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Abstract— There are several approaches in trying to solve the 

Quantitative 1Structure-Activity Relationship (QSAR) problem. 

These approaches are based either on statistical methods or on 

predictive data mining. Among the statistical methods, one should 

consider regression analysis, pattern recognition (such as cluster 

analysis, factor analysis and principal components analysis) or partial 

least squares. Predictive data mining techniques use either neural 

networks, or genetic programming, or neuro-fuzzy knowledge. These 

approaches have a low explanatory capability or non at all. This 

paper attempts to establish a new approach in solving QSAR 

problems using descriptive data mining. This way, the relationship 

between the chemical properties and the activity of a substance 

would be comprehensibly modeled. 

.

Keywords— association rules, classification, data mining, 

Quantitative Structure - Activity Relationship. 

I. INTRODUCTION

HE concept of Quantitative Structure-Activity 

Relationship (QSAR) has been introduced by Hansch and 

co-workers in the 1960s. Investigating the relationship 

between the structure and the activity of chemical compounds 

(SAR) supports understanding the activity of interest and 

allows the prediction of the activity of new compounds based 

on knowledge of the chemical structure alone. These

predictions can be achieved by quantifying the SAR.

In the 1950's, Hansch using regression analysis succeeded 

to correlate biological activity with molecular properties. 

Nowadays, more sophisticated statistical methods or forms of 

pattern recognition, such as cluster analysis, factor analysis 

and principal components analysis, have been used in the 

search for patterns between biological and physical data. 

Pattern recognition techniques, like multivariate statistics, 

along with principal component analysis (PCA) are data 

dimension reduction and transformation techniques from 
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multiple experiments to the underlying patterns of 

information. Partial least squares (PLS) is used for performing 

the same operations on the target properties. The predictive 

ability of this method can be tested using cross-validation on 

the test set of compounds. 

The aim of QSAR techniques is to find correlations 

between any property or form of activity, biological activity in 

general, and the properties of a set of molecules. However, in 

its most general form, QSAR is supposed to cover correlations 

independent of actual physicochemical properties. The goal is 

to connect the activities and properties by some known 

mathematical function, F:  

Biological activity = F (Structure Properties) 

Among data mining techniques the most used ones are

based on neural networks [6] or on neuro-fuzzy approaches 

[5] or on genetic programming [4]. All these approaches 

predict the activity of a chemical compound, without being 

able to explain the predicted value. 

A descriptive data mining technique recently applied to 

chemical compound classification is frequent sub-structure 

mining [2], a modified version of association rule mining. 

The quality of any QSAR depends on the quality of the 

modeled data. The quality of the data relies on multiple 

readings for a given observation, for which the variation of 

data on the same compound should be much smaller than the 

variation over the series.  

To insert images in Word, position the cursor at the 

insertion point and either use Insert | Picture | From File or 

copy the image to the Windows clipboard and then Edit | Paste 

Special | Picture (with “Float over text” unchecked).  

II. DESCRIPTIVE DATA MINING

A. Association rules 

The description of the association rules mining was first 

given by Agrawal et al. [1]. The set of items or attributes are 

designated by the literals I = { I1, I2, …, In}. A record (or 

transaction) contains some of the items of I, for the 

transactional data base case, or contains their presence 

information, for the relational data base case. We will denote 

this relation through the inclusion operator, . The input data 

for the mining algorithms consists in a set of records. Any set 

of items of I is called an itemset. An association rule is a 

relation between itemsets, A B, where A and B are 

contained in some transaction, and A B= . A is the 
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antecedent of the rules, and B is the consequent. 

An itemset is associated with a measure of frequency, 

called support, and support (X) denotes the ratio between the 

number of records that contain X and the total number of 

records in the data set. For a rule, the support measure refers 

to the A B set. The strength of an association A B is 

measured by the confidence of the rule determined as support 

(A B)/support (A). 

Mining association rules is finding all the rules that exceed 

two user-specified thresholds, one for support, min_sup, and 

one for confidence, min_conf. An itemset that exceeds the 

support threshold is a large itemset. Let S be a large itemset, 

for any A S and support (S)/support (A) min_conf, A S-A 

is an association rule. Therefore, classically finding 

association rules consists in two stages: 

1) Discovering all large itemsets. This stage is classically split 

into two parts: candidate-generation step, of an 

incremental manner, and large item selection, counting 

the support of the candidates and pruning the ones that 

are not large; 

2) Determining the rules with enough confidence.  

