages over surface mounted extension 

actuators.

Fig. 3  Timoshenko beam model 

Aldraihem and Khdeir [18] proposed analytical models and 

exact solutions for beams with shear and extension 

piezoelectric actuators and the models were based on 

Timoshenko beam theory and higher-order beam theory 

(HOBT). Exact solutions were obtained by using the state-

space approach. In a more recent work, Zhang and Sun [15] 

formulated an analytical model of a sandwich beam with shear 

piezoelectric actuator that occupies the entire core. The model 

derivation was simplified by assuming that the face layers 

follow Euler-Bernoulli beam theory, whereas the core layer 

obeys Timoshenko beam theory. Furthermore, a closed form 

solution of the static deflection was presented for a cantilever 

beam. Abramovich [14] studied the effects of actuator location 

and number of patches on the actuator’s performance for 

various configurations of the piezo patches and boundary 

conditions under mechanical and / or electric loads.  

A finite element approach was used by Benjeddou et. al.

[17] to model a sandwich beam with shear and extension 

piezoelectric elements. The finite element model employed the 

displacement field of Zhang and Sun [9] [15]. It was shown 

that the finite element results agree quite well with the 

analytical results. Raja et. al. [16] extended the finite element 

model of Benjeddou’s research team to include a vibration 

control scheme. Deflection analysis of beams with extension 

and shear piezoelectric patches was reported by Ahmed and 

Osama [28]. An improved two-node Timoshenko beam model 

was presented by Friedman and Kosmataka [26] which is used 

in our work.  Azulay et al. [27] have presented analytical 

formulation and closed form solutions of composite beams 

with piezoelectric actuators.

III. MATHEMATICAL MODELING OF SMART SANDWICHED 

BEAM WITH EMBEDDED SHEAR SENSORS AND ACTUATORS

Many researchers have well established a mathematical 

finite element E-B model. These models do not consider the 

shear effects, axial effects, etc.,.. Modeling of embedded smart 
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structures using shear deformable (Timoshenko) theory is 

limited.  In our work, the effect of shear and axial 

displacement has been considered in modeling.  In this 

section, a shear deformable (Timoshenko) Finite Element 

Model is developed for a laminated beam and its application 

in active vibration control is investigated [26], [27], [33]. 

Accurate model of the system is obtained when the shear 

effects and the axial displacement of the beam is considered in 

modeling of the smart structure.  

A. Finite Element Modeling [ F E M ] of the  Sandwiched 

Beam Element 

A sandwiched beam (piezo-laminated composite beam) is 

shown in Fig. 4 and consists of 3 layers, viz., the piezo-patch

with the rigid foam is sandwiched in between two aluminum 

beam layers. For shear actuation, rigid foam is introduced as a 

core along with PZT to obtain an equivalent sandwiched 

model. The assumption made is that the middle layer is 

perfectly glued to the carrying structure and the thickness of 

the adhesive is neglected (thus, neglecting the effect of shear-

lag, no slippage or delamination between the core layers 

during vibrations) as a result of which strong coupling exists 

between the master structure and the piezo-patches.

The perfect bonding or the adhesive between the beam and 

the sensor / actuator and the bottom and top surfaces of the 

upper and lower aluminum beam have been assumed to add 

no mass or stiffness to the sensor / actuator. For the parts 

without piezoelectrics, the extra space at places where no 

piezoelectrics is present is being packed up fully with a non-

structural material, like rigid foam and it is assumed that its 

material properties are assumed to be zero and the bending 

angle of aluminum is assumed to be almost equal to that of the 

rigid foam (as there is strong coupling between the rigid foam 

and the structure). The beam is stacked properly and then used 

as a composite structure for AVC.  Thus, sandwich structures 

consisting of sheets and a relatively light-weight core such as 

honeycomb or rigid foam are highly efficient in producing 

bending and shear [9], [15]. 

In the modeling of the structure, only the properties of the 

piezopatches and the beam are considered.  The poling 

direction of the piezoelectric patch is along the x (axial)

direction.  The displacement field is based on a first order 

shear deformation theory.  The element has constant moment 

of inertia, modulus of elasticity, mass density and length. The 

cable capacitance between sensor and signal-conditioning 

device has been considered negligible and the temperature 

effects have been neglected. The signal conditioning device 

gain )( cG is assumed as 100.  The longitudinal axis of the 

sandwiched beam element lies along the X-axis and the beam 

is subjected to vibrations in the X - Z plane. The beam 

element is assumed to have three structural DOF, viz., 

),( θw at each nodal point, w  being the transverse 

displacement and an axial displacement )(u of the nodal 

point.  

A bending moment and a transverse shear force acts at each 

nodal point. 
dx

dw  is the slope of the beam (composed of 2 

parts, )(xθ , the bending slope and the additional shear 

deformation )(xγ ).  ψ is the rotational angle of the core 

material. An additional DOF, called as the electrical DOF 

(sensor voltage) comes into picture. Since the voltage is 

constant over the electrode, the number of electrical DOF is 

one for each element. 
TABLE I 

PROPERTIES OF THE FLEXIBLE  AL CANTILEVER BEAM ELEMENT

Parameter  (with units) Symbol Numerical values 

Length (cm) 
bl 30

Width (cm) c 2

Thickness of the top 

layer and bottom Al 

beam layers (mm)
bt 1

Young’s modulus (GPa)
bE 193.06

Density (kg/m3)
bρ 8030

Structural constants βα , 0.001. 0.0001 

TABLE II 

PROPERTIES OF THE  PIEZO - SENSOR / ACTUATOR  ELEMENT

Parameter  (with units) Symbol Numerical values 

Length (cm) 
pl 6

Width (cm) c 2

Thickness (mm)
sa tt , 1

Young’s modulus (GPa)
pE 68

Density (kg/m3)
pρ 7700

Piezo strain constant (m / V)
31d 12

10125
−×

The equations of motion of a general piezo-laminated 

composite beam is obtained as follows [26], [27], [33]. The 

displacements of the beam )(xu and )(xw  can be written as 

),()(),( 0 txzxuzxu θ+= ,  (1) 

)(),( 0 xwzxw = ,  (2) 

where )(0 xu and )(0 xw are the axial and lateral 

displacements of the point at the mid-plane assuming that 

there is incompressibility in the z  direction and )(xθ  is the 

bending rotation of the normal to the mid-plane, i.e., rotation 

of the beam about the y axis. The total strain vector is the sum 

of the mechanical strain vector and the actuator induced strain 

vector. The strain components of the beam are given as 

x
z

x

u
x ∂

∂+
∂
∂

= θε 0
,  (3) 

