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Abstract—A computationally simple approach of model order 
reduction for single input single output (SISO) and linear time-
invariant discrete systems modeled in frequency domain is proposed 
in this paper. Denominator of the reduced order model is determined 
using fuzzy C-means clustering while the numerator parameters are 
found by matching time moments and Markov parameters of high 
order system. 
 

Keywords—Model Order reduction, Discrete-time system, Fuzzy 
C-Means Clustering, Padé approximation. 

I. INTRODUCTION 

IGHER order models are difficult to handle due to 
computational complexities and implementation 

difficulties and they are too complicated to be used in real time 
problems. It is therefore, desirable that a higher model is 
replaced with lower model. A large variety of methods of 
model order reduction are available in literature [1]-[13]. In 
spite of several methods available, no approach gives best 
result for all systems. 

A very powerful method that involves simple algebraic 
calculations comprises continued fraction, moments matching 
and Padé approximation [2], [3]. However, the Padé method 
has a drawback that it may produce an unstable approximant 
for a given stable original system. Many methods such as 
Routh-approximation and Routh-Padé approximants [4]-[6] 
for continuous-time and [26], [27], [30] for discrete-time 
system have been suggested to obtain stable model. Model-
order reduction by matching Markov parameters, time-
moments and impulse energy approximation [7]; [8] have also 
suggested to ensure the stability of the reduced order model. 
Krylov subspace methods [9] is also found to be quite popular 
tool for obtaining reduced order model of very high order 
linear time-invariant systems which is relatively simple and 
cheap that can handle the system with a few thousand degrees 
of freedom but stability of the reduced model is not 
guaranteed. Another important group of reduction algorithm is 
the eigen value preservation technique [10], [11] where 
important eigen values of the system are retained to find stable 
lower order model. Several other methods [12], [13] are 
available to find stable reduced order model of a stable high 
order systems (HOS). Recently, pole clustering techniques 
[14]-[16], [21] has become quite popular in the area of model 
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order reduction that is conceptually simple and easy to 
implement. 

Many methods are available for model order reduction of 
continuous systems but very few are extended to discrete-time 
systems. The techniques for discrete-time systems may be 
classified into two groups. The first group contains the 
methods which exploit the already existing continuous-time 
algorithm, G(z) into another one, G1(w), using the bilinear 
transformation z = (1+w)/(1-w) [17] or other transformations 
such as z = w/(Aw + B), z = w+1 [18]. Then one of the known 
techniques for continuous-time systems is applied to obtain a 
reduced approximant R1(w) of G1(w). Finally the 
corresponding inverse transformation w= φ(z) yields from 
R1(w) the required approximant R(z). The second group 
contains so called direct method [19] that derive R(z) directly 
from G(z) without using the transformation. Model order 
reduction of discrete-time systems using canonical expansion 
of z-transfer function and stable optimal method is discussed 
in [24], [25]. Methods like power decomposition and system 
identification [28], and order reduction using multipoint step 
response matching [31] give simple and quite effective method 
of model-order reduction of discrete-time systems. Modern 
heuristic optimization techniques like genetic algorithm [22] 
and particle swarm optimization [32] are also used for 
reducing the order of discrete-time systems. 

The proposed method is a mixed method for model order 
reduction which combines pole clustering and Padé 
approximation. In this paper, technique of pole clustering 
called Fuzzy C- Mean (FCM) clustering [20] is used to find 
the desired number of pole clusters. Once denominator 
polynomial of reduced order model is determined, the 
numerator coefficients are obtained by Padé approximation. 
This paper is organized as follows: Problem formulation is 
given in Section II. Numerical examples and comparison of 
proposed method with other well known techniques is shown 
in Section III and conclusion in Section IV. 