The main algorithms are sequential or parallel, running on 

the entire data set or only on a training set, use different 

approaches to reduce the number of data base scans or the 

amount of storage memory. 

B. Formal Concept Analysis 

The theory of formal concept analysis was introduced by 

Wille [7], and correlated with association rules mining by 

Zaki and Ogihara [8]. Let I be the set of items and let T be the 

set of records. Let s be a mapping between the power set of I 

and the power set of T, which associates to a set of itemsets all 

records that contain at least one of them. Let t be a mapping 

between the power set of T and the power set of I that

associates to a set of records all itemsets contained in them. 

The composition c=t  s is proven to be a closure operator. 

The context (T, I, ) and the mappings s and t define a 

Galois connection between (I) and (T). 

A concept in this context is a pair (X, Y) of closed sets, 

where X T and Y I, with t(X)=Y and s(Y)=X (according to 

this, c(X)=X and c(Y)=Y, so X and Y are closed sets). X is 

the extent of the concept, while Y is the intent of the concept. 

Every context (T, I, ) can be associated with a Galois 

lattice of concepts, with join and meet operators derived from 

the closure operator, c. The Galois lattice can be represented 

by a Hasse diagram. Between a pair (X1, Y1) and (X2, Y2) of 

concepts, the relation (X1, Y1)  (X2, Y2) means that Y1 Y2

and X1 X2. A frequent concept has support(X) min_sup. 

All frequent itemsets are uniquely determined by the frequent 

concepts. There can be frequent itemsets that are not closed 

sets, but they are included in closed sets and are sharing the 

same support. These itemsets do not need to be generated 

(though, classical algorithms do generate them). They are 

called pseudo-intents. 

A partial implication rule (c1, c2, conf) is associated with a 

pair of concepts that satisfy c1 c2, where conf is the precision 

determined as support(Y2)/ support(Y1).   

Association rules are represented at the intent level of a 

concept, as Y1 Y2-Y1, with c2 frequent and p min_conf. 

Whenever Y1 is a pseudo-intent and Y2 is its intent, we have a 

global implication rule, with conf=1 (due to the same 

support). 

Note. If (c1, c2, p) and (c2, c3, q) are implication rules, (c1,

c3, p*q) is also an implication rule. 

C. Frequent sub-structure mining 

While most of QSAR-related techniques use the chemical

compound properties data to predict activity, the approach 

described in [2] applies to two types of representation for 

chemical compounds: 

1) the topological representation that  sees a chemical 

compound as an undirected graph, having atoms in the 

vertices and bonds in the edges and 

2) the geometric representation that sees a chemical

compound as an undirected graph with 3D coordinates

attached to the vertices. 

The frequent sub-structure mining attempts to build, just 

like frequent itemsets, frequent connected sub-graphs, by 

adding vertices step-by step. 

The main difference from frequent itemset mining is that 

graph isomorphism has to be checked, in order to correctly 

compute candidate support. 

The purpose of frequent sub-structure mining is the

classification of chemical compounds. 

III. OUR APPROACH

We are developing an approach that: 

1) attempts describing, and not predicting, the relationship 

between the quantitative structure and the activity,  

2) attempts describing the QSAR and not classifying the 

substances. 

We consider a database D of chemical descriptors having a 

target attribute A (activity).  

Our approach considers a part of D, denoted DM, to be used 

for descriptive mining and the rest, denoted DT, to test the 

predictive power of the results obtained by mining.

D. Data and target attribute pre-processing 

The original data, except for the associated target attribute, 

can be subject to different transformations, but for the moment 

we ignore this aspect. It will be considered in the

Experimental results section.  

The target attribute (in our case the lethal dose) comes 

either as a value or as an interval. This attribute is subjected to 

a clustering method in order to transform it in cluster number 

to whom the attribute value is a member. For the moment, we 

do not have enough experiments to prove this is the best way 

to do it. 

