
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:8, 2011

917

MMU Simulation in Hardware Simulator Based-on
State Transition Models

Zhang Xiuping, Yang Guowu, Zheng Desheng

Abstract—Embedded hardware simulator is a valuable computer-
aided tool for embedded application development. This paper focuses
on the ARM926EJ-S MMU, builds state transition models and
formally verifies critical properties for the models. The state transition
models include loading instruction model, reading data model, and
writing data model. The properties of the models are described by
CTL specification language, and they are verified in VIS. The results
obtained in VIS demonstrate that the critical properties of MMU are
satisfied in the state transition models. The correct models can be
used to implement the MMU component in our simulator. In the
end of this paper, the experimental results show that the MMU can
successfully accomplish memory access requests from CPU.

Keywords—MMU, State transition, Model, Simulation.

I. INTRODUCTION

THE rapid growth of demands in consumer electronics has
accelerated the embedded application development. To

develop embedded applications, an embedded hardware plat-
form or a hardware simulator is indispensable. An instruction-
set hardware simulator is a program that simulates a target
computer by interpreting the effect of instructions on the host
computer, one instruction at a time. Simulator simulates the
typical embedded hardware components, such as CPU, MMU,
UART Controller, LCD Controller, etc. For each hardware
component, in generally, special registers and controlling
processes of the hardware are simulated. Fig.1 presents the
block diagram of a hardware simulator. vmlinux is the kernel
file that is run on the simulator.

Fig. 1. Block diagram of a hardware simulator

MMU (Memory Management Unit) [1] is a coprocessor in-
tegrated in microprocessor. When the microprocessor requests

Zhang Xiuping is with the Department of Computer Science, Univer-
sity of Electronic Science and Technology of China, Sichuan, China;(e-
mail:knpingan@163.com)

Yang Guowu is with University of Electronic Science and Technology of
China, Sichuan, China;(e-mail:guowu@uestc.edu.cn)

Zheng Desheng is with University of Electronic Science and Technology
of China, Sichuan, China;(e-mail:zheng de sheng@163.com)

to access memory, a virtual address is provided to the MMU.
MMU coprocessor provides the memory access protection,
virtual memory features, and memory access requests. MMU
is integrated in microprocessor is the reason why SoC is
available to run complex operating systems that developed
with the virtual memory principle. From the ARM9 family of
general-purpose microprocessors, the ARM microprocessors
have integrated MMU coprocessor. In this paper, we focus on
the ARM926EJ-S microprocessor and ARM926EJ-S MMU.

Currently, in industry or in college research center, MMU
has been simulated for different architectures, such as ARM
[2] and PowerPC [3]. ARMulator and SimSoC are ARM
simulators, which include general MMU interfaces, but there
are no specific MMU simulation for a microprocessor. SkyEye
is also an open source hardware simulator, which includes
ARM920T MMU simulation. The ARM920T MMU is tested
successfully in terms of provided test cases. In SkyEye,
ARM926EJ-S MMU simulation files are also included, but
they are incorrect and almost just copied from ARM920T
MMU files.

In literatures, the researches about MMU almost focused
on the hardware architectures and performances, etc[4], [5],
[6]. There were few works on how to model the MMU and
simulate it correctly in a simulator. Our previous work [7]
presented a component-based modeling method to model the
MMU. But the component-based modeling method just gives
general interfaces when the MMU is implemented. It couldn’t
help to design algorithms for the operational processes of
the MMU. Since there is no ARM926EJ-S MMU simulation
which can be applied successfully in a hardware simulator, this
paper intends to build correct models for the MMU and use
these models to simulate the MMU for a hardware simulator.

A state transition model [8], [9], [10] has an advantage
at representing a system’s states and the conditions satisfied
between state transitions. In our work, we attempt to build state
transition models for the operational processes of memory
access, which includes loading instruction, reading and writing
data. These three models are basic when an usable MMU
component is designed and implemented for a simulator, so
they must be correct.