II. PROBLEM FORMULATION 

Consider, a stable SISO discrete-time system described by 
the transfer function 
 

n-1 n-2 n-3
1 2 3 n

n n-1 n-2 n-3
1 2 3 n

a z +a z +a z +...+a
G(z)=

z +b z +b z +b z +...+b
         (1) 
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Using discrete-time to continuous-time transformation 
algorithm of MATLAB on (1) an equivalent continuous-time 
system obtained as 

 
n-1 n-2 n-3

1 2 3 n
n n-1 n-2

1 2 n

a s +a s +a s +.....+a
G(s)=

s +b s +b s +.....+b
          (2) 

 The problem is to determine its stable reduced-order (rth-
order) approximant. 
 

r-1 r-2 r-3
1 2 3 r

r r r-1 r-2 r-3
1 2 3 r

ˆ ˆ ˆ ˆa s +a s +a s +...+a
G (s)=

ˆ ˆ ˆ ˆs +b s +b s +b s +...+b
         (3) 

 
Once (3) is found using continuous-time to discrete-time 
transformation algorithm of MATLAB the discrete-time 
reduced order model of (1) is found as 
 

r-1 r-2 r-3
1 2 3 r

r r r-1 r-2 r-3
1 2 3 r

ˆ ˆ ˆ ˆc z +c z +c z +...+c
G (z)=

ˆ ˆ ˆ ˆz +d z +d z +d z +...+d
        (4)

 
A. Pole Clustering 

Clustering of data is a process by which large amount of 
data is grouped into a smaller number of groups to facilitate its 
meaningful analysis by lowering dimensionality (two or three 
maximum). Clustering methods are generally used for 
organizing and categorizing data to solve classification and 
pattern recognition problems [16], [20]. It can also be useful 
for data compression and model order reduction. A number of 
clustering techniques are available in literature. K-Means and 
Fuzzy C-Means clustering are the types that can be used if 
numbers of clusters are known apriori as is required in the case 
of model order reduction. These techniques are used in 
conjunction with radial basis function networks (RBFNs) and 
fuzzy modeling. 

K-means or Hard C-means (HCM) clustering [16] algorithm 
relies on finding the cluster centers by minimizing a cost 
function (or an objective function) of dissimilarity (or 
distance) measure [20]. In most cases dissimilarity measure is 
chosen as the Euclidean distance and the cost function based 
on the Euclidean distance between a vector xk in group j and 
corresponding cluster centre ci, can be defined by 

 

k i

c c
2

i k i
i=1 i=1 k,x ÎG

J= J = x -c
 
  
 

∑ ∑ ∑            (5) 

 
where:  Ji  is the cost function within group i. 

The partitioned groups are defined by a c×n binary 
membership matrix U, where element uij is 1 if the jth data 
point xj belongs to group i, and 0 otherwise. Once the cluster 
centers ci are fixed, minimizing uij for (5) can be derived as 

i

2 2

j j k
ij

1 if x -c x -c , for each k i
u =

o otherwise

 ≤ ≠



        (6) 

 
If the membership matrix uij is fixed, then the optimal center ci 
that minimize (5) is the mean of all vectors in group i: 
 

k i

i k
k,x ÎGi

1
c = x

G
∑                  (7) 

 
Fuzzy C-Means clustering [20] is an improvement over 

HCM clustering. In FCM-clustering each data point belongs to 
a cluster to a degree specified by a membership grade and it 
allows one piece of data to belong to two or more clusters. The 
membership matrix U is allowed to have elements with values 
between 0 and 1, while, the sum of degrees of belongingness 
of the data point to all clusters is always equal to unity: 

 
c

ij
i=1

u =1 where j=1,2,...,n∑             (8) 

 
The cost function for FCM is generalization of (5) 
 

c c n
m 2

i ij ij
i=1 i=1 j=1

J= J = u d∑ ∑∑             (9) 

 
where uij is between 0 and 1, ci is the cluster center of fuzzy 

group i; ij i jd = c - x  is the Euclidean distance between the ith 

cluster center and the jth data point; and m Є [1,∞].  
The necessary conditions for (9) to reach to its minimum 

are: 
 

n
m
ij j

j=1
i n

m
ij

j=1

u x

c =
u

∑

∑
            (10) 

and  

ij 2/(m-1)
c

i j

k=1 k j

1
u =

c -x

c -x

 
 
  

∑

          (11) 

 
The FCM Algorithm [20] works iteratively through the 

preceding two conditions until no more improvement is 
noticed. In a batch mode operation, FCM determines the 
cluster centers ci and the membership matrix U using the 
following steps: 
Step 1. Initialize the membership matrix U with random values 

between 0 and 1 such that the constraints of (8) are 
satisfied. 