E. Association Rule processing 

The pre-processed DM data is used by the SFERA 
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benchmark (System for Finding and Extending Rules of 

Association [3]). The system's outcomes are:  

1) the frequent concepts; 

2) the association rules that are partial implication rules and 

3) the pseudo-intents along with their associated concepts, 

the base of global implication rules. 

A pair (pseudo-intent, associated concept) represents global 

implication rules that are equivalent to implications in 

proposition logic. 

F. Post processing 

The post-processing part creates the conditions for the main 

contribution to this paper, the tentative prediction. 

We start from the implications resulted from SFERA. We 

ignore for now the partial implications. 

A global implication has the form:  

pseudo-intent  concept, 

and both expressions are conjunctions of propositions, 

involving relationships between DM attributes and values 

(equality, set membership, interval membership etc.). 

We filter the rules that comprise the target attribute only in 

the conclusion. We will call this set of rules RT.

G. Tentative prediction 

The tentative prediction part of our approach represents the 

main contribution to this paper. 

For each chemical compound Ci in DT, we check it against 

the premises of each rule Rj in RT. Either the compound 

satisfies the premises, or it doesn't. 

If it does, Ci is then checked against the Rj conclusion 

ignoring the target attribute cluster id. If Ci satisfies the 

conclusion of Rj, this means that the proposition involving the 

target attribute in Rj's conclusion must be true, hence Ci target 

attribute value can be predicted in cluster membership terms. 

We will denote this case as OK and memorize the 

corresponding cluster number. If Ci does not satisfy the 

conclusion of Rj, this means that an exception is raised and it 

will be marked as NOK. We will discuss later the significance 

of raised exception later. 

If Ci doesn't satisfy the premises of Rj, the rule is skipped. 

This case will be denoted as N/A. 

This is a straightforward case, the most favorable one. This 

situation is not guaranteed to occur, so if RT is void we are 

considering predicting in a more elaborated way as a future 

direction of work. 

In the end, we analyze the results per rule and compound. 

We will obtain the results as in Table 1.  

TABLE I

TENTATIVE PREDICTION RESULTS 

Compound R1 R 2 ... Rm

C1 OK – id11 N/A ... NOK 

C2 NOK OK– id22 ... OK– id2m

...     

Cn N/A NOK .... OK– idnm

H. Result interpretation 

A last phase consists in observing the OK distribution for a 

compound in the result table, using the following criteria for 

the corresponding situations: 

1) N/A for all rules. This means that the compound belongs to 

a category that was not appropriately represented in the 

training set. This situation can occur either because 

similar compounds do not exist, which is highly unlikely 

to happen, or it is not interesting from a toxicological 

point of view. Either way, the compound is submitted to a 

chemist's attention. This situation is labeled UNKNOWN; 

2) One or more NOK in the context of N/As express the fact 

that the generating rules are too specific to the training 

set, thus rule generalization should be considered and 

validated by the chemists. This situation is also labeled 

UNKNOWN; 

3) The same (OK, cluster id) pair in the context of N/As and 

NOKs leads to a successful classification; This situation 

is labeled by the cluster id's value; 

4) Several (OK, cluster id) pairs is interpreted as follows: the 

most frequent cluster id is presumed to be the 

classification result; if adjacent cluster ids are present it is 

presumed that the rule can be used for a set of cluster an it 

is labeled GEN, but if dispersed cluster ids are present 

(for example, low and high degree of toxicity for the 

same compound) the rules involved are considered to be 

too general, thus rule specialization should be taken into 

account and the label is SPEC. In the GEN case the most 

frequent cluster_id is considered as result, while in the 

SPEC case the results are considered as unreliable.

Afterwards, a cross-validation phase can also be used.

IV. EXPERIMENTAL RESULTS AND MODEL VALIDATION

We are presenting here the experimental results on a

database of 260 pre-clustered compounds split 20% in DM and 

80% DT.

The lethal dose attribute values were separated in 4 non-

overlapping toxicity clusters. 

