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Abstract—This paper seeks to develop simple yet practical and 

efficient control scheme that enables cooperating arms to handle a 
flexible beam. Specifically the problem studied herein is that of two 
arms rigidly grasping a flexible beam and such capable of generating 
forces/moments in such away as to move a flexible beam along a 
predefined trajectory. The paper develops a sliding mode control law 
that provides robustness against model imperfection and uncertainty. 
It also provides an implicit stability proof. Simulation results for two 
three joint arms moving a flexible beam, are presented to validate the 
theoretical results. 
 

Keywords—Sliding mode control, cooperative 
manipulators.  

I.  INTRODUCTION 
OBOTIC applications, such as the lifting of flexible objects 
or lifting of objects with unusual geometry require the 

use of two cooperating manipulators. Utilizing multiple  
manipulators invites some issues that have to be dealt with, 
Inter-arm load balancing and internal force control become 
important [1][2][3][4][5]. What complicates matter even 
further is having a flexible object rather than a rigid object to 
manipulate. Manipulating flexible objects, however, stirs 
growing interest due to its potential applications in industry 
[6]. Some previous work has been done on the manipulation 
of flexible objects using dual arms; Zheng et al. [7] [8] studied 
the problem of trajectory planning and coordination of two 
manipulators to deform flexible beams. McCarragher et al. [9] 
addressed the same problem with a solution based on a hybrid 
position/force approach. James K. Mills et al. [10] addresses 
the problem of designing a control method for a multi-robot 
system designed for the assembly of flexible sheet metal parts, 
a practical algorithm is proposed based on the "rigid" body 
dynamics of the robot and payload. Meer, David William [11] 
[12] considered the manipulation of a particular flexible 
object. The control policy utilized in [11] [12] is based on a 
controller developed previously [13] for rigid objects, the 
object impedance controller. Al-Yahmadi[14] used a scheme 
that is capable of handling a flexible object both in free space 
and in contact tasks. The scheme is based on a controller 
previously developed for rigid objects by Bonitz and Hsia 
[15].  Dong Sun et al. [16] [17] used a hybrid impedance 
control algorithm to stabilize a flexible beam handled by two 
manipulators and simultaneously controlling its internal force. 
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The hybrid impedance control [16][17] cannot however, 
achieve trajectory tracking. In this paper position trajectory 
tracking is achieved using sliding mode control. Sliding mode 
control [18][19][20][21][22]is well suited to handle the highly 
nonlinear dynamic interaction present in the model describing 
the flexible beam. 

II.   NONLINEAR MODEL OF THE SYSTEM 
Let the two planar manipulators with three revolute joints to 

be rigidly grasping the two ends of a beam of length l, mass 
per unit length ρA, and bending stiffness EI.  

The B-spline based method will be used to approximate the 
dynamics of the flexible beam. In this method one seeks an 
approximate solution of the deflection of the beam in the form 

( , ) ( )r
fk kv t q B vε = ∑  

 
where, ( , )v tε  is the deflection (transfers deflection) at time t, 
and at a spatial point  v, and the deflection in this form is a 
sum of the product of two functions, one is a function of time  

fkq   and the other   ( )r
kB v  is a function of the distance  along 

the beam and   ( )r
kB v   are piece-wise smooth polynomial 

functions of order r derived on the basis of a knot sequence 
1, ,...k k k rv v v+ + , and they are defined by the following recursion 

formula  
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Let , ,
T

r ox oyq p p θ⎡ ⎤= ⎣ ⎦ stand for the position and orientation of 

the center of mass of the un-deformed beam. Let a mobile 
coordinates frame 0-vε be attached to that center of mass as 
seen in Figure 1.  