Step 2. Calculate c fuzzy cluster centers ci, i=1,…,c using (10) 
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Step 3. Compute the cost function according to (9). Stop if it is 
below a certain tolerance value or its improvement over 
previous iteration is below a certain threshold. 

Step 4. Compute a new U according to (11) and go to step 2. 
FCM algorithm starts by assigning random values to the 

membership matrix U, therefore several iterations have to be 
conducted for getting good performance and it is possible to 
have different degree of membership function to each cluster. 
The algorithm must be run several times, each starting with 
different values of membership grades of data points. 

B. Determination of Denominator of Reduced Order Model  

The rth order denominator of reduced model is obtained as 
follows: 

The most dominant poles d1, d2, ..., dmλ λ λ′ ′ ′  of HOS are 

retained and the following rules are used for clustering the 
poles. 
i. Separate clusters should be made for real poles and 

complex poles. 
ii. Poles on the jw-axis have to be retained in reduced-order 

model. 
The desired number of clustered centers for the denominator 

poles of the HOS is determined using FCM algorithm as 
discussed above. If all the poles to be clustered are real, 

desired number of cluster centers 

 

ciλ′  i=1, 2,…, (r-m). 

For complex conjugate poles ( ) ( )1 1 2 2α ± jβ , α ± jβ ,  …   

using FCM algorithm for both real and imaginary parts 
separately the cluster pole centers are obtained as 

cj cj=A ± jBcjΦ where cjA and cjB are cluster centers of real 

poles and imaginary poles respectively. 
For synthesizing rth order denominator polynomial, one of 

the following cases may occur: 
Case 1. If all the cluster centers are real, then the denominator 

polynomial of rth order model can be obtained as: 
 

r d1 dm c1 c(r-m)D (s)=(s-λ )...(s-λ )(s-λ )...(s-λ )′ ′ ′ ′     (12) 

 
Case 2. If all the cluster centers are complex conjugate, the 

cluster centers are found using FCM algorithm. The 
denominator of ROM is realized using the dominant 
poles and cluster centers (poles) with its conjugate 
pairs. 

Case 3. If system has both real and complex conjugate poles, 
the denominator polynomial is synthesized using the 
combination of dominant pole as well as cluster centers 
in its real and complex conjugate form. From the above 
cases, the rth order denominator of ROM is obtained as  

 
r r-1 r-2 r-3

r 1 2 3 r
ˆ ˆ ˆ ˆD (s)=s +b s +b s +b s +...+b        (13) 

C. Determination of Numerator of Reduced Order Model 

The numerator of ROM is determined by using Padé 
Approximation. G(s) (1) is expanded around s=0 and s=∞ as 

 
n-1

1 2 n

-1 -2 -n
1 2 n

G(s)=t +t s+...+t s +...

=M s +M s +...+M s +...
           (14) 

 

where it s are the time moments and iM s are the Markov 

parameters (i 1, 2,3,...)= of HOS 

Similarly Gr (s) is expanded around s=0 and s=∞ as 
 

r 1 1 r

-1 -2 -r
1 2 r

ˆ ˆ ˆG (s)=t +t s+...+t s +...

