
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:2, 2010

269

Mobile Robot Path Planning in a 2-Dimentional
Mesh

Doraid Dalalah

Abstract—A topologically oriented neural network is very

efficient for real-time path planning for a mobile robot in changing
environments. When using a recurrent neural network for this
purpose and with the combination of the partial differential equation
of heat transfer and the distributed potential concept of the network,
the problem of obstacle avoidance of trajectory planning for a
moving robot can be efficiently solved. The related dimensional
network represents the state variables and the topology of the robot's
working space. In this paper two approaches to problem solution are
proposed. The first approach relies on the potential distribution of
attraction distributed around the moving target, acting as a unique
local extreme in the net, with the gradient of the state variables
directing the current flow toward the source of the potential heat. The
second approach considers two attractive and repulsive potential
sources to decrease the time of potential distribution. Computer
simulations have been carried out to interrogate the performance of
the proposed approaches.

Keywords—Mobile robot, Path Planning, Mesh, Potential field.

I. INTRODUCTION

N the past, numerous approaches has been done in solving
the path-planning problem, mostly in static environments

and unchangeable world space. In such planning some
constraint conditions have to be met, such as the pass through
via points, smoothness of the planned path when represented
using spline, etc. There exists a number of global approaches,
such as decomposition, road map, and retraction methods,
randomized approaches, genetic algorithms as well as several
local approaches, e.g., potential field methods. Recently,
efforts have been directed toward, collision free, real-time
trajectory planning in changing environments, [16, 17, 18].
Collision warning systems has been also implemented [6] and
[9].

The configuration of the world space was based on the
principle of splitting cubes in 3D to provide a compact index.
When a primitive comes too close to other, a warning is
issued. For the sake of real time operation, checks were done
at discrete time intervals where it should be ensured that
collisions cannot take place during these intervals and cycle
time was taken as short as possible. The same idea of collision
warning systems was presented by [5] et al. (2002). The
authors tried to build an intelligent vehicle system to reduce
collisions in transit buses. Although the system can predict
early mutual collisions but it is still different from the problem
of path finding and real-time sake.

Author is with Jordan University of Science and Technology, P. O. Box:
3030, Irbid 22110, Jordan

Other research interests were concerned in mobile
manipulators and part orientation purposes with minimal
sensing and manipulation, [10]. The study in [11] also
presented a mobile manipulator that is used for manipulation
as well as locomotion rather than motion panning. Such
researches were dependent on geometrical relations and
kinematics analysis.

Some of available approaches were concerned with
determining the area of potential collision possibility, for
instance using a set of all configurations causing a trajectory
intersection of two cooperative robots, [2]. The task of finding
collision free trajectories for a coordinated motion was defined
as finding the successive configurations connecting the target
point with the initial point configuration. However, although
the approach turns out to be relatively simple, requiring a
minimal number of calculations, the approach is not universal
enough to include a large number of different robot geometries
and orientations.

Movement synchronization, based on delaying actions, is a
possible solution of mutual collision avoidance of two
cooperative robots working in the same work place, as
proposed by Roach (1987). However, later efforts have been
focused on distributed potential approaches of attraction and
repulsion, [1, 12, 13] and on hierarchical approaches using
multi-pass dynamic programming, [13], or on genetic
algorithms for real-time path planning, [1]. The approaches,
however, still do not guarantee satisfactory collision-free real-
time planning performances in changing environment. Other
path planning approaches, mainly based on heuristic search
methods, such as generate-and-test paradigm, [4], Puntryagin's
Maximum Principle, [7], which is applied to the optimal
control of differential drive mobile robots with velocity
bounds. Such approaches considerably depend on heuristic or
hierarchical methods and/or geometric relationships between
the objects.

Topological maps for the robot workspace where efficient
in determining successful routes. The study in [15] could use
such maps accompanied with decision-theoretic approach in
the robot navigation process. Topological and evaluation maps
are the configuration system that will be used in the
approaches presented in this paper.

With the application possibilities of neural networks, new
trajectory planning approaches have been introduced, [8].
Using massively parallel, multi-neuron computing
architectures, the topologically ordered maps for the robot
configuration space have been built with occupied nodes as
obstacles and with the node clamped to the unit value as the
target. A full interconnection of neurons within the network
was used as the initial configuration. For instance, [3]

I

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:2, 2010

270

proposed trajectory planning using a two- layer neural
network. For internal information exchange between the
neighboring nodes related to their potentials, the lateral
interconnections between the neurons were implemented in
the upper network layer, whereas the lower layer neurons were
used as "special memory" in which the target and the obstacle
positions are stored.