0=zε ,  (4) 

x

w

x

w

x

u
xz ∂

∂+=
∂

∂+
∂
∂= 00 θγ .  (5) 
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where ,x zε ε are the mechanical normal and transverse shear 

strain,
xz

γ being the shear strain induced in the piezoelectric 

layer.  The beam constitutive equation can be written as 

−

∂
∂

+

∂
∂
∂
∂

=

55

11

11

0

0

55

1111

1111

00

0

0

G

F

E

x

w

x

x

u

A

DB

BA

Q

M

N

zx

x

x

θ

θ
,  (6) 

−

=
2/

2/

h

h

xx dzcN σ , (7) 

−

=
2/

2/

h

h

xx dzzcM σ , (8) 

−

=
2/

2/

h

h

zxzx dzcQ τ . (9) 

Here, xQx εσ 11= and xzzx Q γτ 55=  are the normal and 

shear stresses respectively and c  is the width of the beam. 

z is the depth of the material point measured from the beam 

reference plane along the vertical axis.  h is the height of the 

beam + piezo  - patch, i.e., the thickness of the total structure 

which includes sab ttt ,, (thickness of beam, thickness of 

actuator / sensor).  xzxx QMN ,, are the internal forces 

acting on the cross section of the beam. 
11A ,

11B ,
11D  and 

55A

are the extensional, bending-extensional, bending and 

transverse shear stiffness coefficients defined according to the 

lamination theory as 

( ) ( ),
1

11111

=
−−=

N

kkk
k

zzQcA  (10) 

( ) ( ),
1

2

1

2

1111
2 =

−−=
n

k
kkk

zzQ
c

B  (11) 

( ) ( ),
3 1

3

1

3

1111

=
−−=

N

kkk
k

zzQ
c

D  (12) 

( ) ( )
=

−−=
N

kkk
k

zzQcA
1

15555 . (13)

 Here, in Eqns. (10) to (13), kz  is the distance of the 

thk layer from the x-axis, N  is the number of layers,  is 

the shear correction factor usually taken equal to 
6

5  and 11Q ,

55Q  are calculated according to the equations using the 

material properties of the piezoelectric material as given by  

( ) ,cossin22

sincos

22

6612

4

22

4

1111

λλ
λλ

QQ

QQQ

+

++=
 (14) 

λλ 2
23

2
1355 sincos GGQ += . (15) 

The angle λ is the angle between the fiber direction and 

the longitudinal axis of the beam. The material constants 

,11Q ,22Q ,12Q ,66Q 13Q  and 23Q for foam, aluminum 

and piezoelectric material was taken from the data handbook. 

These constants are used to calculate the values of 

,11A ,11B 11D and 55A  using Eqns. (10) to (15). 

11E , 11F and 55G in Eqn. (6) are the actuator induced axial 

force, bending moment and the shear force respectively, 

defined as  

( ) kk

a

k

N

k

dtxVQcE
a

31

1

1111 ),(

=
= , (16) 

( ) ( )a
k

a
k

kk

a

k

N

k

zzdtxVQ
c

F
a

−+
=

−= 31

1

1111 ),(
2

, (17) 

( ) ( )kk
N

k

a

k
dtxVQKcG

a

15

1

5555 ),(

=
= . (18) 

Since the piezoelectric layer is poled in the axial direction, 

01111 == FE . ),( txVk is the applied voltage to the 
thk

actuator having a thickness of ( )a

k

a

k
zz −+ −  and 

kk dd 1531 ,  are 

the piezoelectric constants. ( )a

k
Q55  and ( )a

k
Q11  are the 

coefficients of the actuators calculated using the equations 

(14) and (15). aN is the number of actuators, where ‘ a ’

stands for ‘w.r.t. actuator’.  Using the Hamilton’s principle 

(total strain energy is equal to the sum of the change in the 

kinetic energy + the work done due to the external forces), we 

get 

( ) dtdxWUT

Lt

t

+−=Π
0

2

1

δδδδ , (19)

where

T    is kinetic energy,  

U   is strain energy, 

W  is the external work done, 

L  is the length of the beam element and 

t   is the time. 

The strain energy U  of the beam element is given by 

.
∂

∂
++

∂
∂

+
∂

∂
=

x

w
Q

x
M

x

u
NU zxxx

δθδθδδ  (20) 

The kinetic energy T  of the beam element is given by 

( )
( ) .32

121

θθ
θδ

∂+

+∂+∂+=

IuI

wwIuIuIT
 (21) 

Here, in Eqn. (21), 21 , II  and 3I  are the mass inertias 
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defined as 

−

=
2

2

1

h

h

dzcI ρ ,  (22) 

−

=
2

2

2

h

h

dzzcI ρ , (23) 

−

=
2

2

2

3

h

h

dzzcI ρ , (24) 

where ρ  is the mass density of each layer, c being the width 

of the beam and h is the height of the beam + piezo  - patch, 

i.e., the thickness of the total structure. 

The external work done (i.e., force× displacement) is given 

as

wqW δδ 0= ,  (25) 

where 0q  is the transverse distributed loading. Substituting 

the values of strain energy, kinetic energy and external work 

done from Eqns. (20), (21) and (25) into Eqn. (19), we get the 

governing equation of motion of a general shaped non-

symmetric piezo-laminated beam with shear deformation and 

rotary inertia as 

( ) ( )[ ]θθ
21111111 IuI

t
E

x
B

x

u
A

x
+

∂
∂=+

∂
∂+

∂
∂

∂
∂

, (26) 

( )[ ]015555 qwI
t

G
x

w
A

x
+

∂
∂=+

∂
∂+

∂
∂ θ , (27) 

( ) ( )[ ],23

5555111111

uII
t

G
x

w
AF

x
D

x

u
B

x

+
∂
∂=

−
∂
∂+−+

∂
∂+

∂
∂

∂
∂

θ

θθ

  (28) 

which becomes 

01111 =
∂
∂+

∂
∂

∂
∂

x
B

x

u
A

x

θ
,  (29) 

055 =
∂
∂+

∂
∂

x

w
A

x
θ , (30) 

055551111 =−
∂
∂+−

∂
∂+

∂
∂

∂
∂

G
x

w
A

x
D

x

u
B

x
θθ

  (31) 

for a static case and with constant properties of the beam. To 

facilitate the solution process for the coupled equations in 

equations (29)-(31), the beam stiffness 55A  and 11D  are 

assumed to be uniform and constant throughout the beam 

length [26], [27], [33].  Note that the influence of shear-

induced strains appears in the above-coupled equations of 

motion for constant properties along the beam.  Let                 
3

4
2

321 xaxaxaaw +++= ,  (32) 

