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Abstract—Reduction of Single Input Single Output (SISO) 
continuous systems into Reduced Order Model (ROM), using a 
conventional and an evolutionary technique is presented in this paper. 
In the conventional technique, the mixed advantages of Mihailov 
stability criterion and continued fraction expansions (CFE) technique 
is employed where the reduced denominator polynomial is derived 
using Mihailov stability criterion and the numerator is obtained by 
matching the quotients of the Cauer second form of Continued 
fraction expansions. In the evolutionary technique method Particle 
Swarm Optimization (PSO) is employed to reduce the higher order 
model. PSO method is based on the minimization of the Integral 
Squared Error (ISE) between the transient responses of original 
higher order model and the reduced order model pertaining to a unit 
step input. Both the methods are illustrated through numerical 
example. 

Keywords—Reduced Order Modeling, Stability, Continued 
Fraction Expansions, Mihailov Stability Criterion, Particle Swarm 
Optimization, Integral Squared Error.

I. INTRODUCTION

EDUCTION of high order systems to lower order models 
has been an important subject area in control engineering 

for many years. The mathematical procedure of system 
modeling often leads to detailed description of a process in the 
form of high order differential equations. These equations in 
the frequency domain lead to a high order transfer function. 
Therefore, it is desirable to reduce higher order transfer 
functions to lower order systems for analysis and design 
purposes. 

Bosley and Lees [1] and others have proposed a method of 
reduction based on the fitting of the time moments of the 
system and its reduced model, but these methods have a 
serious disadvantage that the reduced order model may be 
unstable even though the original high order system is stable. 
To overcome the stability problem, Hutton and Friedland [2], 
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Appiah [3] and Chen et. al. [4] gave different methods, called 
stability based reduction methods which make use of some 
stability criterion. Other approaches in this direction include 
the methods such as Shamash [5] and Gutman et. al. [6]. 
These methods do not make use of any stability criterion but 
always lead to the stable reduced order models for stable 
systems. Some combined methods are also given for example 
Shamash [7], Chen et. al. [8] and Wan [9]. In these methods 
the denominator of the reduced order model is derived by 
some stability criterion method while the numerator of the 
reduced model is obtained by some other methods [6, 8, 10]. 

In recent years, one of the most promising research fields 
has been “Evolutionary Techniques”, an area utilizing 
analogies with nature or social systems. Evolutionary 
techniques are finding popularity within research community 
as design tools and problem solvers because of their versatility 
and ability to optimize in complex multimodal search spaces 
applied to non-differentiable objective functions. Recently, the 
particle swarm optimization (PSO) technique appeared as a 
promising algorithm for handling the optimization problems. 
PSO is a population-based stochastic optimization technique, 
inspired by social behavior of bird flocking or fish schooling 
[11]. PSO shares many similarities with the genetic algorithm 
(GA), such as initialization of population of random solutions 
and search for the optimal by updating generations. However, 
unlike GA, PSO has no evolution operators, such as crossover 
and mutation. One of the most promising advantages of PSO 
over the GA is its algorithmic simplicity: it uses a few 
parameters and is easy to implement [12].  

In the present paper, two methods for order reduction of 
Single Input Single Output (SISO) continuous systems are 
presented. In the first method, the mixed advantages of 
Mihailov stability criterion [13] and continued fraction 
expansions (CFE) technique [14] is employed where the 
reduced denominator polynomial is derived using Mihailov 
stability criterion and the numerator is obtained by matching 
the quotients of the Cauer second form of Continued fraction 
expansions. The Mihailov stability criterion is to improve the 
Pade approximation method, to the general case. In this 
method, several reduced models can be obtained depending 
upon the different values of the constant 2  in the model and 
bring the Mihailov frequency characteristic of the reduced 
model to approximate that of the original system at the low 
frequency region. In the second method, PSO is employed for 
the order reduction where both the numerator and denominator 
coefficients of LOS are determined by minimizing an ISE 
error criterion. 
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 The reminder of the paper is organized in five major 
sections. In Section II statement of the problem is given. Order 
reduction by Mihailov stability criterion and CFE technique is 
presented in Section III. In Section IV, order reduction by 
PSO has been presented. In Section V, a numerical example is 
taken and both the proposed methods are applied to obtain the 
reduced order models for higher order models and results are 
shown. A comparison of both the proposed method with other 
well known order reduction techniques is presented in Section 
VI. Finally, in Section VII conclusions are given.  