We have conducted experiments on various data 

transformations. The descriptor set consisting of the element 

masses in every compound was used as: original data; 

presence data (as in market basket analysis) – comprising 

Boolean data reflecting the presence or absence of an element 

in a compound; percentage data – comprising percentages of 

elements mass in the total molar mass of the compound and 

substructure data – comprising the count of substructures (as –

CH3) and the count of relative position of benzoic bonds. 

We have found the following: 

1) the presence data of element mass were irrelevant -  we 

mostly obtained NOKs;  

2) the percentage data had too few relevant results, allowing 

prediction;  

3) the original data were more relevant, as 50% of the 

compounds in DT had relevant prediction information – a 

cluster id result or a GEN result; 
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4) the substructure representation offered the most 

expressive results. 

In what concerns the model validation for the substructure-

based representation, we have confronted the model results 

with the associated cluster id and found the results in Table 2. 

It is to be mentioned that the high toxicity class had the best 

representation – nearly 3 times more compounds were labeled 

"high" than each of the other categories. 

We have observed the following: 

1) a third of the very high toxicity compounds could not 

be classified, most of them have been classified as

highly or very highly toxic, just 3% are unacceptable 

results – meaning a very highly toxic compound 

classified as medium or low; 

2) a fifth of the high toxicity compounds could not be 

classified, most of them have been correctly 

classified, a sixth have been classified either as very 

high or as medium, just 4% are unacceptable results – 

meaning a highly toxic compound classified as low; 

3) unfortunately, the performance degrades 

considerably for the medium and low toxicity 

compounds. 

TABLE II 

MODEL VALIDATION RESULTS 

  Result type 

Cluster id 

UNKNOWN 

[%] 

Correct 

Cluster id 

[%] 

GEN 

[%] 

SPEC 

[%] 

1 – very high 31.25% 15.63% 50.00% 3.13% 

2 - high 19.79% 62.50% 13.54% 4.17% 

3 – medium 12.50% 0.00% 71.88% 15.63% 

4 - low 35.00% 5.00% 5.00% 55.00%

Furthermore, we validated the model against the training 

set, following the same procedure. We have found the results 

in Table 3. We observed the same behavior applied to the 

training set, too. 

TABLE III  

TRAINING SET VALIDATION RESULTS 

  Result type 

Cluster id 

UNKNOWN 

[%] 

Correct 

Cluster id 

[%]

GEN 

[%] 

SPEC 

[%] 

1 – very high 22.22% 11.11% 66.67% 0.00% 

2 - high 8.00% 80.00% 12.00% 0.00% 

3 – medium 12.50% 0.00% 87.50% 12.50% 

4 - low 50.00% 0.00% 0.00% 50.00%

The behavior coincidence made us think that the predefined 

clusters are not completely accurate, since the high toxicity set 

was considerably larger than the others. We have computed an 

over-fitting factor, expressing the fact that the predicted 

cluster id is the one of the largest cluster instead of the right 

one. We have found out that there is an extremely strong 

correlation, almost 100%, between the behavior shown in 

tables 2 and 3 and the over-fitting factor. In fact, the 

compounds in the very high, medium and low toxicity clusters 

were mostly predicted to belong to high cluster, due to the 

large representation of this cluster. 

This way, we have found out that the original clustering 

was inappropriate. Thus, we are now considering a new

approach in what concerns classifying the data into toxicity 

classes. 

II. V. CONCLUSION AND FUTURE WORK

The conclusion to be drawn from our experiments is that for 

a well represented class the promising results may be 

misleading and we should consider a new way of classifying 

data into toxicity classes as well as a larger database, with 

larger representation for the extreme classes.  

Our main contribution relies in the facts that until now only 

computational means or neural network-based methods were 

used for QSAR. All these methods have low explaining 

capability or none at all. Being able to predict biological 

activity by descriptive means leads to building an explicit 

model for QSAR. Also, being able to validate the model

against the training set, allows us to model data starting from 

the correct premises. 

Our research has several directions for the future:

1) performing a 5 fold cross validation, in order to

verify the prediction accuracy; 

2) considering a rule generalization and specialization 

approach; 

3) building a compound taxonomy, in order to class-

specifically predict activity based on class specific 

models;  

4) integrating the partial implication rules in our 

approach; 

5) creating a methodology that facilitates the prediction 

using descriptive mining. 
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