2
321 xbxbb ++=θ ,   (33) 

2
321 xcxccu ++=   (34) 

be the solutions of the Eqns. (29) to (31) where ji ba , and

jc ’s are the unknown coefficients  ( )4,.....,1=i  and 

( )3,.....,1=j  subject to the boundary conditions 

,

,0at

222

111

uuwwLx

uuwwx

====
====

θθ
θθ

 (35) 

where x  is the local axial coordinate of the element. After 

applying boundary conditions from Eqn. (35) into Eqns. (32)-

(34), the unknown coefficients ji ba , and jc ’s can be 

resolved. Since the axial displacement of a point not on the 

centerline is a linear function of θ  as well as u , the degree of 

the polynomial used for θ  must be the same as that used for 

u . In addition, the shear strain is a linear function of both θ
and

dz
dw .  Consequently, the degree of the polynomial used 

for w must be one order higher than those used for u andθ
in order to ensure compatibility.  Therefore, the cubic 

polynomial used for the displacement w  requires that 

quadratic functions be used for both axial displacement u and

cross section rotation θ  in order to be consistent.  Then, 

substituting the found out unknown coefficients into equations 

(32)-(34) and writing them in matrix form, we get the 

expression for the axial displacement, transverse displacement 

and the bending rotation as

[ ] [ ]=

2

2

2

1

1

1

θ

θ

w

u

w

u

Nu u
,  (36) 

[ ] [ ]=

2

2

1

1

θ

θ
w

w

Nw w
,  (37) 

and

[ ] [ ] ,

2

2

1

1

=

θ

θ
θ θ

w

w

N   (38) 

where uN , wN θN are the mode shape functions due to the 

axial displacement, transverse displacement and due to the 

rotation or the slope, which are defined as 

[ ] [ ],654321 NNNNNNNu =  (39) 

[ ] [ ],10987 NNNNNw =  (40) 
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[ ] [ ]14131211 NNNNN =θ  (41) 

with the elements of the shape function given by  
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and

11

11

A

B
=γ , (56) 

−= 1
11

11

55

11

D

B

A

D γη  (57) 

as the constants, which are, being expressed in terms of 

bending and shear stiffness coefficients.  Writing the 3 shape 

functions uN , wN θN  in matrix form, we get the relation 

between the vector of inertial forces N and the vector of 

nodal displacements q  (displacement field) 

as{ } [ ]{ }qS=N   which is given by 

[ ] .

00

00
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2

2

1

1

1

14131211

10987

654321

=
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θ

w
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u
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N  (58) 

The mass matrix of the particular regular beam element is 

given by 

[ ] [ ] [ ][ ] dxNINM

l
T=

0

,  (59) 

where

[ ]=
32

1

21

0

00

0

II

I

II

I  (60) 

is the inertia matrix and 21 , II and 3I  are given by Eqns. (22) 

to (24) respectively.  The element mass matrix is given by 

[29]  

[ ] =

666564636261

565554535251

464544434241

363534333231

262524232221

161514131211

MMMMMM

MMMMMM

MMMMMM

MMMMMM

MMMMMM

MMMMMM

M
. (61) 

Here, [ ]M  is a symmetric matrix called as the local 

matrix, i.e., the mass matrix of the small finite element [30]-

[32]. The values of the mass matrix coefficients are given in 

the appendix. The stiffness matrix of the particular regular 

beam element [29] is given by 

[ ] [ ] [ ][ ] dxABDBK

l
T=

0

,   (62) 

where A  is the area of cross section and 

[ ]
dx

Nd
B

][= , (63) 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:3, 2008

337
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[ ] =
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K . (65) 

Here, [ ]K  is a symmetric matrix called as the local matrix 

[30]-[32]. The values of the matrix coefficients are given in 

the appendix.  The mass and stiffness matrices of the regular 

beam element are obtained using foam as the core between 

two facing aluminum layers. The mass and stiffness matrices 

of the piezoelectric beam element are obtained by using a 

shear piezoelectric patch between the two facing aluminum 

layers.

B. Sensor and Actuator Equations 

In this section, modeling of the sensor and actuator equation 

is presented. 

1) Sensor Equation 

When a force acts upon a piezoelectric material, electric 

field is produced [6] [22]. This effect, which is called as the 

direct piezoelectric effect, is used to calculate the output 

charge produced by the strain in the structure. The external 

field produced by the sensor is directly proportional to the 

strain rate. The charge ( )q t accumulated on the piezoelectric 

electrodes using the gauss law is given by 

=
A

dADt 3)(q ,   (66) 

where 3D  is the electric displacement in the thickness 

direction and A  is the area of the electrodes. If the poling is 

done along the axial direction of the sensors with the 

electrodes on the upper and lower surfaces, the electric 

displacement is given by  

zxzx edQD γγ 1515553 == ,   (67) 

A
x

w
e

A

∂
∂

∂+= 0
15 θq  , (68) 

where 15e is the piezoelectric constant.  On solving Eqn. (68), 

we get 
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Here,
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u

 = q  is the vector of nodal displacements, i.e., 

the vector of axial displacement, transverse displacement and 

slopes at the fixed end and the free end.  The current induced 

on the sensor surface is given by differentiating the total 

charge accumulated on the sensor surface and is given by 
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)( t
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ti q==  (70) 

or
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Since the PE sensor is used as a strain rate sensor, this 

current can be converted into the open circuit sensor voltage 

)(tV s
using a signal-conditioning device with a gain of 

cG and applied to the actuator with the controller gain cK .

)()( tGtV c
s i= ,  (72) 

( ) [ ][ ],2020
12

6
)(

215 qllG
l

cetV c
s −−−

+−
=

η
η

 (73) 

qp
TtV s =)( , (74) 

where q  is the time derivative of the modal coordinate vector 

(strain rate) and T
p is a constant vector which depends on the 

type of sensor and its finite element location in the embedded 

structure and is given by 

( ) [ ]LL

L

Gce c −−−
+−

2020

12

6

2

15

η

η
.  (75) 

The input voltage to the actuator is )(tV a
 and is given by 

)()( tVKtV s
c

a =  , (76) 

( ) [ ] qLL
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c −−−
+−

= 2020
12

6
)(

2

15

η
η

 (77) 

where cK is the gain of the controller. The sensor output 

voltage is a function of the second spatial derivative of the 

mode shape.  

