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Mixtures of Monotone Networks for Prediction
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Abstract— In many data mining applications, it is a priori known
that the target function should satisfy certain constraints imposed
by, for example, economic theory or a human-decision maker. In this
paper we consider partially monotone prediction problems, where the
target variable depends monotonically on some of the input variables
but not on all. We propose a novel method to construct prediction
models, where monotone dependences with respect to some of
the input variables are preserved by virtue of construction. Our
method belongs to the class of mixture models. The basic idea is to
convolute monotone neural networks with weight (kernel) functions
to make predictions. By using simulation and real case studies,
we demonstrate the application of our method. To obtain sound
assessment for the performance of our approach, we use standard
neural networks with weight decay and partially monotone linear
models as benchmark methods for comparison. The results show that
our approach outperforms partially monotone linear models in terms
of accuracy. Furthermore, the incorporation of partial monotonicity
constraints not only leads to models that are in accordance with the
decision maker’s expertise, but also reduces considerably the model
variance in comparison to standard neural networks with weight
decay.

Keywords— mixture models, monotone neural networks, partially
monotone models, partially monotone problems.

I. INTRODUCTION

IN many data mining applications, it is a priori known
that the target function should satisfy certain constraints

imposed by, for example, economic theory or a human-
decision maker. In many cases, however, the final model
obtained by data mining techniques alone does not meet
these constraints. It is required that the algorithms have to be
modified (enhanced) to obey the constraints in a strict fashion.

One type of constraint, which is common in many decision
problems, is the monotonicity constraint stating that the greater
an input is, the greater the output must be, all other inputs
being equal. There is a wide range of applications where
monotonicity properties hold. Well-known examples include
credit loan approval, the dependence of labor wages as a
function of age and education, investment decisions, hedonic
price models, selection and evaluation tasks ([1], [2]).

Several data mining techniques have been developed, which
incorporate monotonicity constraints such as neural net-
works ([3], [4], [5], [6]), rational cubic interpolation of one-
dimensional functions ([7]), decision trees ([8], [9], [10]),
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etc. However, the main assumption for the implementation
of most of these methods is that the function (output) being
estimated should be monotone in all inputs (so-called total
monotonicity). This in practice, of course, is not always the
case.

In this paper we consider partially monotone problems,
where we assume that the target variable depends monoton-
ically on some of the input variables but not on all. For
example, common sense suggests that the house price has
monotone increasing dependence on the number of rooms
and the total house area, whereas for the number of floors
this dependence does not necessarily hold. Such prior knowl-
edge about monotone relationships can be incorporated as
constraints in data mining algorithms in order to improve the
accuracy or interpretability of the models derived as well as
to reduce their variance on new data.

It is known that non-monotone functions can often be
represented as compositions of monotone functions; for exam-
ple, unimodal probability distribution functions are monotone
increasing on the left side of the mode point, and monotone
decreasing on the right side ([6]). This implies that first we
can construct a number of monotone models corresponding to
the monotone regions in the non-monotone function; then we
can combine the local monotone models in order to obtain the
global model.

The paper is organized as follows. In the next section we
introduce notations and definitions related to monotonicity,
which are needed for the follow-up discussion. The main
contribution of this paper is the approach for partial mono-
tonicity presented in Section IV-A. The approach is based
on the convolution of kernel functions and a special type
of monotone neural networks, introduced in Section III. In
Section IV-B we present the design and the results from
simulation studies carried out to test the performance of
the proposed approach for partial monotonicity. Section IV-
C demonstrates the application of the approach on a real case
study of predicting abalone age. Concluding remarks are given
in Section V.

II. NOTATION AND DEFINITIONS

Let x denote the vector of independent variables, which
takes values in a k-dimensional input space, X , and ` denotes
the dependent variable that takes values in a one-dimensional
space, L. We assume that a data set D = (x, `x) of N points
in X × L is given.

For monotone problems, we assume that the data are gen-
erated by a process with the following properties:

`x = f(x) + ε (1)
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where f is a function monotone in x, and ε is a random
variable with zero mean. Monotonicity of f on x is defined
on all independent variables by

x1 ≥ x2 =⇒ f(x1) ≥ f(x2) (2)

where x1 ≥ x2 is a partial ordering on X defined by x1
i ≥ x2

i

for i = 1, 2, ..., k. The pair (x1, x2) is called comparable and
if the relationship defined in (2) holds, it is also a monotone
pair.

Note that even though f is monotone, the data generated
by (1) is not necessarily monotone due to the random effect
of ε.

For partially monotone problems, we have 1 ≤ km < k,

xm = {xi ∈ X |i = 1, . . . , km} ,

xnm = {xi ∈ X |i = km + 1, . . . , k} .

Furthermore, a data set D = (xm, xnm, `x) of N points is
generated by

`x = f(xm, xnm) + ε, (3)

where f is a function monotone in xm and ε is a random vari-
able with zero mean. Hence, we call xm the set of monotone
variables and xnm is the set of non-monotone variables.

Our objective is to find a smooth approximation f̂ of
f(xm, xnm), such that f̂ is monotone in xm, i.e., f̂ is a
partially monotone estimator. In practice the true function
f(xm, xnm) is unknown, and therefore we use `x as a close
proximity of f(xm, xnm) to find f̂ .

A simple solution is to consider the class of partially
monotone linear functions of the form:

f̂ = a0 +

m
∑

i=1

aix
m
i +

k
∑

j=m+1

ajx
nm
j

subject to ai ≥ 0, i = 1, . . . , km.

(4)

We expect that the estimate in (4) would produce good fit
for simple (e.g., linear) functions; it would, however, give
poor approximations for complex functions. Therefore, it is
necessary to consider more flexible models for estimating an
arbitrary partially monotone function.