Construction of an evaluation map mainly involves the
values assignment to the individual system states, so that the
route planning then consists, at each step, in finding the
neighboring state that has a higher value than the current state
in the resistive grid in which the state space is divided into a
set of small n-dimensional cubes. Each cube corresponds to a
node of the resistive grid. The method consists of finding the
potential distribution within the grid, in which the nodes are
represented by neurons that receive input from their "m"
neighbors, and from one neuron in a "spatial memory". The
path found is not necessarily the shortest one, however, it is
smooth and avoids the obstacles. The method is applicable to
the higher dimensionality problems, but its hardware
implementation is difficult, its resolution is poor, and the
required computational time is relatively long, particularly
when the workspace is large, [3].

This paper will present two methods for finding the feasible
path for a mobile robot using neural networks: Dirichlet and
Neumann based boundary conditions. Section II presents the
neuronal and workspaces for the proposed path planning
method. This is followed by the description of network
dynamics in Section III, and by the considerations of
relationship between the potential field and boundary
conditions in Section IV. Thereafter, in Section V, an
overview about some priority rules is given. In Section VI and
VII the construction of the knowledge of the working world
and the computer simulation results are described.

II. NEURONAL REPRESENTATION OF ROBOT WORKSPACE
In the following, the collision-free path planning of a mobile

robot moving in a workspace cluttered with stationary and/or
moving obstacles is considered. Such planning requires that
the robot's workspace to be configured. This implies that each
region in the space should have its own configuration. For
instance, obstacles can be defined as the regions in the
workspace that should not be crossed by the robot, while the
trajectory of the robot is the set of regions that should not
contact the restricted areas. Although the workspace can take
any shape, a rectangular space is implemented here to simplify
the simulation. The mobile robot can move in a determined
area of a single horizontal plane, divided into small squares to
form a matrix of blocks (X, Y), each block representing a
single point reachable by the robot. Further, each block will
have its own neural representative state, i.e., “0” if occupied
with an object and a positive value other wise.

That said, the problem of path planning can be considered as
building an evaluation map that determines the priorities for
the moves from a present block to a neighboring one. The
collection of all the blocks will describe the real working
environment. Associated with each block, a state that

describes the current status (i.e. states of "0" value are
obstacles while those of "≤ k" value are either a
destination/start point or an empty block where k is any
positive real value) as will be stated later.

A topology of neurons is established to represent the robot’s
workspace with the same dimensionality. The path finding
approach taken here is based on the Laplacian method [3],
where the gradient of different states will be used to simplify
the search for a feasible robot path. The neural space consists
of "n" neurons distributed in two-dimensional space topology.
Each neuron is being connected to a set of neighbors N = {n1,
.., nm} connected by a synaptic resistor (link), Fig. 1.

Fig. 1 4 by 4 network

For such topology, each neuron will accept a sum of inputs
that will be processed by a transfer function resulting in some
output. The outputs of individual neurons depend on:

• State value of the neighboring neurons.
• Number of neighbors included.
• Value of synaptic weight of each link.
• Transfer function of the neuron.
• External input bias I.

Each neuron receives inputs from its neighbors according to

the value of the synaptic weight, and external input from the
workspace topology, called the bias or threshold (I). The
weighted sum of the inputs to the neuron is passed through a
transfer function to generate its output. Accordingly, the
network consists of two layers: the workspace nodes as
external inputs from the workspace, and the neural space
nodes, Fig. 2.

Fig. 2 Two-layer neural network

III. DYNAMICS OF THE NETWORK

Denote the output of each neuron by the state variable σi,
(i=1... n), where σi ∈ [0, k]. The total input vi(t) for neuron i
can be determined from the following relation:

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:2, 2010

271

ij

m

j
iji Itwtv +σ= ∑

=

)()(
1

 (1)

where, m is the number of neighboring neurons and I is the
external input bias or threshold to the neuron i.