2)  Actuator Equation 

The strain produced in the piezoelectric layer is directly 

proportional to the electric potential applied to the layer and is 

given by [6] [22] 

fEzx ∝γ ,  (78) 
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where zxγ is the shear strain in the piezoelectric layer, and 

fE  is the electric potential applied to the actuator. From the 

constitutive piezoelectric equation, we get, 

fEdzx 15=γ .   (79) 

Since the ratio of shear stress to shear strain is the modulus 

of rigidity G , the shear stress is given by 

zxzx Gγτ = .   (80) 

Substituting the value of xzγ from Eqn. (79) into Eqn. (80) 

we get 

fEdGzx 15=τ     (81) 

and

,
)(

p

a

f
t

tV
E =   (82) 

where pt  is the thickness of the piezoelectric layer. Thus, 

p

a

t

tV
dGzx

)(
15=τ .   (83) 

Because of the stress and strain, bending moments are 

induced in the beam at the nodes and the resultant moment 

aM  acting on the beam is determined by integrating the 

stress throughout the structure thickness as 

hKdGhtVdGM Ta

a c qp1515 )( == , (84) 

where
( )

2

ba tt
h

+=  is the distance from the neutral axis of 

the beam and the piezoelectric layer.  The work done by this 

moment results in the generation of the control force that is 

applied by the actuator as  

)(

0

15 tVdxNhdG a
ctrl

pl

= θf  (85) 

or can be expressed as a scalar product 

)(tV a
ctrl hf = ,   (86) 

where
T

h is a constant vector which depends on the type of 

actuator and its finite element location in the embedded 

structure and 
15d is the piezoelectric strain constant. If any 

external forces described by the vector extf  are acting then, 

the total force vector becomes 

ctrlext
t fff += .   (87) 

C. Dynamic equation of the smart structure 

The dynamic equation of the smart structure is obtained by 

using both the regular beam elements and the embedded 

piezoelectric beam elements given in Eqns. (61) and (65).  

The beam is divided into 5 finite elements. Eqn. (61) and (65) 

gives the mass and stiffness of one of the regular beam 

elements which are called as the local mass matrix and the 

local stiffness matrix [30]-[32]. The mass and stiffness of the 

entire beam, which is divided into 5 finite elements is 

assembled using the FEM technique [35] and assembled 

matrices (global matrices), M and K is obtained [30]-[32]. 

The mass and stiffness matrices of the dynamic equation of 

the smart structure i.e., M and K include the sensor / 

actuator mass and stiffness. The equation of motion of the 

smart structure is given by 

t

ctrlext fffKqqM =+=+ ,    (88) 

where M is the assembled mass matrix of the smart structure, 

K is the assembled stiffness matrix of the smart structure, q is

the nodal variable vector and q is the acceleration vector. 

The generalized coordinates are introduced in Eqn. (88) to 

reduce it further such that the resultant equation represents the 

dynamics of the desired number of modes of vibration and the 

uncoupled equations are obtained [23] - [25], [29]. Let the 

transformation for this purpose used be 

gTq = ,   (89) 

where T is the modal matrix containing the eigenvectors 

representing the desired number of modes of vibration of the 

cantilever beam. This method is used to derive the uncoupled 

equations governing the motion of the free vibrations of the 

system in terms of principal coordinates by introducing a 

linear transformation between the generalized coordinates 

q and the principal coordinates g .  The equation (88) after 

applying the transformation and multiplying by T
T on both 

sides and further simplifying becomes 

,**** ffgKgM ctrlext +=+    (90) 

where the matrices ,, **
KM ** ff ctrlext and are the 

generalized mass matrix, the generalized damping matrix, the 

generalized external force vector and the generalized control 

force vector and given by  

TMTM* T= , (91) 

TKTT
* T= , (92) 

ext

T fext Tf
* = , (93) 

ctrl

T fctrl Tf
* = . (94) 

The structural damping matrix is introduced into Eqn. (90) 

by using 
***

KMC βα +=   (95) 

where
*C is the generalized damping matrix (also called as 

Rayleigh damping), which is of the form given in Eqn.  (95), 

α  and β  being the structural constants. α  and β  are 

determined from 3 given damping ratios that correspond to 

three unequal frequencies of vibration. The dynamic equation 

of the smart structure finally, is given by  [36] 

***** ffqKgCgM ctrlext +=++ . (96) 
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Note that the dynamic equation decouples the equations 

corresponding to each individual mode, provided the damping 

is proportional as described by Eqn.  (95).   

D. State Space Model of the Smart Structure 

The governing equation in (96) is written in the state space 

form and is obtained as below.  Let the transformation used be 

xg = ,   (97) 

where

xg ===
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Thus,
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and Eqn. (96) now becomes 
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which is  further  simplified  as   
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The generalized external force coefficient vector is

,)(* trfT
ext

T
ext TfTf ==   (104) 

where )(tr is the external force input to the beam.  

The generalized control force coefficient vector is

),()(* tutVf TaT
ctrl

T
ctrl hThTTf ===  (105) 

where the voltage )(tV a
is the input voltage to the actuator 

from the controller and is nothing but the control input  )(tu

to  the  actuator and h is  a  constant  vector  which  depends  

on  the  actuator  type and its finite element location in the 

embedded structure.  So, using the Eqns. (101), (104) and 

(105) in Eqn. (103), the state space equation for the smart 

beam is represented as 
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u
hTM

where )(tu  is the control input, )(tr is the external input to 

the system, f is the external force coefficient vector.  The 

sensor equation is modeled as 

,)()( tytV Ts == qp    (107) 

where
Tp is a constant vector which depends on the 

piezoelectric sensor characteristics (i.e., the sensor constant) 

and on the position of the sensor location in the embedded 

beam structure. Thus, the sensor output for a SISO case is 

given by   

,)(
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===
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x

ty TTT
TpgTpqp  (108) 

which can be written in the state space form as  
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6

5

4

3

2

1

610)(

x

x

x

x

x

x

ty T
Tp .  (109) 

Thus, the state space model of the smart system, i.e., the 

state space equation and the output equation is given by

)x(C

)r(E)u(B)x(Ax

tty

ttt

T=

++=

)(

,
  (110)  

with

)66(
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, (111)

 B = 

)16(

1*
×

−
hTM

0

T

, (112) 

 C
T  = [ ] )61(0 ×

T
p ,   (113) 

 D  = Null Matrix, (114)
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)16(

1*

0

×
−=

fTM
E T , (115) 

where )()(,,,,,),(),( and tytxtutr EDCBA  represents the 

external force input, the control input, system matrix, input 

matrix, output matrix, transmission matrix, external load 

matrix, state vector, system output (sensor output).   The 

values of the EDCBA ,,,,  matrices for the model 1 with 

actuator at FE 1 and sensor at FE 2 of the smart structure is 

given by  

−−−−
−−−−−

−−−−
=

0001.000.000.000.000.000.0
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00.000.000.000.000.006.1
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0000001.0000

51eA
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−= eB  (117) 

[ ],0014.00000.00001.0000 −=T
C  (118) 

D  =  Null matrix, (119) 
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=E  (120) 

Similarly, the state space models of the remaining 3 models 

are obtained.  By making one pair of piezoelectric elements as 

non-collocated active sensors / actuator at a time and by 

making other elements as regular elements, control of this 

SISO state space model is obtained using the fast output 

sampling feedback control technique which is considered in 

the next section. The characteristics of the smart flexible SISO 

cantilever beam are given in Table III. 