II. STATEMENT OF THE PROBLEM

Given an original system of order ‘ n ’ that is described by 
the transfer function )(sG and its reduced model )(sR of 
order ‘ r ’ be represented as: 
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Where 1a , 1b , 2a  and 2b are constants. )(sDr is the 
reduced degree polynomial of order ‘ r ’, with ( nr ).                                                  

The objective is to find a reduced thr order reduced model 
)(sR  such that it retains the important properties of )(sG for 

the same types of inputs. 

III. REDUCTION BY CONVENTIONAL METHOD

The reduction procedure by conventional method (Mihailov 
stability criterion and continued fraction expansions) may be 
described in the following steps:  

Step-1 

Expand )(sG into Cauer second form of continued fraction 
expansion: 
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Where the quotients ih for ri ,...,3,2,1 are determined 
using Routh algorithm [14] as: 

1,121,2, jiijiji ahaa              (6) 

Where, ,.....4,3i , ,.....2,1j , and 1,11, iii aah

provided   01,1ia

Step-2 

Determine the reduced denominator )(sDr  using Mihailov 
stability criterion as follows:           

Substituting js  in )(s , expanding and separating it 
into real and imaginary parts,   gives: 
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Where ‘ s ’  is angular frequency in rad/sec. 

Setting 0)(  and 0)( , the intersecting 

frequencies  131 ,...,,0 n  are obtained 

where 121 ... n .

Similarly substituting js  in )(sDr gives  
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.....)( 4

4
2

20 eee                                 (11) 

and
.....)( 5

5
3

31 eee                             (12) 

If the reduced model is stable, its Mihailov frequency 
characteristic must intersect ‘ r ’ times with abscissa and 
ordinate alternately in the same manner as that of the original 
system. 

 In other words, roots of 0)(  and 0)(  must 
be real and positive and alternately distributed along the -
axis. So, the first ‘ r ’ intersecting frequencies 

121 ,...,,0 r are kept unchanged and are set to be the 
roots  0)(  and 0)( .

Therefore: 
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Where the values of the coefficients ‘ 1 ’ and ‘ 2 ’ are 

computed from )0()0(  and )()( 11

respectively, putting these values of ‘ 1 ’ and ‘ 2 ’ in (13) 
and (14) respectively, )(  and )(  are obtained and 

)( jDr is found as given in equation (10). 

Now replacing j  by ‘ s ’, the ‘ thr ’ order reduced 

denominator )(sDr  is obtained as given by equation (2). 

Two other sets of ‘ 1 ’ and ‘ 2 ’ are also obtained resulting 
in reducing the denominator )(s to different values of 

)(sDr to provide a range of different solutions. This is 
achieved as follows: 

In the first criterion, ‘ 1 ’ is determined by )0()0(
and ‘ 2 ’ is determined by 

0
)/( dd =

0
)/( dd in 

the reduced model to keep the initial slope of the Mihailov 
frequency characteristic unchanged. 

In the second criterion, ‘ 1 ’ is again unchanged but ‘ 2 ’
is determined by keeping the ratio of the first two coefficients 
( 11a and 12a ) of the characteristic equation (2) unchanged in 
the reduced model [13]. 

Step-3

Match the coefficients ja ,2  in (16) and ih  in (6) to 

determine reduced numerator polynomial )(sNr  by applying 
the following reverse Routh algorithm: 

iii haa /1,1                    (15) 

For ri ,...2,1  with nr

)(, ,21,11 jijiji aaa            (16) 

With )1,...(2,1 rj  and 11,1 ra

 The reduced order model (ROM), )(sR  is obtained as: 
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Step-4

There is a steady state error between the outputs of original 
and reduced systems. To avoid steady state error we match the 
steady state responses by following relationship, to obtain 
correction factor ‘ k ’ a constant as follows: 
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The final reduced order model is obtained by multiplying                   
‘ k ’  with numerator of the reduced model obtained in step 3. 

IV. PARTICLE SWARM OPTIMIZATION METHOD 

 In conventional mathematical optimization techniques, 
problem formulation must satisfy mathematical restrictions 
with advanced computer algorithm requirement, and may 
suffer from numerical problems. Further, in a complex system 
consisting of number of controllers, the optimization of 
several controller parameters using the conventional 
optimization is very complicated process and sometimes gets 
struck at local minima resulting in sub-optimal controller 
parameters. In recent years, one of the most promising 
research field has been “Heuristics from Nature”, an area 
utilizing analogies with nature or social systems. Application 
of these heuristic optimization methods a) may find a global 
optimum, b) can produce a number of alternative solutions, c) 
no mathematical restrictions on the problem formulation, d) 
relatively easy to implement and e) numerically robust. 
Several modern heuristic tools have evolved in the last two 
decades that facilitates solving optimization problems that 
were previously difficult or impossible to solve. These tools 
include evolutionary computation, simulated annealing, tabu 
search, genetic algorithm, particle swarm optimization, etc. 
Among these heuristic techniques, Genetic Algorithm (GA) 
and Particle Swarm Optimization (PSO) techniques appeared 
as promising algorithms for handling the optimization 
problems. These techniques are finding popularity within 
research community as design tools and problem solvers 
because of their versatility and ability to optimize in complex 
multimodal search spaces applied to non-differentiable 
objective functions. 