ˆ ˆ ˆ=M s +M s +...+M s +...
         (15) 

 

where it̂ s are the time moments and M̂is are Markov 

parameters (i=1,2,3,...) of  ROM. The matching equations of 

time moments and Markov parameters of system and ROM are 
found as follows 
Case 1. r even 

We seek a stable model for which following r equations are 
to be satisfied 

 

i it̂ -t =0     and    i iM̂ -M =0    for i=1, 2,…, r/2    (16) 

 
The time moments and Markov parameters are related with 

numerator & denominator coefficients as  
 

i i

r+1-i j r-i+j i j i-j
j=1 j=1

ˆ ˆˆ ˆa = t b and  a = M b for i=1,2,3,...,r/2∑ ∑   (17) 

Case 2.  r odd 

In this case, with the requirement that 
1 2 r-1 r+1

2 2

ˆ ˆ ˆ ˆt ,t ,..., t ,t and 

1 2 r-3 r-1

2 2

ˆ ˆ ˆ ˆM , M ,...,M ,M are exactly matched. 

With 
1 2 r-1 r+1

2 2

t ,t ,..., t ,t and 
1 2 r-3 r-1

2 2

M , M ,...,M ,M  

respectively, we have 
 

i i

r+1-i j r-i+j i j i-j
j=1 j=1

r+1 r-1ˆ ˆˆ ˆa = t b ,i=1,2,..., and a = M b fori=1,2,...,
2 2

∑ ∑ (18) 

 
Using above equations and selecting the desired number of 

time moments and Markov parameters of the original and 
reduced order model to be matched, the modified numerator 

coefficients 1 2ˆ ˆ ˆ, ....... ra a a
 

of the reduced order model is 

computed. Thus, the numerator of the rth order model comes 
out to be 
 

r r-1 r-2 r-3
r 1 2 3 r

ˆ ˆ ˆ ˆN (s)=s +a s +a s +a s +.....+a   (19) 
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D. Calculations of Time Moments [23] and Markov 

Parameters  of Discrete Time System 

Putting z = p+1 in (1) and expanding about p=0, (1) 
becomes 
 

n-1 n-2 n-3
1 2 3 n
n n-1 n-2 n-3

1 2 3 n

a (p+1) +a (p+1) +a (p+1) +...+a
G(p)=

(p+1) +b (p+1) +b (p+1) +b (p+1) +...+b
 (20) 

n-1 n-2 n-3
1 2 3 n

n n-1 n-2 n-3
1 2 3 n

A p +A p +A p +...+A
=

p +B p +B p +B p +...+B
   (21) 

            2
0 1 2=t +t p+t p +...            

2
0 1 2=t +t (z-1)+t (z-1) +...            (22) 

 
The parameters ti’s are given by 
 

i-1
n

0 i n-1 n+j-i j n,
j=0n

A
t =  and t =(A - B t )/B i=1,2,...

B
∑     (23) 

 

where it is understood that A 0for i 0i = ≤ ; 

0 iB =1;B =0for i -1≤ . Hence the time moments of discrete 

time system becomes 
 

i

i
i ji

s ij j
j=1

t for i=0

T = for i=1,2,...1
(-) (T ) w t

j!







∑
  (24) 

 
where TS is the sampling frequency and wij is defined as 
 

i-1,j-1 i-1,j
ij

w +jw for i>j
w =

0 for i<j





ii i1with w =w =1     (25) 

 
For the reduced-order model represented by (4) the 

respective time moments Ti’s take the form 
 

i

i
i i j

s ij j
j=1

t̂ for i=0

T̂ = for i=1,2,...1 ˆ(-) (T ) w t
j!







∑
         (26) 

 

where it̂ 's are given by 

 
i-1

r
0 i r-1 r+j-i j r,

j=0r

Â ˆ ˆ ˆˆ ˆt =  and t =(A - B t )/B i=1,2,...
B̂

∑    (27) 

 

and it is understood that Â 0for i 0i = ≤ ; 

0 i
ˆ ˆB =1;B =0for i -1≤ . Note that i

ˆ ˆA 's,B 'si are obtained for 

the reduced model in same manner as iA 's,B 'si are obtained 

from the high order system. 