The strength of the synaptic weight from the neighboring
neuron j to neuron i is represented as ijw . The ijw values are

not symmetric, i.e., ijw ≠ jiw . Furthermore, the neighboring

neurons participate in equal shares to the input of neuron i,
that is:

m
wij

1
= (2)

where, j ∈(1, ..., m).
This implies that if the neighbors of a neuron i are 8, then

m=8 and 125.0=ijw , while at the vertices of the robot

workspace, these values will differ. For instance, Fig. 3
presents a corner where 3/1=ijw . This applies for any

marginal neuron in the network. This condition should be kept
to avoid any local extreme that may occur when summing the
inputs to any neuron as will be illustrated later.

Fig. 3 Synaptic weight representation

For discrete time dynamics, the states of the neurons can
change according to the relation.

))(()1(
1

ij

N

i
iji Itwgt +σ=+σ ∑

=

 (3)

where g(.) is a threshold function and t is the time parameter,
with a unit delay operator for each iteration, Fig. 4.
 The total input)(tvi for any neuron generates the
following output:

))(()(tvgt ii =σ (4)

Fig. 4 Architectural graph for a network with 4 neurons

IV. POTENTIAL FIELD AND BOUNDARY CONDITIONS

Assume that the robot destination point as a single and
unique maximal source of attractive potential in the net. The
robot, wherever located, should be guided by the attractive
potential to the maxima (i.e. to the destination points). This
potential of attraction is represented by the gradients of the
field power that flows from the obstacles toward the target
according to some boundary conditions. This is analogous to
the heat transfer problem, where the destination is considered
as a source that dissipates the heat within the net, the potential
gradients will guide the robot safely to the destined location
while avoiding any object that may hinder the robot. The
representation of the state variables of a robot workspace is
illustrated in section VI.

Hence, the above situation can be described using the two-
dimensional heat equation:

)(
2

2

2

2
222

y

u

x

u
cuc

t

u

∂

∂
+

∂

∂
=∇=

∂
∂

 (5)

where the temperature distribution is given by u(x, y, t), c2is
the thermal diffusivity, and ∇2 u is the Laplacian of u. Because
of steady heat flow, i.e., no change in heat source over time,
this implies that

0,0
2

2

2

2
2 =

∂

∂
+

∂

∂
=∇=

∂
∂

y

u

x

u
u

t

u
 (6)

The above equations are now considered in a region R of
XY-plane for a given boundary condition on the boundary
curve C of R. Two cases will result according to the following
boundary conditions, those are: the Dirichlet problem if u is
prescribed on C, or the Neumann problem if the normal

derivative
dn

du
un = is prescribed on C.

The Dirichlet boundary condition states that σi, which
represents the heat value u at node i, is known at specific
points, where these points are expected to be the targets and
obstacles, i.e.,

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:2, 2010

272

 0)(=σ ti if neuron i is associate with an obstacle.

kti =σ)(if neuron i associated with a destination.

These two conditions should stay true the entire time to
conform to the above differential equation, and to avoid the
occurrence of any local heat extremes except that of the robot
target. To keep the value of iσ equal to zero if neuron i is
associated with an obstacle, the external input I should be
equal to (-k) while considering the transfer function shown in
Fig. 5 (a), where k is any real positive value.

Now iσ that refers to an obstacle existence will always

have a value of zero. Correspondingly, to have Tσ (target
state of the destination point) equal to k, the external input I
should have the value of (+k). These assumptions will show a
potential flow toward the target, starting from the obstacles.

In contrast, Neumann boundary condition does not include
the neurons that are associated with occupied obstacles. In
other words, the synaptic weights that connect to the
neighboring neurons have to be modified to conform to the
previous assumption defined by equation (2). Besides, the
destination point should have constant state variable with a
value of (+k), while the neuron associated with the robot
position of a state value of (-k), Fig. 6. To implement the
above assumptions, the external input bias from the workspace
to the destination should be equal to +2k the entire time and
the threshold term for the robot position should be -2k. The
activation function for the Neumann case is shown in Fig. 5
(b).

(a) (b)

Fig. 5 (a) Typical transfer function for Dirichlet boundary condition,
(b) Typical transfer function for Neumann boundary condition.

Assigning a value of +k to the destination state variable and

a value of –k to the current robot location state variable
increases the margins the distributed attractive and repulsive
potentials, that would considerably reduce the problem arising
form small numerical gradients. Consequently, we should
emphasize that the value of k has a great effect on the
efficiency of the network. For instance, the larger the value of
k, the more field diffusion attained over time. In other words,
the value of k refers to the power of the potential source as
well as the strength of the field absorption at the destination or
obstacles. Finally, higher k values will help avoid the
influence of small gradients that are far away from the
potential source.

