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 
Abstract—For those who have lost the ability to move their hand, 

going through repetitious motions with the assistance of a therapist is 
the main method of recovery. We have been developed a robotic 
assistive device to rehabilitate the hand motions in place of the 
traditional therapy. The developed assistive device (RAD-HR) is 
comprised of four degrees of freedom enabling basic movements, 
hand function, and assists in supporting the hand during 
rehabilitation. We used a nonlinear computed torque control 
technique to control the RAD-HR. The accuracy of the controller was 
evaluated in simulations (MATLAB/Simulink environment). To see 
the robustness of the controller external disturbance as modelling 
uncertainty (±10% of joint torques) were added in each joints. 
 

Keywords—Biorobotics, rehabilitation, nonlinear control, robotic 
assistive device, exoskeleton. 

I. INTRODUCTION 

N the United States each year more than 795,000 people 
suffer a stroke [1]. As many as 9 out of 10 of the survivors 

require rehabilitation of a varying degree [2]. Commonly 
affected parts are the hands which are vitally important for 
numerous functions as part of our daily lives. The application 
of a robotic assistance device in the process of rehabilitation 
of hand motion sees significant improvement in motor 
functionality recovery of the upper-limb after therapy [3]. To 
assist disabled individuals in the process of rehabilitation of 
their impaired hand motor skills, we have designed a robotic 
assistive device (RAD-HR). Focusing on immediate post-
injury rehabilitation using a simplified design. The simplified 
design of the RAD-HR allows for the recovery, and 
rehabilitation of basic hand motion after stroke or injurie. 

Compared to the conventional rehabilitation process, the 
use of a robotic assisted device in rehabilitation has great 
advantages in terms of clinical, and biomechanical measures. 
The use of robotic assisted devices in the rehabilitation 
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process see a larger improvement in the Fugl-Meyer 
assessment of motor impairment [4]. The Fugl-Meyer 
assessment scale was developed as a performance based 
impairment index and is used as a quantitative measure of 
sensorimotor recover after a stroke. 

The use of a robotic assisted device in rehabilitation 
opposed to traditional therapy sees an improvement of the 
direct cost-savings, and other indirect economic benefits [5]. 
The direct cost-savings are defined as the money spent out of 
pocket for the rehabilitation, and related expenses. The 
indirect economic benefits are defined as the improved quality 
of life, and the retention of the recovery. 

Our RAD-HR was modelled on the average adult human 
hand articulations and range of movement [6]. Using the 
modified Denavit-Hertenberg (DH) method [7], we developed 
the kinematic model for the RAD-HR. In the dynamic 
modelling and simulation, the RAD-HR parameters such as 
link lengths, masses, and centroids of inertia, are estimated 
using the properties of a typical adult human hand [8]. The 
RAD-HR is designed to be worn on the forearm and the back 
of the hand, and was developed to provide the complete range 
of motion for the hand, e.g. pronation and supination, flexion 
and extension, and radial and ulnar movements of wrist joint; 
and the flexion and extension of the fingers. To maneuver the 
RAD-HR, a nonlinear computed torque control (CTC) 
technique [9] was employed in the dynamic simulation and 
implemented as the control system. The effectiveness of CTC 
to control a redundant robotic device, ETS-MARSE, was 
shown in our previous research [12]. 

In the next section of this paper, we present the kinematics, 
and dynamic model for the proposed RAD-HR. Details of the 
design, and development of the proposed RAD-HR are then 
presented in Section III. Section IV presents the dynamics of 
the RAD-HR used in the control system. Section V details the 
control system strategy for the proposed RAD-HR. In Section 
VI, simulation results are presented to evaluate the 
performance of the controller. Finally, the paper ends with the 
conclusion, and the future work in Section VII. 

II.  KINEMATICS 

The kinematics for the RAD-HR was based on the modified 
DH method [7]. To find the modified DH parameters, we 
assumed that the link frames of each successive axes of 
rotation coincide with the joint axes of rotation and are of the 
same order.  

The first joint, {1} (point-O in Fig. 1), is the 
Supination/Pronation of the arm. Joints 2, and 3 (point-A in 
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