In computer science, model checking [11], [12], [13] refers
to the following problem: Given a model of a system, test
automatically whether this model meets a given specification.
Typically, the systems that have in mind are hardware or soft-
ware systems. Model checking is a technique for automatically
verifying correctness properties of finite-state systems. VIS
(Verification Interacting with Synthesis) [14], [15], [16] is a
tool that integrates the verification, simulation, and synthesis



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:8, 2011

918

of finite-state hardware systems. It uses a Verilog front end
and supports fair CTL model checking, language emptiness
checking, combinational and sequential equivalence checking,
cycle-based simulation, and hierarchical synthesis.

To formally verify the state transition models that are built
for MMU, model checking technique is preferred. The CTL
will be used to describe critical properties of our models,
and the critical properties are verified in VIS. After critical
properties of the MMU models are satisfied, MMU is designed
and implemented. In the end, we compile a kernel for specific
embedded platform and run the kernel on simulator to test the
correctness of MMU component in simulator.

The rest of this paper is organized as follows. Section 2
is dedicated to build models for the operational processes
of loading instruction, reading and writing data. The model
verification is discussed in Section 3. Section 4 gives the
experimental results and analysts, and conclusions are given
in Section5.

II. MODELS FOR MMU

A. Loading Instruction Model

When CPU access to memory, the operation could be one
of these three processes, loading instruction, reading data, or
writing data. In any of these three processes, the operation
must include fault checking, address translation, and access
memory. To simulate the MMU coprocessor successfully, load
instruction model, read data model, and write data model must
be built correctly. These models are the base to design algo-
rithms and implement the MMU component. In this section,
we present the process of building state transition model for
loading instruction in details. Because of the processes of
building read and write data models are similar with the load
instruction model, the read and write data models are given
directly, without detailed process again.

Before state transition model diagram is presented, we
define a 4-tuple to represent the elements in the state transition
model.

Definition 2.1. A process is a 4-tuple (A, S, T, R) with al-
phabet A - the set of all possible conditions which are included
in system; S - the set of states of system; T ∈ S × A × S -
the set of transitions; R ⊆ S,R �= Φ (Φ is the empty set) -
the set of the initial state of system.

In the followings, the structures and operations of
ARM926EJ-S MMU and how to set up a 4-tuple for loading
instruction are involved. For each description, we connect it
with the 4-tuple, and explain how the structures and operations
of MMU have a relation with the elements of the 4-tuple.

In the beginning, when hardware simulator is started, all
binary instructions and data are stored in external memory. In
the ARM926EJ-S microprocessor, there is a separate Cache,
ICache, used to cache the instructions loaded by the CPU core.
In other words, the instructions may be stored in ICache or
in external memory.When loading instruction is requested, a
virtual address is provided to MMU coprocessor. If there is a
request to load instruction, the MMU coprocessor checks on
the CP15 C1 special register to figure out whether the MMU
or the ICache is enabled or not. In the case that the MMU

is enabled, the memory protection and the virtual memory
features operations must be executed.

At first, MMU translates virtual address into modified
virtual address. After that, MMU checks address alignment
and then translates the modified virtual address into physical
address. The two operations reflect the attributes of memory
protection and virtual memory features respectively. In the
process of mapping the modified virtual address into physi-
cal address, MMU searches the TLB (Translation Lookaside
Buffer) to conduct a quick translation, without accessing the
external memory, which would slow down the performance
of system. During the translation, a binary bit involved in
descriptor indicates whether the instruction is cacheable or
not.

In computer science, the principle of locality, is the phe-
nomenon of the same value or related storage locations being
frequently accessed. If the ICache is disabled, the instruction
must be loaded from external memory. After the ICache is
enabled, each time of loading instruction, the ICache line will
be searched and instruction is loaded from it if hit. In the case
that the instruction is missed in ICache line, a few consecutive
instructions will be loaded from external memory to fill up a
line of the ICache.

Based on the above explanations, the A in the 4-tuple of
loading instruction must include request of loading instruction
flag, ICache enabled flag, MMU enabled flag, instruction
cacheable flag, instruction hit flag. Except that, None is used to
indicate that no condition required in state translation. The S
in the 4-tuple includes waiting state, checking on C1 state,
searching TLB state, searching ICache line state, updating
ICache line state, loading from external memory state, and
loading from ICache line state. And the T in the 4-tuple, can
be defined according to the operational processes of loading
instruction. The 4-tuple (A, S, T, R) defined for loading
instruction model is as follows.