(a) (b)

Fig. 6 (a) Disconnection in synaptic weights takes place between the
empty nodes and obstacle-occupied nodes for Neumann boundary

condition, (b) No disconnection occurs in Dirichlet boundary
condition while the state variables of the occupied nodes are set to

equal zero by the addition of an input threshold (I) which equals to -k

V. PRIORITY RULES OF STEP SELECTIONS
When solving a problem using any of the above two

methods and starting from any initial point, some rule should
be selected for determining the next robot jump (step). A
traditional way, based on Dirichlet boundary condition, is to
select the neighboring state having the highest value as the
winning state. This rule could result in relatively hard jumps
and sharp curves along the planed path, specially when square
movements are allowed.

Below we present a step priority rule that calculate the
proclivity at any point:

),1(),1(
)1,()1,(),(

yxyx

yxyx
yxslope

+σ−−σ
+σ−−σ

= (7)

Equation 7 depends on the values of the neighboring state

variables, where x and y are used as indices for neuron i in a
squared topology. For instance, a step priority rule of the
following class can be used:

⎪⎩

⎪
⎨
⎧

⇒

⇒=∑ ∈

moveorthognalotherwise

movediagonalmnslopeif
Nj j 0/)(

In any case, the function slope refers to the field gradients

where the priority rules are used to determine the winning
states and moves. After determining a feasible path starting
from an initial point P0 and ending at a final point Pf, the
length of the path can be calculated using the following
summation:

),(1
0

+
=
∑= i

f

i
i ppEL (8)

where E is the Euclidean distance between Pi and Pi+1.

VI. MODELING OF ROBOT’S WORKSPACE TOPOLOGY
The main objective of the workspace partitioning is to help

construct a topology of the real space in which the robot is
moving. The mobile robot will memorize its start position
relative to the destination, while a scanning camera will feed

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:2, 2010

273

the robot with the required workspace patterns. These patterns
should describe the workspace of the robot in a discrete
manner as illustrated in earlier section.

The frequent update of the robot workspace will keep the
robot's configuration known and will record the changes in the
robot world. The patterns that describe the workspace will be
fed to the robot processor. The processor in turn will build the
evaluation map topology and based on the current destination
point and obstacles, a path will be planned as stated in the
network dynamics. The robot then is allowed to move a step
or more ahead. After the movement is done another input
pattern should be processed again taking in consideration the
new changes in the workspace.

The above scheme is considered to be feasible if the
following conditions are met the entire time:

• Obstacles speed < Robot speed.
• Initial nearest robot-to-obstacle distance > Robot speed×

Pattern processing and computing time.

The first condition is a must in the presented approaches in
this paper, because the robot will not be able to avoid
obstacles that can move faster than the robot speed. The
second condition is essential for the startup of the path
planning. Moving obstacles should not have the chance of
getting collided with the robot while the robot is computing
and planning the next move. This condition does not add any
constraints to the approaches presented here since information
processing times are fairly short as illustrated in the
experimental simulation.

As an example, if a robot moves as fast as 0.2m/s in speed
and if it takes 0.1 sec to find out a next move then,
hypothetically, the robot should not be closer than 0.02m in
distance from the moving obstacles upon startup. Our
suggestion for solving this problem is to keep the time
intervals as small as possible between the runs and pattern
updating.

One of the significant contributions over such related work
is the new transfer functions used which enhanced the ability
to avoid small gradients of the state variables. In addition, the
new approach used in deciding the robot future steps does not
rely on hierarchical methods and therefore the path search
span is small compared to others and the time required to find
the path is relatively short. The presented approach is an
intelligent decision making engine, which takes in
consideration all the surrounding static and moving objects
that are covered with the sensing zone. Addition to above,
there are no restrictions on the shape of the obstacles nor the
speed of the moving objects as long as their speed is lower
than that of the robot.

Target tracking is another achievement that can be held
here, i.e. the target point is not necessarily static. The target is
allowed to move with a speed less than that of the robot. Since
the target is considered as a source of the distributed field
within the net, it can be easily tracked if adequate and frequent
patterns are fed to the robot processor.