TABLE III 

CHARACTERISTICS OF THE SMART FLEXIBLE SISO BEAM

Eigen values 
3 Natural 

Freq. (Hz) 

– 0.5344 j± 326.92 52.0312

 1.8648 j±  610.71 97.1970

– 4.1968 j±  916.16 145.8111

IV. DESIGN OF THE FAST OUTPUT SAMPLING FEEDBACK 

CONTROLLER

The control problem is as follows : Developing of the 

control strategy for the SISO representation of the developed 

smart structure model using fast output sampling feedback 

control law [20] [21].   

A. Review of the fast output sampling feedback control 

technique

A standard result in control theory says that the poles of a 

LTI controllable system can be arbitrarily assigned by state 

feedback.  In many cases, the entire state vector is not directly 

available for feedback purposes. Hence, it is desirable to go 

for an output feedback design. The static output feedback 

problem is one of the most investigated problems in the 

control theory and applications [19].  

One reason why the static output feedback has received so 

much attention is that it represents the simplest closed loop 

control that can be realized in practical situations. However, 

no results are available till today which show that complete 

pole assignment is possible using static output feedback. 

Practicing state feedback and optimal output feedback 

controllers needs careful consideration in smart structure 

application area like the space structures, because the state 

feedback controller needs the availability of the entire state 

vector or need estimator.  

In the state feedback case, the optimal control law requires 

the design of a state observer. This increases the 

implementation cost and reduces the reliability of the control 

system. Another disadvantage of the observer based control 

system is that even slight variations of the model parameters 

from their nominal values may result into significant 

degradation of the closed-loop performance.  

The static output feedback requires only the measurement 

of the system output, but there is no guarantee of the stability 

of the closed loop control system. Although the stability of the 

closed loop system can be guaranteed using the state 

feedback, the same is not true using static output feedback. 

So, if a system, for example, smart cantilever beam, in this 

case, has to be stabilized using only the output feedback 

(states may not be available for measurement purposes), one 

can resort to fast output sampling feedback, which is static in 

nature as well, guarantees the closed loop stability. Here, the 

value of the input at a particular moment depends on the 

output value at a time prior to this moment (namely at the 

beginning of the period).

The problem of fast output sampling was studied by Werner 

and Furuta [20], [21] for linear time invariant systems with 

infrequent observations. They have shown that the poles of 

the discrete time control system could be assigned arbitrarily 

(within the natural restriction that they should be located 

symmetrically with respect to the real axis) using the fast 

output sampling technique. Since the feedback gains are 

piecewise constants, their method could easily be 

implemented and indicated a new possibility. Such a control 

law can stabilize a much larger class of systems.  
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Consider a plant described by a LTI state space model 

given by  

).()(

),()()(
.

txCty

tuBtxAtx

=
+=  (121) 

where
nx ℜ∈ ,

mx ℜ∈ ,
px ℜ∈ ,

nnA ×ℜ∈ ,
mnB ×ℜ∈ ,

npC ×ℜ∈ , A , B , C are constant matrices 

and it is assumed that ),( BA is controllable and ),( AC is

observable.  Assume that output measurements are available at 

time instants τkt = , where ....,3,2,1,0=k Now, construct a 

discrete linear time invariant system from these output 

measurements at sampling rate
τ
1

(sampling interval of 

τ secs). The system obtained so is called as the τ system 

and is given by 

),()(

),()())1((

ττ
τττ ττ

kxCky

kukxkx

=
Γ+Φ=+

 (122) 

where C,, ττ ΓΦ  are constant matrices of appropriate 

dimensions.  Assume that the plant is to be controlled by a 

digital computer, with sampling interval τ and zero order 

hold and that a sampled data state feedback design has been 

carried out to find a state feedback gain F such that the 

closed loop system  

( ) ( ) )( τττ ττ kxFkx Γ+Φ=+  (123) 

has desirable properties.  Here,

τ
τ

Ae=Φ  (124) 

and

=Γ
τ

τ
0

Bdse sA
.   (125) 

Instead of using a state observer, the following sampled 

data control can be used to realize the effect of the state 

feedback gain F by output feedback. Let 
N

τ=∆  and 

consider

[ ] ,

)(

:

:

)(
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.....)( 110

∆−

∆+−
−

= −

τ

ττ
ττ

ky

ky

ky

LLLtu N
 (126) 

i.e.,

kyLtu =)(  (127) 

for ττ )1( +≤≤ ktk , where the matrix blocks jL represent

the output feedback gains and the notation kyL, has been 

introduced for convenience.  Note that 
τ
1

is the rate at which 

the loop is closed, whereas the output samples are taken at the 

times N - times faster rate 
∆
1 .  This control law is illustrated 

in the Fig. 4. 

Fig. 4  Graphical illustration of fast output sampling feedback 

method

To show how a fast output sampling controller in Eqn. 

(127) can be designed to realize the given sampled data state 

feedback gain for a controllable and observable system 

),,( CBA , we construct a fictitious, lifted system for which 

the Eqn. (126) can be interpreted as static output feedback 

[19].  Let ( )C,,ΓΦ  denote the system in Eqn. (121) sampled 

at the rate 
∆
1  and is called as the delta system.  Consider the 

discrete time system having at time τkt = , the input 

)( τkuuk = , the state )( τkxxk = and the output ky  as

,

,

001

1

kkk

kkk

uxy

uxx

DC +=

Γ+Φ=

+

+ ττ
 (128) 

where

Φ

Φ
=

−1

0

NC

C

C

C ,

ΓΦ

Γ
=

−

=

2

0

0

0

N

j

jC

C

D .  (129) 

Assume that the state feedback gain F has been designed  

such that ( )Fττ Γ+Φ has no eigen values at the origin. 