The PSO method is a member of wide category of swarm 
intelligence methods for solving the optimization problems. It 
is a population based search algorithm where each individual 
is referred to as particle and represents a candidate solution. 
Each particle in PSO flies through the search space with an 
adaptable velocity that is dynamically modified according to 
its own flying experience and also to the flying experience of 
the other particles. In PSO each particles strive to improve 
themselves by imitating traits from their successful peers. 
Further, each particle has a memory and hence it is capable of 
remembering the best position in the search space ever visited 
by it. The position corresponding to the best fitness is known 
as pbest and the overall best out of all the particles in the 
population is called gbest [11]. 

The modified velocity and position of each particle can be 
calculated using the current velocity and the distances from 
the pbestj,g to gbestg as shown in the following formulas 
[12,15, 16]: 
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 With nj ,...,2,1   and mg ,...,2,1

Where, 
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n = number of particles in the swarm

m  = number of components for the vectors vj and xj

t  = number of iterations (generations) 

)(
,
t
gjv = the g-th component of the velocity of particle j at 

iteration t  , max)(
,

min
g

t
gjg vvv ;

w  = inertia weight factor 

     21, cc = cognitive and social acceleration factors 

respectively

21, rr = random numbers uniformly distributed in the 

range (0, 1) 

)(
,
t
gjx  = the g-th component of the position of particle j at 

iteration t

jpbest  = pbest of particle j

gbest  = gbest of the group 

The j-th particle in the swarm is represented by a d-
dimensional vector xj = (xj,1, xj,2, ……,xj,d) and its rate of 
position change (velocity) is denoted by another d-
dimensional vector vj = (vj,1, vj,2, ……, vj,d). The best previous 
position of the j-th particle is represented as pbestj =(pbestj,1,
pbestj,2, ……, pbestj,d). The index of best particle among all of 
the particles in the swarm is represented by the gbestg. In PSO, 
each particle moves in the search space with a velocity 
according to its own previous best solution and its group’s 
previous best solution. The velocity update in a PSO consists 
of three parts; namely momentum, cognitive and social parts. 
The balance among these parts determines the performance of 
a PSO algorithm. The parameters c1 and c2 determine the 
relative pull of pbest and gbest and the parameters r1 and r2
help in stochastically varying these pulls. In the above 
equations, superscripts denote the iteration number.  

( )
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influence

( )
,
t
j gv
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j gx
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( 1)
,
t
j gv
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Fig. 1. Description of velocity and position updates in particle swarm 
optimization for a two dimensional parameter space 

Start

Specify the parameters for PSO

Generate initial  population

Find the fitness of each particle
in the current population

Gen. > max Gen ? Stop

Update the particle position and
velocity using Eqns. (19) and (20)

Gen.=1

Gen.=Gen.+1
Yes

No

Fig. 2. Flowchart of PSO for order reduction 

Fig.1. shows the velocity and position updates of a particle 
for a two-dimensional parameter space. The computational 
flow chart of PSO algorithm employed in the present study for 
the model reduction is shown in Fig. 2. 

V. NUMERICAL EXAMPLES

Let us consider the system described by the transfer 
function [15]: 

4014817384212
1563962648210)( 2345

234

sssss
sssssG    (21) 

For which a second order reduced model )(2 sR is desired. 

A. Conventional Method  

Step-1  

The quotients ih ih for ri ,...,3,2,1 are determined using    
Routh algorithm as: 

256.01h , 92.22h             

872.03h , 72.14h                                              (22) 

Step-2 

Determine the reduced denominator )(sDr  using Mihailov 
stability criterion as follows: 

4014817384212)( 2345 ssssss      (23) 

Expanding and   separating it into real and imaginary   
parts,   gives: 
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42 2117340)(                 (24) 

The roots are: 

8,238.02

and 43 284148)(               (25) 

The roots are: 

83.41,167.0,02

Now, reduced denominator polynomial is derived   using the 
second criterion of Mihailov stability criterion  method by 
calculating the values of‘ 1 ’ and ‘ 2 ’ as given in (13) and 
(14) which come out to be 239.5 and 148 respectively, after 
putting sj  results into reduced denominator polynomial 
of a second order ROM as: 

25.23914840)( ssDr            (26) 

Step-3 

The numerator is obtained by matching the quotients ih of the 
Cauer second form of Continued fraction expansions with the 
coefficients of reduced denominator and using the reverse 
Routh algorithm as: 

156369)( ssNr               (27) 

The transfer function for the reduced order model (ROM) of 
second order can therefore be expressed as: 

401485.239
156369)( 22 ss

ssR             (28) 

Step-4

In this particular example there is no steady state error 
between the step responses of the original system and the 
ROM, hence 1k , and the final reduced model remains 
unchanged. 