The Markov parameters of the system (1) is determined by 
expanding (1) around z=0. Thus 

 
-1 -2 -3

1 2 3G(z)=M z +M z +M z +...                 (28) 

 
i-1

1 1 i i i-j j
j=1

M =a  and M =a - b M ,i=2,3,...∑  where it is understood 

that i ia =b =0for i=n+1, n+2,...  

Expanding model (4) around z=0, one has 
 

-1 -2 -3
1 2 3

ˆ ˆ ˆG (z)=M z +M z +M z +...r
     (29) 

 
i-1

1 1 i i i-j j
j=1

ˆˆ ˆ ˆˆ ˆM =a  and M =a - b M ,i=2,3,...∑  where it is 

understood that i i
ˆâ =b =0for i=n+1,n+2,...  

III. NUMERICAL EXAMPLES 

Example 1: Consider a stable 6th order discrete-time system 
[29]  
 

6 5 4 3

2

6 5 4 3

2

0.3277 0.9195 1.038 0.5962

0.1618 0.006986 0.005308
( )

1.129 0.2889 0.08251

0.04444 0.00476 0.0000

z z z z

z z
G z

z z z z

z z

+ + +

+ + −
=

+ + −

− − +

     (30) 

(T0=1.3320, T1=-2.4904, M1=0.3277, M2=0.5498) 
 

As the given discrete-time system have a pole at origin, 
zero-order hold (ZOH) command of continuous to discrete 
transformation cannot be used. Using the Tustin 
transformation G(z) is transformed to G(s) taking sampling 
time 1.0s. 

 
5 4 3 2

6 5 4 3 2

15.6 124.2 510.3 1166 959.3
( )

21 175 735 1624 1764 720

s s s s s
G s

s s s s s s

+ + + + +
=

+ + + + + +
    (31) 

(t1=1.3320, t2=-1.6448, t3=1.7334; M1=1, M2=-5.4, M3=62.6) 
 
The poles of G(s) are

1 2 3 4 5 61, 2, 3, 4, 5,and 6λ λ λ λ λ λ= − = − = − = − = − = −  

 
It is desired to obtain a third order model of the form 

 
2

1 2 3
3 3 2

1 2 3

ˆ ˆ ˆ
( )

ˆ ˆ ˆ
a s a s a

G s
s b s b s b

+ +
=

+ + +
          (32) 

 
The dominant pole ‘-1’ is retained and using FCM algorithm 

(see section A) from remaining poles two clustered poles are 
found to be -2.6907 and -5.3114 and the denominator of ROM 
is obtained as 
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3 2
3( ) 9.002 22.29 14.29D s s s s= + + +    (33) 

 
Matching two time-moments and Markov parameter and 

using (19) the numerator of ROM is found to be  
 

2
3 ( ) 6.186 19.0343N s s s= + +       (34) 

 
Thus the ROM of the proposed method turns out to be 

 
2

3 3 2

6.186 19.0343
G (s)=

9.002 22.29 14.29

s s

s s s

+ +
+ + +

            (35) 

(t1=1.3320, t2=-1.6448; M1=1, M2=-2.8160) 
 

Third-order approximant using Inverse Distance Measure 
(IDM) method of pole clustering [14] is given as  
 

2

3 3 2

0.328 33.22
G (s)=

10.22 30.55 24.93

s s

s s s

− +
+ + +

   (36) 

(t1=1.3325, t2= -1.6461; M1=1, M2= -10.5480) 
 

Step responses of continuous time model of original system 
(31), proposed model (35) and IDM model (36) are plotted in 
Fig. 1. It is found that the response of the proposed model is 
identical to that of HOS (31) while the IDM model shows 
deviation from the original model. 