Then, assuming that in the interval )( τττ +≤≤ ktk ,

)()( τkxFtu = ,  (130) 

one can define the fictitious measurement matrix,  

( )( ) 1

00),(
−Γ+Φ+= FFNF ττDCC , (131) 

which satisfies the fictitious measurement equation  

kk xy C= . (132) 

For L  to realize the effect of F , it must satisfy [20], [21], 

[25] the equation  

F=LC .  (133) 
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Let υ  denote the observability index of ( )C,,ΓΦ .  It can 

be shown that for υ≥N , generically C has full column 

rank, so that any state feedback gain can be realized by a fast 

output sampling gain L .  If the initial state is unknown, there 

will be an error kkk xFuu −=∆ in constructing the control 

signal under the state feedback.  One can verify that the 

closed-loop dynamics are governed by [20], [21], [25]. 

∆Γ−
ΓΓ+Φ

=
∆ +

+

k

k

k

k

u

xF

u

x

τ

τττ

01

1

0 LD
. (134) 

To see this, apply the coordinate transformation, 

=
IF

I
T

0
 (135) 

to the equation 

∆
ΓΦ

=
+

+

k

k

k

k

u

x

u

x

001

1

LDLC

ττ    (136) 

and use Eqn. (131).  Thus, one can say that the eigen-values of 

the closed-loop system under a fast output sampling control 

law given in Eqn. (131) are those of ( )Fττ Γ+Φ  together 

with those of ( )τΓ−0LD .  This suggests that the state 

feedback F should be obtained so as to ensure the stability of 

both ( )Fττ Γ+Φ  and ( )τΓ− F0LD . The system in Eqn. 

(128) is stable if and only if F stabilizes ( )ττ ΓΦ ,  and the 

matrix ( )τΓ− F0LD  has all its eigen values inside the unit 

circle.  The problem with controllers obtained in this way is 

that, although they are stabilizing and achieve the desired 

closed loop behavior in the output sampling instants, they may 

cause an excessive oscillation between sampling instants.  The 

fast output sampling feedback gains obtained may be very 

high.  To reduce this effect, we relax the condition that 

L exactly satisfy the linear equation (133) and include a 

constraint on the gain L .  Thus, we arrive at the following in 

Eqns. (137)-(140). 

1ρ<L ,
20 ρτ <Γ− FLD ,

3ρ<− FLC . (137) 

This can be formulated in the form of Linear Matrix 

Inequalities (LMI’s) as

0

2

1 <
−

−
I

I
T

L

Lρ
,   (138) 

( ) 0
0

0

2

2 <
−Γ−

Γ−−
IF

FI
T

τ

τρ
LD

LD
,  (139) 

( )
0

2

3 <
−−

−−
IF

FI
T

LC

LCρ
. (140) 

In this form, the LMI optimization toolbox is used for the 

synthesis of L [7]. 

B. FOS Controller Design  for the SISO beam 

The FEM model of the smart cantilever beam based on 

Laminate Beam Theory is developed using MATLAB. 

Different state space models of the smart cantilever beam are 

obtained by keeping the actuator location fixed (i.e., at fixed 

end) and varying the position of the sensor from the nearby 

fixed end to the free end. A fast output sampling feedback 

controller discussed in the previous section is designed to 

suppress the first three modes of vibration of the smart 

cantilever beam. All simulations are done using MATLAB. 

The performance of the beam is evaluated for vibration 

control with the proposed control technique.

The first task in designing the fast output sampling 

feedback controller is the selection of the sampling interval 

τ .  The maximum bandwidth for the sensor / actuator 

locations on the beam are calculated (here, the third vibratory 

mode of the plant).  Then, by using the existing empirical 

rules for selecting the sampling interval based on bandwidth, 

approximately 10 times of the maximum third vibration mode 

frequency of the system is selected.  The sampling interval τ
used is 0.004 secs.

Four different configurations of the beam are considered. In 

all the four cases, the length of the beam is 30 cm and its cross 

section is 1 mm by 2 cm. The length of the peizo patch is 6 cm 

and its cross section is 1 mm by 2 cm. The material properties 

used for the generation of the FEM model are given in Table I 

and II respectively. A sixth order state space model of the 

system is obtained on retaining the first three modes of 

vibration of the system as shown in Section 3. The first three 

natural frequencies obtained are 52.03 Hz, 97.21 Hz and 

145.81 Hz.

In the first case, the FEM model of the smart cantilever 

beam is obtained by dividing the beam into 5 elements. The 

actuator is placed as the 1st element (at the fixed end) and the 

sensor is placed as the 2nd finite element as shown in Fig. 5.  

Fig. 5  Smart cantilever beam with actuator at 1
st

 position and sensor 

at 2nd  position 

Fig. 6  Smart cantilever beam with actuator at 1
st
  position and sensor 

at 3
rd

  position 
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In the second case, the FEM model of the smart cantilever 

beam is obtained by dividing the beam into 5 elements and 

placing the actuator at the 1st finite element location and the 

sensor at the 3rd finite element location as shown in Fig. 6.  

In the third case, the FEM model of the smart cantilever 

beam is obtained by dividing the beam into 5 elements and 

placing the actuator at the 1st finite element location and the 

sensor at the 4th finite element location as shown in Fig. 7. 

Fig. 7  Smart cantilever beam with actuator at 1
st

 position and sensor 

at 4th position 

In the fourth case, the FEM model of the smart cantilever 

beam is obtained by dividing the beam into 5 elements and 

placing the actuator at the 1st finite element location and the 

sensor at the 5th finite element location as shown in Fig. 8.

Fig. 8  Smart cantilever beam with actuator at 1
st
  position and sensor 

at 5th position 

A external force extf (impulse disturbance) of 1 Newton is 

applied for a duration of 50 ms at the free end of the beam for 

the systems shown in Figs. 5 to 8 and the open loop impulse 

responses (without control) of the system are observed. 

Controllers based on the fast output sampling feedback control 

algorithm are designed to control the first three modes of 

vibration of the smart cantilever beam with embedded shear 

sensor and actuator for the systems shown in Figs. 5 to 8.  The 

sampling interval used is 0.004 secs and is divided into 10 

subintervals ( )10N = .