B. Particle Swarm Optimization Method  

For the implementation of PSO, several parameters are 
required to be specified, such as 1c and 2c  (cognitive and 
social acceleration factors, respectively), initial inertia 
weights, swarm size, and stopping criteria. These parameters 
should be selected carefully for efficient performance of PSO. 
The constants 1c and 2c  represent the weighting of the 
stochastic acceleration terms that pull each particle toward 
pbest and gbest positions. Low values allow particles to roam 
far from the target regions before being tugged back. On the 
other hand, high values result in abrupt movement toward, or 
past, target regions. Hence, the acceleration constants were 
often set to be 2.0 according to past experiences. Suitable 
selection of inertia weight, w , provides a balance between 

global and local explorations, thus requiring less iteration on 
average to find a sufficiently optimal solution. As originally 
developed, w  often decreases linearly from about 0.9 to 0.4 
during a run [16, 17]. One more important point that more or 
less affects the optimal solution is the range for unknowns. For 
the very first execution of the program, wider solution space 
can be given, and after getting the solution, one can shorten 
the solution space nearer to the values obtained in the previous 
iterations. 

The objective function J is defined as an integral squared 
error of difference between the responses given by the 
expression: 

t

r dttytyJ
0

2)]()([             (29) 

Where  
)(ty and )(tyr  are the unit step responses of  original and 

reduced order systems. 

The reduced 2nd order model employing PSO technique is 
obtained as follows: 

57.84723810.1666805.135
6039.2250245.347)( 22 ss

ssR   (30) 
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Fig. 3. Convergence of objective function for example-1 

The convergence of objective function with the number of 
generations is shown in Fig.  3. The unit step responses of 
original and reduced systems by both the methods are shown 
in Fig. 4. It can be seen that the steady state responses of both 
the proposed reduced order models are exactly matching with 
that of the original model. However, compared to 
conventional method of reduced models, the transient 
response of evolutionary reduced model by PSO is very close 
to that of original model. 

VI. COMPARISON OF METHODS

The performance comparison of both the proposed 
algorithm for order reduction techniques is given in Table I. 
The comparison is made by computing the error index known 
as integral square error ISE [16] in between the transient parts 
of the original and reduced order model, is calculated to  
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measure the goodness/quality of the [i.e. the smaller the ISE, 
the closer is )(sR to )(sG , which is given by:  

t

r dttytyISE
0

2)]()([               (31) 

Where )(ty and )(tyr  are the unit step responses of 
original and reduced order systems for a second- order 
reduced respectively. This error index is calculated for various 
reduced order models which are obtained by us and compared 
with the other well known order reduction methods available 
in the literature. 

TABLE I COMPARISON OF METHODS

 Method  Reduced model ISE 
Proposed

evolutionary 
method 57.84723810.1666805.135

6039.2250245.347
2 ss

s 0.0613

Proposed
conventional

method 401485.239
156369

2 ss
s 1.0806

VI. CONCLUSION

In this paper, two methods for reducing a high order system 
into a lower order system have been proposed. In the first 
method, a conventional technique has been proposed which 
uses the advantages of both the Mihailov stability criterion to 
deduce the denominator polynomial and the Cauer second 
form of continued fraction expansions to obtain the numerator 
polynomial, by matching the denominator polynomial. In the 
second method, an evolutionary swarm intelligence based 
method known as Particle Swarm Optimization (PSO) is 
employed to reduce the higher order model. PSO method is 
based on the minimization of the Integral Squared Error (ISE) 
between the transient responses of original higher order model 
and the reduced order model pertaining to a unit step input. 
Both the methods are illustrated through a numerical example. 

Also, a comparison of both the proposed methods has been 
presented. It is observed that both the proposed methods 
preserve steady state value and stability in the reduced models 
and the error between the initial or final values of the 
responses of original and reduced order models is very less. 
However, PSO method seems to achieve better results in view 
of its simplicity, easy implementation and better response. 
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