A = {R0, R1, I0, I1,M0,M1, C0, C1, H0, H1, None};
S = {S0, S1, S2, S3, S4, S5, S6};
R = {S0};
T = {S0 R0−→ S0, S0

R1−→ S1, S1
M1,I1−→ S2, S1

I0−→ S3,

S1
M0,I1−→ S4, S2vC0−→S3, S2 C1−→ S4, S4

H0−→ S5,

S4
H1−→ S6, S5

None−→ S6, S3
None−→ S0, S6

None−→ S0}.
In A, the set of conditions, Ri - there is request to load

instruction or not (i=1 means true, and i=0 means false. It is
same in the followings); Ii - the ICache is enable or not; Mi

- the MMU is enable or not; Ci - the instruction to load is
cacheable or not; Hi - the instruction is hit in ICache line or
not; None - there is no condition required in state transition.

In S, the set of states of system, S0 is waiting state, also
initial state; S1 is checking register C1 state; S2 is searching
TLB state; S3 is loading from external memory state; S4 is
searching ICache line state; S5 is updating ICache line state;
S6 is loading from ICache line state.

In R, the set of the initial state of system, S0 is the unique
initial state. In T, all state transitions are included. For each
state transition, there exists the required condition, which



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:8, 2011

919

means the next state will be reached only if the condition is
satisfied. Note that the condition, such as “M1, I1”, means that
the next state is reachable if M1 and I1 are both satisfied. With
the 4-tuple (A, S, T, R) defined for loadling instruction model,
Fig.2 is the state transition model that is built for loading
instruction. In Fig.2, there are conditions on all arrow lines.
For each condition, the top is the condition required in state
transition, and the bottom is the description of next state.

Fig. 2. State transition model for the process of loading instruction

B. Reading and Writing Data Models

In this part, we give the definitions of 4-tuple and models
of reading and writing data directly. The 4-tuple (A, S, T, R)
defined for reading data model is as follows.

A = {R0, R1, D0, D1,M0,M1, C0, C1, H0, H1, None};
S = {S0, S1, S2, S3, S4, S5, S6};
R = {S0};
T = {S0 R0−→ S0, S0

R1−→ S1, S1
M1,D1−→ S2, S1

M0orD0−→ S3,

S2
C0−→ S3, S2

C1−→ S4, S4
H0−→ S5, S4

H1−→ S6,

S5
None−→ S6, S3

None−→ S0, S6
None−→ S0}.

In A, the set of conditions, Ri - there is request to read data
or not (i=1 means true, and i=0 means false. It is same in the
followings); Di - the DCache is enable or not; Mi - the MMU
is enable or not; Ci - the data is cacheable or not; Hi - the
data is hit in DCache line or not; None -there is no condition
required in state transition.

In S, the set of states of system, S0 is waiting state, also the
initial state; S1 is checking register C1 state; S2 is searching
TLB state; S3 is reading from external memory state; S4 is
searching DCache line state; S5 is updating DCache line state;
S6 is reading from DCache line state. In R, the set of the
initial state of system, S0 is the unique initial state. In T, all
the state transitions are included. With the 4-tuple (A, S, T,
R) of reading data model, Fig.3 is the state transition model
that is built for reading data. Note that the condition, such as
“M0 or D0”, means that the next state is reachable if M0 or
D0 is satisfied.

The 4-tuple (A, S, T, R) defined for writing data model is
as follows.

Fig. 3. State transition model for the process of reading data

A = {R0, R1, D0, D1,M0,M1, C0, C1, B0, B1, H0, H1, None};
S = {S0, S1, S2, S3, S4, S5, S6, S7};
R = {S0};
T = {S0 R0−→ S0, S0

R1−→ S1, S1
M1,D1−→ S2, S1

M0orD0−→ S4,

S2
C1−→ S3, S2

C0,B0−→ S4, S2
C0,B1−→ S5, S3

H0−→ S5,

S3
B0,H1−→ S6, S3

B1,H1−→ S7, S4
None−→ S0, S5

None−→ S0,

S6
None−→ S0, S7

None−→ S0}.
In A, the set of conditions, Ri - there is request to write

data or not (i=1 means true, and i=0 means false. It is same
in the followings); Di - the DCache is enable or not; Mi - the
MMU is enable or not; Ci - the data is cacheable or not; Bi -
the data is bufferable or not; Hi - the data is hit in DCache line
or not; None -there is no condition required in state transition.