Let ( )iii C,, ττ ΓΦ  with i  = 1 to 4  be the discrete time 

systems (tau system) of the systems in Fig. 1 in Eqn. (110) 

sampled at a rate of τ/1 seconds respectively.  It is found that 

the tau systems are controllable and observable and are given 

by  

,

85.000.000.002.45000.00.0

00.076.000.000.09.3890.0

00.000.025.000.000.09.314

0005.000.000.085.000.000.0

00.0001.000.000.075.00.0

00.000.0002.000.000.026.0

1

−−−
−−−−−

−−−−
−−−−
−−−−−

−−

=Φτ
  (141) 

,

4636.0

0000.0

6915.0

0019.0

0000.0

0016.0

*7-1.0e1

−

−
−

=Γτ  (142) 

[ ],0014.00000.00001.00001 −=T
C  (143) 

for the tau system of the SISO model 1.  Similarly, the tau 

systems for other 3 models are obtained. The stabilizing state 

feedback gains are obtained for each of the tau systems such 

that the eigenvalues of ( )iFii ττ Γ+Φ  lie inside the unit circle 

and the response of the system has a good settling time.  The 

state feedback gains obtained are as 

[ ]0000.00000.00081.00024.00000.00322.21 −−=F  (85) 

for the model 1. Similarly, the state feedback gains for the 

other three models are obtained.  The closed loop impulse 

response of the 4 models of the system with the state feedback 

gain F is also observed.

Let ( )C,, ΓΦ  be the discrete time systems (delta system) of 

the system in Fig. 1 in Eqn. (110) sampled at the rate ∆/1

secs respectively, where N/τ=∆ . The delta system for the 

SISO model 1 is given by  

,

96.000.000.08.23600.000.0

00.096.000.000.06.1470.0

00.000.099.000.000.06.42

0003.000.000.096.000.000.0

00.00004.000.000.097.000.0

00.000.00004.000.000.099.0

1

−−−−
−−−−

−−
−

−−

=Φ   (144) 

,

0.2440

0.0000

0.0936

0.0000

0.0000

0.0000

*71.0e1

−
−

−−=Γ  (145) 

[ ],0014.00000.00001.00001 −=T
C  (146) 

Similarly, the delta systems for the other 3 SISO models are 

obtained.  The fast output sampling feedback gain matrix L
for the system given in Eqns. (101) and (105) is obtained by 

solving F=LC using the LMI optimization method [7], [25] 

as

[
].0377.00426.00440.00403.00304.0....

......038.00095.0039.00734.01111.01

−−−−−
−=L

 (147) 

 Similarly, the FOS feedback gains are obtained for the other 

3 models of the smart structure plant.  The closed loop 

impulse responses (sensor outputs y ) of all the models with 
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fast output sampling feedback gain L of the system is 

observed.  Also, the variation of the control signal u with time 

for the systems is observed and the conclusions are drawn.    

V. SIMULATION RESULTS

In this section, we present the simulation results of the 4 

SISO models.  The following figures (Figs. 9 - 12) shows the 

open loop response, closed loop response with state feedback 

gain F , the closed loop response with the FOS feedback gain 

L and the magnitude of the control input u  with time t  for 

the smart cantilever beam with actuator at the first position 

and sensor location varied from second finite element position 

to the fifth finite element position.  The comparisons of the 

quantitative results of the OL and CL responses (with state 

feedback gain F, FOS gain L ) and with the magnitude of the 

control efforts, their settling times required is shown in Table 

IV.

Fig. 9  OL / CL response with F  and  L / control u  for model 1 

Fig. 10  OL / CL response with F  and  L / control u  for model 2 

Fig. 11  OL / CL response with F  and  L / control u  for model 3 

Fig. 12  OL / CL response with F  and  L / control u  for model 4 

TABLE IV 

QUANTITATIVE COMPARITIVE RESULTS OF THE FOS SIMULATIONS

[TERMS INSIDE THE BRACKETS INDICATE SETTLING TIMES]

Model 
Open

 loop

Closed

loop

with F

Closed

loop

with L

Control

input

u

1.
10 mV 

(11 secs) 

25 mV 

(5 secs) 

25 mV 

(4 secs) 
0.005 V 

2. 22 mV 

(15 secs) 

22 mV 

(6 mV) 

22 mV 

(5 secs) 
0.01 V 

3. 20 mV 

(19 sec) 

19 mV 

(7 secs) 

19 mV 

(6 secs) 
0.05 V 

4.
18 mV 

(22 secs) 

(18

mV) 

(secs)

18 mV 

(7 secs) 
0.06 V 

VI. CONCLUSIONS

A Finite Element model of a smart cantilever beam based 

on Timoshenko Beam Theory with embedded piezoelectric 
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shear sensors and actuators is presented for the SISO 

representation of the smart structure in this research paper. 

Some of the limitations of Euler-Bernoulli beam theory, such 

as the axial displacement and the shear are being considered in 

this work.

Different smart cantilever beam models with embedded 

shear sensors / actuators are developed using the Timoshenko 

beam theory for different sensor locations keeping the actuator 

location fixed.  A Fast Output Sampling feedback (FOS) 

controller is designed to control the first three modes of 

vibration of the embedded shear piezoelectric system. In the 

SISO case, four different models have been considered. The 

performance of the controller is evaluated for different sensor 

locations while the position of the sensor is kept constant.

It can be inferred from the response characteristics and the 

simulation results that the magnitude of the control signal u
increases as the position of the sensor is changed from the 

nearby fixed end and moved towards the free end of the smart 

cantilever beam. The closed loop responses take more time to 

settle, i.e., for the vibrations to get damped out.  The impulse 

responses with L and F show better performance when the 

sensor is at the nearby fixed end.  Thus, it can be inferred 

from the simulation results, that when the plant is placed with 

this controller, the system performs well and stability is 

guaranteed.

It is also observed that the maximum amplitude of the 

control voltage required to dampen out the vibrations is less 

when the sensor is placed at FE position 2 than at the fixed 

end and also the response settles quicker and the vibrations are 

damped out quickly.  From the Fig. 9-12, it can be inferred 

that without control the transient response is predominant and 

with control, the vibrations are suppressed. It is also observed 

from the simulation results that modeling a smart structure by 

including the sensor / actuator mass and stiffness and by 

varying the sensor location at different positions introduces a 

considerable change in the structural vibration characteristics.

The state feedback gain F for the SISO plant is obtained so 

that its poles are not placed at the origin and has a good 

settling time of less than 10 seconds.  The designed FOS 

controller requires constant gains and hence is easier to 

implement in real time. The simulation results show that a fast 

output sampling feedback controller based on Timoshenko 

Beam Theory is able to satisfactorily control the first three 

modes of vibration of the smart cantilever beam.  

Surface mounted piezoelectric collocated sensors and 

actuators (piezo-patches bonded to the master structure at top 

and bottom of the single flexible beam) are usually placed at 

the extreme thickness position of the structure (near by the 

fixed end) to achieve most effective sensing and actuation 

[25]. This subjects the sensors / actuators to high longitudinal 

stresses that might damage the brittle piezo-electric material. 