VII. SIMULATION
To demonstrate the efficiency of the proposed methods,

different simulation experiments have been conducted. The
first experiment, shown in Fig. 7, the robot has to reach the
target through a collision-free path within a room with a wall
in the middle as an obstacle. It can be shown that for Neumann
boundary condition the neural network has a higher
convergence, i.e. it provides, for the same number of
iterations, a higher performance than the Dirichlet boundary
condition case. This is due to the existence of two
attractive/repulsive sources that are diffusing at the same time
in Neumann case. Besides, in Nuemann case, 20 iterations
were enough for the robot to avoid collision with the existing
obstacles, while in the Dirichlet case, the potential will not
reach the start point by the same number of iterations since the
minimum number of iterations required should be equal to at
least the number of nodes passed by the path, as stated in
relation (8). Furthermore, the simulation results show that for
such space using Neumann boundary condition, fifty iterations
are sufficient, whereas for Dirichlet condition the path
obtained after fifty iterations is still not as smooth as in the
Neumann case.

(a) The generated path obtained after 50 iterations with Dirichlet
boundary condition

(b) Path generated with Neumann boundary condition after 50
iterations

Fig. 7 Path planning in a room of 20*20 blocks with a wall in the
middle. Note the hollow square is the starting point

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:2, 2010

274

Fig. 8 State variables distribution in the network for the example
shown in Fig. 7-b, (Neumann case). The two local extremes represent

the target and the robot start points respectively

Regarding the potential flow, Dirichlet boundary condition
shows a flow starting from the obstacles in a normal direction
towards the unique maximum (target), therefore the robot will
first try to move away from the obstacles. However, in the
case of Neumann boundary condition, the flow has a parallel
direction with respect to obstacles which forces the robot to
move toward the wall until the flow direction is parallel to the
wall , until then it will move in parallel to obstacles. This may
increase the collision risk with the walls because of small
tolerances maintained between the objects and the robot path.

A unique property of Neumann case is that at external
corners, when the robot tries to turn around, the tolerance is
high enough. Dirichlet boundary condition, however, forces
the robot to turn tightly close around the obstacle if
insufficient number of iterations is allowed. Finally, it was
noted that the path followed by the two methods is not
necessarily the shortest, rather, it can be considered as a
smooth path.

(a) Path generated with Dirichlet boundary condition after 500
iterations

(b) Path generated with Neumann boundary condition after 500
iterations

Fig. 9 Path planning in a 40*40 room

Fig. 10 Dirichlet case

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:2, 2010

275

Fig. 11 Neumann case

Another example presented in Fig. 9. It shows the deference

between the paths of the two boundary conditions. Here,
Neumann boundary condition tries to force the robot to move
ahead in parallel to the walls. In other words, the walls and the
obstacles located in the working space are the guides for the
robot path control.

Fig. 10 presents an example for a dynamic workspace. The
bottom block is moving to the left with a speed of 3 steps per
unite of time while the robot can update its information every
three steps and can move as fast as the speed of the obstacles.

The first snapshot in Fig. 10 shows the first three steps that
will be presented before the second update considering

Dirichlet boundary condition. The second snapshot represents
the next input pattern that includes three additional steps of the
block towards the lift and three additional trajectory steps.
Note since there is a small opening still found the robot would
go down toward the moving bock. The third view shows the
remaining path based on the third pattern update. In this
configuration, the robot had to change its direction seeking for
another path choice.

The same example was used for the Neumann boundary
condition, as illustrated in Fig. 11. The result was the same for
the first 3 jumps. However, the second pattern update shows a
different path. In Neumann case the robot could guess the
right path faster than Dirichlet case where it could predict the
path more precisely as compared to Dirichlet.

VIII. CONCLUSION

This paper presented two different approaches to mobile
robot path planning in an iterative manner. The two methods
demonstrated successful trajectory planning of mobile robots
in both stationary and dynamic environments. The ability to
spread the heat potential around the destination point in
Dirichlet boundary condition along with the new step priority
rules helped find a collision free path. For the Neumann
boundary condition case, the implementation of two source-to-
destination field diffusion decreases the time and the required
number of iterations to achieve convergence to a feasible
collision free path. The planned paths stay well away from the
obstacles as illustrated by the conducted experiments.

Dirichlet case is preferable when sufficient safety distance
is required; however, it necessitates extra iterations to ensure
good results, particularly at external edges and corners. In
contrast, Neumann boundary condition provides safe turn-
around at external edges with less computational times.