In S, the set of states of system, S0 is waiting state, also the
initial state; S1 is checking register C1 state; S2 is searching
TLB state; S3 is searching DCache line state; S4 is writing to
external memory state; S5 is writing to WriteBuffer state; S6
is writing to DCache line state; S7 is writing to DCache line
and WriteBuffer state. In R, the set of initial state of system,
S0 is the unique initial state. In T, all the state transitions are
included. With the 4-tuple (A, S, T, R) of writing data model,
Fig.4 is the state transition model that is built for writing data.

Fig. 4. State transition model for the process of writing data

III. MODEL VERIFICATION

The loading instruction model, reading data model and
writing data model have been built in Section II. To verify
whether critical properties of MMU are satisfied in these



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:8, 2011

920

models or not, model verification is the indispensable work. In
the followings, the critical properties of load instruction model
are verified formally. The verifications of reading and writing
data models are not involved in this section, which can be
verified in the same way.

Computation Tree Logic (CTL) [17], [18] is a branching-
time logic, meaning that its model of time is a tree-like
structure in which the future is not determined; there are
different paths in the future, any one of which might be an
actual path that is realized. In the followings, the CTL is used
to describe critical properties. “→”, “∧” and “|” mean logical
“implication”, “and” and “or”, respectively. “AG”, “EF” and
“AX” mean “all states in all paths”, “exist a state” and “next
state in all the path”, respectively.

Note that the following symbols S0 through S6 are the states
we defined for the 4-tuple of loading instruction.

Property 1: From the initial state S0, there exists two states,
the loading from external memory state S3 and the loading
from ICache line state S6, that are reachable.

EF (S0→ S3) ∧ EF (S0→ S6);

Property 2: At anytime, if a loading instruction request is
responded, future state would be the loading from external
memory state S3 or the loading from ICache line state S6. In
the end, it will go back to the waiting state S0.

AG((S3 | S6)→ AX(S0));

Property 3: The next state of the searching TLB state S2
must be the loading from external memory state S3 or the
searching ICache line state S4.

AG(S2→ AX(S3 | S4));
Property 4: The next state of the searching ICache line

state S4 must be the loading from ICache line state S5 or the
updating ICache line state S6.

AG(S4→ AX(S5 | S6));
The above four properties are the critical properties must

be satisfied in loading instruction model. In the followings,
we define two properties which are incorrect in the MMU
coprocessor, to verify whether they are satisfied in the state
transition model of loading instruction.

Property 5: Given the condition M0 (MMU is disabled) is
satisfied, the searching TLB state S2 is reachable.

AG((M0 ∧ S0)→ EF (S2));

Property 6: Given the condition I0 (ICache is disabled) is
satisfied, the searching TLB state S2 or the searching ICache
line state S4 is reachable.

AG((I0 ∧ S0)→ EF (S2 | S4));
After describing the properties with CTL and implementing

the state transition model of loading instruction with Verilog
(we don’t present in paper), the above properties can be

TABLE I
RESULTS OF PROPERTIES VERIFIED IN VIS

Properties Results Counterexamples
Property 1 Satisfied No
Property 2 Satisfied No
Property 3 Satisfied No
Property 4 Satisfied No

S0 → S0 → S0 → . . .
Property 5 Non-satisfied S0 → S1 → S3 → . . .

S0 → S1 → S4 → . . .

Property 6 Non-satisfied S0 → S0 → S0 → . . .
S0 → S1 → S3 → . . .

verified in VIS. The experimental results of model checking
obtained in VIS are reported in Table I.