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

 
Step Response

Time (sec)

A
m
p
lit
u
d
e

eqn. (31)

eqn. (35)

eqn.(36)

 

Fig. 1 Step response of continuous-time (transformed) original 
systems and ROMs 

 
Transforming continuous-time third-order proposed ROM 

(35) to discrete time system using Tustin transformation in 
MATLAB and taking sampling time 1 s. The proposed model 
in z-domain comes out to be   
 

3 2

3 3 2

0.3442 0.6364 0.3959 0.1036
G (z)=

0.2667 0.1333 0.02218

z z z

z z z

+ + +
+ − −

 (37) 

(T0=1.3321, T1=-2.5745, M1=0.3442, M2=0.5445) 

Similarly transforming continuous-time third-order of IDM 
model (36) to discrete-time system using Tustin transformation 
and taking sampling time 1s comes out to be 
 

3 2

3 3 2

0.271 0.7039 0.7134 0.2805
G (z)=

0.5264 0.02365 0.02439

z z z

z z z

+ + +
+ − −

  (38) 

(T0=1.3322, T1=-2.6052, M1=0.2710, M2=0.5615) 
  

Step responses of discrete-time model of original system 
(30), proposed model (37) and IDM model (38) are plotted in 
Fig. 2. The response of the proposed model is identical to the 
HOS (30). These findings are also confirmed by examining the 
ISE (Integral Square Error) given in Table I. 
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Fig. 2 Step response of discrete-time original system and ROMs 
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TABLE I 
COMPARISON OF PROPOSED METHOD AND IDM METHOD 

Reduction 

method 
Reduced model ISE 

Proposed 
method (37) 

3 2

3 3 2

0.3442 0.6364

0.3959 0.1036
G (z)=

0.2667

0.1333 0.02218

z z

z

z z

z

+

+ +
+

− −

 
0.0010 

IDM method 
(38) 

3 2

3 3 2

0.271 0.7039

0.7134 0.2805
G (z)=

0.5264

0.02365 0.02439

z z

z

z z

z

+

+ +
+

− −

 
0.0154 

 
Example 2: Consider a stable 8th order discrete-time system 

[32]  
 

7 6 5

4 3

2

8 7 6 5

4 3 2

0.165 0.125 0.0025

0.00525 0.02263

0.00088 0.003 0.000413
( )  

0.6208 0.416 0.07613

0.05915 0.1906 0.09737

0.01635 0.002226

z z z

z z

z z
G z

z z z z

z z z

z

+ −

+ −

− + −
=

− − +

− + +

− +

   (39) 

(T0=1.0701, T1=1.3774, T2=-6.0620; M1=0.1650, M2=0.2274, 
M3=0.2073) 

 
G(z) is transformed to continuous-time system G(s) taking 

sampling time (TS) 0.1s. 
 

7 6 5 4

3 2

8 7 6 5

4 3 2

0.2618 26.64 2603 1.018 05

2.331 06 3.599 07

3.236 08 1.186 09
( )  

61.08 2671 7.765 04

1.502 06 1.926 07 1.747 08

3.896 08 1.108 09

s s s e s

e s e s

e s e
G s

s s s e s

e s e s e s

e s e

+ + +

+ +

+ +
=

+ + +

+ + +

+ +

(40) 

(t1=1.0704, t2=-0.0843, t3=-0.1066; M1=0.262, M2=10.65, 
M3=1253.3) 

 
Using proposed method the 6th order reduced model of the 

original HOS (39) by matching 3-time moments and 3-Markov 
parameters is found to be 

 
5 4 3

2

6 6 5 4 3

2

0.262 24.2 2317.7

47401.5 505355.5 2158996.8
( )

51.7 1961 2.365 04

2.947 05 6.291 05 2.017 06

s s s

s s
G s

s s s e s

e s e s e

+ + +

+ +
=

+ + +

+ + +

 (41) 

(t1=1.0704, t2=-0.0833, t3=-0.1069; M1=0.262, M2=10.65, 
M3=1253.0) 

 