The most significant contribution of such work over the
related effort is the use of a second order equation of the heat
flow to model the robot attractiveness/repulsiveness to/from
the destination/obstacles combined with topologically
distributed neural network. In particular, the new transfer
functions used to enhance the ability to evade small gradients
of the state variables, the ability to plan the robot path in a
dynamic environment, and the ability to track a moving target
point.

The combination of the two boundary conditions can be a
valuable future extension where more short and safe paths can
be found. Solving the second order differential heat equation
in a continuous form over a continuous boundary conditions,
and obstacle geometries will be a important future extension
of such problem.

REFERENCES
[1] Ashiru I. and Czarnecki C. “Optimal Motion Planning for Mobile

Robots Using Genetic Algorithms,” IEEE International Automation and
Control Conference, pp. 297-300, 1995

[2] Brink Ten, C. and Popovic D. “A Collision-Space Approach to
Trajectory Planning of Coordinated Robots,” 1995 IFAC World
Congress, San Francisco, Vol. A, pp. 205-209.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:2, 2010

276

[3] Bugmann G., Taylor G., and Michael, J. “Route Finding by Neural Nets,
Application of Modern Heuristic Methods,” University of Plymouth PL4
8AA, United Kingdom, pp 1-11, 1994.

[4] Chen C. and Hwang. K. “Practical Path Planning Among Movable
Obstacles,” 1991 IEEE International Conference on Robotics and
Automation, pp. 444-449.

[5] Christoph M., McNeil S., and Thorpe C. “Side Collision Warning
Systems for Transit Buses,” IV 2000- IEEE Intelligent Vehicle
Symposium.

[6] Clifford, A. and Gregory, M. “A Real-Time Robot Arm Collision
Avoidance System”, IEEE Transactions on Robotics and Automation,
Vol. 8, No. 2, pp 149-160, 1992.

[7] Devin B. and Mason M. 2000. “External Trajectories for Bounded
Velocity Differential Drive Robots,” (ICRA '00) IEEE International
Conference on Robotics and Automation.

[8] Glasuis R. Komoda A., and Geilen S. “Neural Network Dynamics for
Path Planning and Obstacle Avoidance,” Department of the medical
physics and biophysics, University of Nejimegen, The Netherlands, pp
1-14, 1994.

[9] Gordon A., John P.H. and Rossmiller K. “Predicting Trajectories Using
Recurrent Neural Networks,” ANNIE'91 Artificial Neural Networks in
Engineering conference, pp 365-370.

[10] Mark. M. and Erdmann M. “Manipulation of Pose Distributions,” 2000
Tech Report, Computer Science Department, Carnegie Mellon
University, CMU-CS-00-111.

[11] Matthew M., Pai D., Rus D., Taylor L.R., and Erdmann M. “A Mobile
Manipulator,” (ICRA '99) IEEE International Conference on Robotics
and Automation.

[12] Nagata S. Sekiguchi M. and Asakawa K. “Mobile Robot Control by a
Structured Hierarchical Neural Network,” IEEE Contr. Syst. Mag. pp
69-76, 1990.

[13] Peterson K. “Path Planning in Analogue Valued Obstacle Array Using
Hierarchical Dynamic Programming and Neural Networks,” ANNIE'91
Artificial Neural networks in Engineering Conference, pp 789-794.

[14] Roach W. and Michael N. “Coordinating the Motions of Robot Arm in a
Common Workspace,” IEEE Journal, Vol. RA-3, No. 5, pp 30-37, 1987.

[15] Simon D. “Neural Networks-based Robot Trajectory Generation,” TRW
Systems Integration Group, San Bernardino, CA 92402, pp 540-545,
1993.

[16] Simmons R., Fernandez J., Goodwin R., Koenig S., and O'Sullivan J.
“Xavier: An Autonomous Mobile Robot on the Web,” IEEE Robotics
and Automation Magazine, 1999.

[17] Popa, A. S. Popa, M. Silea, I. “Mobile robot navigation with obstacle
avoidance capability,” 2008-IEEE 13th Power Electronics and Motion
Control Conference, pp 1225-1232.

[18] Núñez P., Vázquez-Martín R., J. C. del Toro, A. Bandera, F. Sandoval.
Natural landmark extraction for mobile robot navigation based on an
adaptive curvature estimation. Robotics and Autonomous Systems
archive, Vol. 56(3), pp247-264, 2008.