As we see from Table I, property 1 through property 4 are all
satisfied in our state translation model, property 5 and property
6 are non-satisfied. The counterexample for property 5 is that,
from the initial state S0, if the M0 is satisfied, all probable
paths include S0 → S0 → S0 → . . ., S0 → S1 → S3 →
. . ., and S0 → S1 → S4 → . . .. We can see that S2 is
unreachable. The counterexample for property 6 is that, from
the initial state S0, if the I0 is satisfied, all probable paths
include S0 → S0 → S0 → . . . and S0 → S1 → S3 → . . ..
We can see that S2 and S4 are unreachable.

If the MMU is disabled, then no virtual address translation
occurs. The virtual address is mapped into physical address
directly. So there are no fault check operation, no memory
protection. At this case, instruction is loaded from external
memory or from the ICache line with the input virtual address,
the searching TLB state is unreachable. For that reason, the
property 5 must be non-satisfied.

In the case that the ICache is disabled, no searching ICache
line operation occurs. So, searching the TLB operation isn’t
needed even though the MMU is enabled, the instruction is
loaded directly from external memory. The property 6 must
be non-satisfied.

IV. EXPERIMENTATIONS

The state transition models and model verification are in-
cluded in Section II and Section III. As we see from the model
checking results obtained in VIS, the correct critical properties
are satisfied and the incorrect properties are non-satisfied in the
loading instruction model. With these three models, the MMU
component can be designed and implemented for a hardware
simulator.

In this section, to test the correctness of the implemented
MMU component, we compile a Linux kernel for specific
platform and run it on simulator. The S3C2413X SoC uses
ARM926EJ-S microprocessor, and the Linux kernel version
2.6.18 published has supported the S3C2413X platform. We
decide to compile kernel for platform S3C2413X, and run it
on our simulator Apsim.

The entry address of the kernel file is 0xC0008000. In the
beginning, the MMU, ICache and DCache is disabled, all
memory access requests are responded from external memory.
In our experimentation, we track on the key addresses, which
include the first addresses for loading instruction, reading
data, and writing data. The address 0xC0008000 is the first



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:8, 2011

921

instruction’s address that MMU loads from external memory;
0xC0008344 is the first data’s address that MMU reads from
external memory; 0xC0004000 is the first data’s address that
MMU writes to external memory. After the MMU, ICache, and
DCache are all enabled, 0xC0008070 is the first instruction’s
address that MMU load from ICache; 0xC0008124 is the first
data’s address that MMU reads from DCache; 0xC03D0AE0
is the first data’s address that MMU writes to DCache.

TABLE II
THE STATISTICAL RESULTS OF MEMORY ACCESS OPERATIONS

Operations Items Correct Rates

Load Instruction Instruction 100%
Location 100%

Read Data Data 100%
Location 100%

Write Data Data 100%
Location 100%

Except for the key addresses, we track on the operations of
loading instruction, reading data and writing data for 50 times,
respectively. For each operation, we focus on the instruction or
data, and the location of accomplishing this operation. Table II
summarizes results of memory access operations for 50 times.

We can see from Table II, all the instructions and data to
access and the locations are correct. During the time that the
kernel is run on the simulator, numerous operations of ac-
cessing memory are executed. If the MMU could successfully
accomplish all the memory access requests from CPU, the
results of running the kernel on the simulator must be same
with that run on hardware. Fig. 5 presents the output of running
the kernel on the simulator. In Fig. 5, we can see that the kernel
is run successfully on the simulator, and the MMU component
of simulator can correctly respond all the requests of memory
access from CPU.

Fig. 5. The output of running kernel file on simulator Apsim

V. CONCLUSIONS

In this paper, we focused on the ARM926EJ-S MMU,
defined 4-tuple to describe the elements of models and built
state transition models for MMU, which include loading
instruction model, reading data model, and writing data model.
To formally verify the critical properties of our model, model
checking was used and results obtained in VIS demonstrated
the correctness of the load instruction model. In the end, the
MMU component was designed and implemented for hardware

simulator, and our experimental results showed that the MMU
component can successfully accomplish the memory access
requested by CPU.