The total kinetic and potential energies for the beam can be 
expressed in terms of the B-splines and the nodal coordinates. 
Inserting these terms in Lagrange's equation, and taking the 
nodal coordinates , [ qf1 ,qf2 , ... , qfn ]T, together with 

, ,
T

r ox oyq p p θ⎡ ⎤= ⎣ ⎦   as the set of generalized coordinates, leads 
to a set of coupled differential equations relating the nodal 
responses to the applied forces.  
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where, qr is as defined earlier, and qf   are the nodal 
coordinates.  

Now for the manipulators dynamics; the equation of motion 
of the arm j is given by 
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Define 1 2, , ,
T

r fx q qφ φ⎡ ⎤= ⎣ ⎦ ; this will give the following overall 

system dynamics, written in the matrix form 
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It can be shown that for the Dynamics of the system derived 
using the Euler-Lagrange formulation has the following 
properties [23]. 

Property 1 The System inertia matrix M(x) is symmetric and 
positive definite, Further ( )M x and 1( )M x− are bounded as 

follows: 1 1( )M x
M M+ −≤ ≤ . 

Property 2 The matrix ( ) 2 ( , )M x N x x−& & is skew symmetric, i.e. 
( )( ) 2 ( , ) 0Tx M x N x x x− =&& & & .and since ( , )N x x& is quadratic in x& it 

can be bounded from above by a quadratic function of . x&  
That is 2( , )N x x C x+≤& & . 

Property 3 The term G(x) is bounded from above in general 
by a function of the generalized coordinates as follows: 

( )G x G+≤ . 

The first property is a mathematical statement of the 
following fact; the kinetic energy of a system is a quadratic 
form which is positive unless the system is at rest. The second 
property is referred to as the passivity property; this property 
implies that the total energy of the system is conserved in the 
absence of friction. 

II.  CONTROLLER DESIGN 
Making use of the constraint equations, i.e. making use of 

the fact that the two end effectors’ positions x1 and x2 are 
related to the coordinates , T

r fq q⎡ ⎤⎣ ⎦ describing the dynamic of 
the flexible beam; in the following manner 
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and noticing that x1 and x2 are in turn related to joint 
coordinates of the two manipulators; the model can be 
rearranged to have the form  

A Bφ τ= +&&  

One can achieve that as follows: Assuming the end conditions 
of a clamped-clamped beam, one will have 
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generalized coordinates of the flexible beam , T
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i.e. 
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which gives the following overall equation of the system 
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which can be written as  
A Bφ τ= +&&  

One can choose a suitable control law τ which makes φ  tracks 
a given trajectory dφ   Using sliding mode control,  by 
defining the state error and sliding surface as follows; 

de
r e e

φ φ= −
= Λ + &

 (10) 

 

and applying the control law  

( )1ˆ ( )eqB sign rτ τ−= + Γ , where ˆd
eq e Aτ φ= + Λ −&& &  

 and ˆ ˆ,  BA  are estimates of A and B respectively. 

It was shown earlier that this control law will ensure that the 
sufficient condition for sliding mode control will be achieved 

if 
C
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For which  
1ˆC BB−=  

III.  SIMULATION RESULTS 
Consider two identical robots and each robot is made up of 

three rigid links (shoulder, upper arm and forearm) of mass 
3kg and length 1 m. the links are interconnected by three 
revolute joints.  

The two robots are moving a flexible beam. The parameters 
of the flexible beam are as shown in Table I. 

The simulations are as seen in Figures 2, and 3. The 
simulation results show that position tracking control can be 

achieved using sliding mode control. It shows further that the 
vibration is damped as seen from the fact that the flexible 
coordinates settles down to constant values.  

IV.  CONCLUSIONS 
The paper addresses the problem of deriving a 

mathematical model that describes the system, and deriving a 
control law that is able to move the flexible beam along a 
given trajectory while suppressing the vibrations that are 
excited during the motion of the system The simulation results 
show that perfect trajectory tracking is achieved using the 
sliding mode controller. 
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Fig. 2 Position Tracking of Pox , Poy and θ  
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 3 Time response of the rate of change of the first three flexible 
coordinates 
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