Using IDM [14] method 6th order approximant of HOS (39) 
comes out to be 

 
5 4 3

2

6 6 5 4 3

2

0.262 17.68 1738.5

17318.8 172443.8 717596.16
( )

26.83 761.4 8684

9.979 04 2.139 05 6.704 05

s s s

s s
G s

s s s s

e s e s e

+ +

+ + +
=

+ + +

+ + +

    (42) 

(t1=1.0704, t2=-0.0843, t3=-0.1066; M1=0.2620, M2=10.65, 
M3=1253.25) 

 
Step responses of continuous time model of original system 

HOS (40), proposed model (41) and IDM model (42) are 
plotted in Fig. 3 and found that the response of the proposed 
model is almost identical to that of HOS. 
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Fig. 3 Step response of continuous-time (transformed) original 
systems and ROMs 

 
Transforming continuous-time sixth-order proposed ROM 

(41) to discrete time system using Tustin transformation and 
taking sampling time 0.1 s discrete-time model comes out to 
be 

 
5 4 3

2

6 6 5 4 3

2

0.1453 0.01645 0.04762

0.03367 0.006161 0.001431
G (z)=

1.841 1.303 0.5537

0.09981 0.06726 0.005685

z z z

z z

z z z z

z z

− −

+ − −
− + −

+ + +

   (43) 

(T0=1.0613, T1=1.3359, T2=-5.9920; M1=0.1453, M2=0.2510, 
M3=0.2252) 

 
Similarly transforming continuous-time sixth-order of IDM 

model ROM (42) to discrete-time system using Tustin 
transformation and taking sampling time 0.1s it’s discrete-time 
model comes out to be 
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5 4 3

2

6 6 5 4 3

2

0.178 0.00544 0.1796

0.2027 0.044 0.01755
G (z)=

1.755 1.446 1.103

0.6373 0.1685 0.06836

z z z

z z

z z z z

z z

− −

+ − −
− + −

+ − +

    (44) 

(T0=1.0711, T1=1.3786, T2=-6.0800; M1=0.1780,M2=0.3069, 
M3=0.1017) 

 
Fig. 4 shows that the step responses of discrete-time model 

of original system (39), proposed model (43) and IDM model 
(44) and found that the response of proposed model is 
identical to HOS. These findings are also confirmed by 
examining the ISE given in Table II. 
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Fig. 4 Step response of discrete-time original system and ROMs 
 

TABLE II 
COMPARISON OF PROPOSED METHOD WITH OTHER METHOD 

Reduction 

method 
Reduced model ISE 

Proposed 
method (43) 

5 4

3 2

6 6 5 4

3 2

0.1453 0.01645

0.04762 0.03367

0.006161 0.001431
G (z)=

1.841 1.303

0.5537 0.09981

0.06726 0.005685

z z

z z

z

z z z

z z

z

−

− +

− −
− +

− +

+ +

 0.0017 
 

IDM 
method (44) 

5 4

3 2

6 6 5 4

3 2

0.178 0.00544

0.1796 0.2027

0.044 0.01755
G (z)=

1.755 1.446

1.103 0.6373

0.1685 0.06836

z z

z z

z

z z z

z z

z

−

− +

− −
− +

− +

− +

 0.0333 
 
 

IV. CONCLUSION 

In this paper, the original high-order discrete-time system is 
transformed to continuous-time system and its stable ROM is 
obtained using pole clustering- Padé method. The denominator 
is obtained by retaining dominant pole and clustering the 
remaining poles of the original HOS using Fuzzy C-means 
clustering technique. Having obtained the denominator, the 
numerators parameters are calculated by fully retaining the 
first r time moments/ Markov parameters of the system. Once 
the reduced-order model is obtained, its discrete-time model is 
derived. The proposed approach, therefore leads to improved 
approximants. It is worth mentioning that for r ≤ 4 with 
complex conjugate poles, the problem of identifying clusters 
of poles may possibly surface. In this situation pole clustering 
techniques [14], [15] may be used. However, this problem is 
open to investigation. 
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