Our works use state transition technique to model the
ARM926EJ-S MMU coprocessor and critical properties of
models are verified formally. Since the ARM926EJ-S MMU
hasn’t been simulated successfully in industry or college
research center, our works could be a small contribution to
the hardware simulation field. On the other hand, with the
reason that there are many controllers in SoC and a hardware
simulator must include other key simulated controllers, our
approach is also valuable and worth considering for simulating
other controllers.

REFERENCES

[1] ARM. ARM926EJ-S Technical Reference Manual. ARM Limited,
www.arm.com, r0p5 edition, 2008.

[2] C. Helmstetter, V. Joloboff, and H. Xiao. Simsoc: A full system
simulation software for embedded systems. In Open-source Software
for Scientific Computation (OSSC), 2009 IEEE International Workshop
on, pages 49–55. IEEE.

[3] T. Andersson and P. Magnusson. Powerpc mmu simulation. Bachelor’s
project, Karlstad University, Sweden, http://www.cs.kau.se/cs/, 2001.

[4] B. Egger, S. Kim, C. Jang, J. Lee, S.L. Min, and H. Shin. Scratchpad
memory management techniques for code in embedded systems without
an mmu. Computers, IEEE Transactions on, 59(8):1047–1062, 2010.

[5] J.R. Haigh, M.W. Wilkerson, J.B. Miller, T.S. Beatty, S.J. Strazdus, and
L.T. Clark. A low-power 2.5-ghz 90-nm level 1 cache and memory
management unit. Solid-State Circuits, IEEE Journal of, 40(5):1190–
1199, 2005.

[6] S.K. Agun and J.M. Chang. Design of a reusable memory management
system. In ASIC/SOC Conference, 2001. Proceedings. 14th Annual IEEE
International, pages 369–373. IEEE, 2001.

[7] X. Zhang, G. Yang, and D. Zheng. Component-based model for
simulating the mmu coprocessor. In Information Engineering and
Computer Science (ICIECS), 2010 2nd International Conference on,
pages 1–4. IEEE.

[8] DC McLernon. Properties for state-transition matrix of lptv two-
dimensional filter. Electronics Letters, 38(25):1748–1750, 2002.

[9] Y.C. Lee and A.Y. Zomaya. A novel state transition method for
metaheuristic-based scheduling in heterogeneous computing systems.
IEEE Transactions on Parallel and Distributed Systems, pages 1215–
1223, 2008.

[10] A. Chander, D. Dean, and J.C. Mitchell. A state-transition model of
trust management and access control. In Proceedings of the 14th IEEE
Computer Security Foundations Workshop, pages 27–43. Citeseer, 2001.

[11] E. Clarke. Model checking. In Foundations of Software Technology and
Theoretical Computer Science, pages 54–56. Springer, 1997.

[12] B. Nicolescu, N. Gorse, Y. Savaria, E.M. Aboulhamid, and R. Velazco.
On the use of model checking for the verification of a dynamic
signature monitoring approach. Nuclear Science, IEEE Transactions
on, 52(5):1555–1561, 2005.

[13] T. Han, J.P. Katoen, and B. Damman. Counterexample generation in
probabilistic model checking. IEEE transactions on software engineer-
ing, pages 241–257, 2009.

[14] R. Brayton, G. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi, A. Az-
iz, S. Cheng, S. Edwards, S. Khatri, Y. Kukimoto, A. Pardo, et al. Vis:
A system for verification and synthesis. In Computer Aided Verification,
pages 428–432. Springer, 1996.

[15] H. Peng, S. Tahar, and F. Khendek. Comparison of spin and vis
for protocol verification. International Journal on Software Tools for
Technology Transfer (STTT), 4(2):234–245, 2003.

[16] J. Yoo, E. Jee, and S.S. Cha. Formal modeling and verification of safety-
critical software. IEEE Software, pages 42–49, 2009.

[17] Q. Zhao and B.H. Krogh. Formal verification of statecharts using
finite-state model checkers. In American Control Conference, 2001.
Proceedings of the 2001, volume 1, pages 313–318. IEEE, 2001.

[18] M. Bourahla. Distributed ctl model checking. In Software, IEE
Proceedings-, volume 152, pages 297–308. IET, 2005.