Furthermore, surface mounted sensors / actuators are likely to 

be damaged by contact with surrounding objects piezopatches 

coming out while vibrating, connections coming out, due to 

thermal effects, stray magnetic fields, noise signals, etc.,. 

embedded shear sensors / actuators can be used to alleviate 

these problems. The limitations of Euler-Bernoulli beam 

theory such as the neglection of the shear φ  and axial 

displacements have been considered here while modeling the 

beam. Timoshenko beam theory corrects the simplifying 

assumptions made in Euler-Bernoulli beam theory and the 

model obtained can be a exact one.  

ACRONYMS / ABBREVIATIONS

SISO Single Input Single Output   

FEM Finite Element Method  

FE Finite Element  

LMI Linear Matrix Inequalities 

MR Magneto Rheological  

ER Electro Rheological   

PVDF Poly Vinylidene Fluoride  

SMA Shape Memory Alloys 

CF Clamped Free   

CC Clamped Clamped  

CT Continuous Time 

DT Discrete Time  

OL Open Loop   

CL Closed Loop 

HOBT Higher Order Beam Theory  

RHS Right Hand Side  

LTI Linear Time Invariant  

FOS Fast Output Sampling 

AVC Active Vibration Control 

EB Euler-Bernoulli  

PZT Lead Zirconate Titanate 

DOF Degree Of Freedom 

IEEE Institute of Electrical & Electronics Engineers 

IOP Institute of Physics 

ISSS Institute of Smart Structures and Systems  

SPIE Society of Photonics & Instrumentation Engineers 

APPENDIX

The stiffness matrix for the sandwich beam element is 

obtained using the Eqn. (65) as 

[ ] =

666564636261

565554535251

464544434241

363534333231

262524232221

161514131211

KKKKKK

KKKKKK

KKKKKK

KKKKKK

KKKKKK

KKKKKK

K
,
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K 11
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The mass matrix for the sandwich beam element is obtained 

using Eqn. (61) as 
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NOMENCLATURE (LIST OF SYMBOLS)

A  Area of the piezo patches 

4321 ,,, aaaa  Polynomial coefficients for transverse 

displacement  

A  System matrix which represents dynamics of 

system (comprises of mass and stiffness of 

system) 

5511, AA     Extensional and shear stiffness coefficient  

11B  Bending-extensional stiffness coefficient 

B  Input matrix 

321 ,, bbb  Polynomial coefficients for  

c  Width of the beam 

321 ,, ccc  Polynomial coefficients for axial 

displacement  

C       Output matrix 

*
C  Generalized damping matrix or the 

structural modal damping matrix 

0C  Fictitious matrix  

D  Transmission matrix 

0D  Fictitious matrix  

11D  Bending stiffness coefficient  

D  Layer constitutive matrix 

3D  Electric displacement in the thickness 

direction

3115 ,dd  Piezoelectric strain constants 

11E  Actuator induced axial force 

15e  Piezoelectric constant 

fE  Electric potential applied to the actuator 

E  External load matrix, which couples the 

disturbance to the system 

extf  Vector of externally applied nodal forces 

tf  Total force vector 

ctrlf  Control force vector  

** , ctrlext ff  Generalized external force coefficient and 

external control force coefficient vector 
**

21, ctrlctrl ff  Control force coefficient vectors to the 

actuators 1 and 2 

11F  Actuator induced bending moment 

F       State feedback gain 

1F  and 2F     Forces  at  node 1 and  2 of figure 1 

55G  Actuator induced shear force 

cG  Signal conditioning gain 

G  Modulus of rigidity 

g  Principal coordinates 

h  Height of the beam + the piezo-patches 

h  Constant vector, which depends on the type 

of actuator and its FE position 

21,hh  Constant vectors of the actuators 1 and 2 

321 ,, III  Mass inertias 

I  Inertia matrix 

i  Variable ( 1, 2, 3, … ) 

)(ti  Current induced by the sensor surface 

*
KK ,  Stiffness matrix (global stiffness matrix) and 

generalized stiffness matrix of the beam 

k  Variable ( 1, 2, 3, … ) 

cK  Gain of the controller 

K  Shear correction factor = 5/6 

jiK  Elements of the stiffness matrix 

( )62,1 ....,,, =ji  for the sandwich / 

composite beam 

L       Fast output sampling feedback gain 
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L  Length of the beam  

pL       Length of the piezo-patch (sensor / actuator) 

jL  Output feedback gains 

*
MM ,  Mass matrix (global mass matrix) and 

generalized mass matrix of the beam 

jiM  Elements of the mass matrix 

( )62,1 ....,,, =ji  for the sandwich / 

composite beam 

1M   and 2M   Moments acting at node 1 and  2 of figure 1 

xM  Internal force on the cross section of the 

beam 

θNNN wu ,,  Shape functions due to axial displacement, 

transverse displacement and rotation or the 

slope

6,....,1 NN  Elements of shape function due to axial 

displacement 

107 ,...., NN  Elements of shape function due to transverse 

displacement 

14,....,11 NN  Elements of shape function due to rotation 

or slope 

n  Number of layers of the beam 

N       Number of sub-intervals 

N       Matrix of shape functions 

xN  Internal force on the cross section of the 

beam 

p  Constant vector, which depends on the 

sensor type and its FE location in the 

embedded structure 

21,pp  Constant vectors of the sensors 1 and 2 

( )q t  Charge accumulated on the sensor surface 

)(tq  Rate of change of electric charge, i.e., the 

current produced by sensor 

q  Vector of nodal displacements (modal 

coordinate vector), i.e., the generalized 

coordinates

0q  Transverse distributed loading 

)(tr  External force input to the beam 

q  Time derivative of the nodal coordinate 

vector

q       Nodal acceleration vector 

665522

131211

,,

,,,

QQQ

QQQ
 Material constants of steel, foam, PE  

xzQ  Internal force on the cross section of the 

beam 

T  Modal matrix containing the eigen values 

representing the first 3 modes of vibration 

t  Time 

T  Kinetic energy 

t  Total thickness of the beam (top layer + 

piezo-patch + bottom layer thickness) 

kt  Thickness of the each layer of the beam 

3,2,1=k

pt  Thickness of the piezoelectric layer 

pa ttt s ==  Thickness of actuator / sensor = thickness of 

the piezoelectric layer 

u  Axial displacement of the point 

21 ,uu  Axial displacements at fixed end and at free 

end

)(,)( 21 tutu  Control inputs to actuators 1 and 2 

U  Strain energy 
sa

VV ,  Actuator input voltage and sensor voltage 
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