In this study, we consider an alternative solution to partially
monotone problems based on mixture models; these models
provide a general framework for generating flexible models
by combining simpler functions (components). In particular
we look at mixture models of the form

f̂(xm, xnm) =

C
∑

c=1

ϕc(xnm) · f̂c(xm) (5)

where ϕc(xnm) is a positive weight (kernel) function based
on xnm, and f̂c(xm) is the output of a three-layer monotone
neural network built on xm. In Section IV-A, we show that
the class of functions in (5) has universal approximation
capabilities.

III. SILL (MONOTONE) NETWORKS

The network considered here is based on the three-layer
(two hidden-layer) architecture introduced by Sill in [5]. The
input layer is connected to the first hidden layer consisting of a
set of linear units, which are combined into several groups, (the
number of units in each group is not necessarily the same).
Corresponding to each group is a second hidden-layer unit,
which computes the maximum over all firstlayer units within
the group. The final output unit computes the minimum over
all groups.

In formal notation, a Sill network can be represented as
follows. Let R denote the number of nodes in the second
hidden layer; that is, the number of groups in the first hidden
layer, with outputs g1, g2, . . . , gR. Let hr denote the number of
hyperplanes within group r, r = 1, 2, . . . , R. The parameters
(weights) of the hyperplanes in r are k-dimensional vectors
denoted by w(r,1), w(r,2), . . ., w(r,hr). Then, the output at
group r is defined by:

gr(x) = max
j

(

w(r,j) · x + θ(r,j)

)

, 1 ≤ j ≤ hr, (6)

where θ is a bias term.
The final output of the network is given by

Ox = min
r

gr(x), (7)

or in classification problems

Ox = min
r

σ(gr(x)), (8)

where σ is the sigmoid function.
From (7) and (8), it follows that one group and one

hyperplane within this group uniquely determine the output of
the network for each input vector. Such group and hyperplane
are called active. In case of ties in the group or network outputs
(though this is unlikely, because the outputs are continuous),
the choice of the active hyperplane or group is made randomly.

To guarantee that the network output is monotone, all
weights for an input to the first hidden layer are constrained
to be non-negative (non-positive), if increasing (decreasing)
monotonicity is desired for that input. Here, we enforce the
parameters in (6) to be non-negative by taking an appropriate
transformation such as w = z2, where z is a free parameter.

The Sill network thus described has several advantages.
First, computation of the output is simple and fast due to
the limited number of linear unit calculations and simple
comparison operators performed. In addition, at each iteration
of the training process the weights of a single linear unit
(the active one) are only modified, which speeds up network’s
learning. Second, by constraining the coefficients of the linear
units it is easy to incorporate domain knowledge in the
network. Therefore, monotonicity can be easily imposed by
restricting the coefficients to be positive or negative. Finally,
for a particular input the output from Sill networks is easy to
understand and interpret by the end user as the parameters
of the linear units directly reflect the relationships in the
data. In [5] it is shown in a case study on bond rating
that the three-layer monotone networks perform better than a
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linear model and standard neural networks for problems where
monotonicity is present in the domain.

IV. APPROACH FOR PARTIAL MONOTONICITY

A. Description

As stated earlier, our objective is to find a smooth estimation
f̂ of f(xm, xnm) given in (3) such that f̂ is monotone in xm.

An intuitive solution to guarantee that the estimator f̂

is smooth and partially monotone is to construct monotone
approximations of f based on xm for fixed values of xnm,
and then to smooth out the resulting estimates by using weight
functions (kernels) based on xnm.

We apply this approach to build a class of partially mono-
tone functions in the form of (5). The idea is first to find
a number of natural groups with respect to the set of non-
monotone variables. Next, for each group by using a Sill
network we construct a monotone function based on the set
of monotone variables. Finally, we convolute the monotone
functions and suitable weight functions (kernels) based on the
set of non-monotone variables in order to obtain the overall
model.

More formally, in the first step of our proposed approach,
we partition the input space with respect to xnm into a
number of disjoint subsets (clusters) by using the so-called
agglomerative (merging) type of hierarchical clustering with
complete-linkage distance. The appropriate number of clusters
is determined automatically in the following way. We first
cut off the hierarchy obtained from the clustering procedure
at several levels (from two to ten). Then for each of the
partitioning outcomes we compute the silhouette value as a
measure for the goodness of clustering (ranged from -1 for
bad to +1 for good) ([11]). The outcome with the maximal
silhouette value determines the final number of clusters. An
additional improvement in the clustering procedure is adding
weights to the variables in the standard Euclidean distance
measure we use. In this way, we take into account the
significance of each variable on the dissimilarities between
the points and the formation of the clusters, respectively. The
weights α are determined a priori by taking the absolute value
of the respective coefficients for each non-monotone variable
obtained from the linear model fitted to the whole data set
D = (xm, xnm, `x), and normalizing them to sum up to one.
More formally, based on D we fit a linear model

`x = a0 +

m
∑

i=1

aix
m
i +

k
∑

j=m+1

ajx
nm
j .

Next, we compute

α = (αm+1, . . . , αk),

where

αj =
aj

∑k
m+1 aj

for j = m + 1, . . . , k.

Hence,
∑

α= 1, and αj’s can be considered as weights
measuring the impact of each non-monotone variable on the
response variable.

The outline of our clustering procedure is given below.

CLUSTER(D,α)
dist(D,α):= N × N dissimilarity matrix containing

the Euclidean distances, weighted by α,
between the points in D

hCl:= a hierarchical cluster tree based on dist(D,α)
and the complete-linkage distance

svmax := −∞
C := final number of clusters
for c:=2 to 10 do

[D1, . . . , Dc,xnm
1 , . . . , xnm

c ] := disjoint clusters
(subsets of D) with their centroids
obtained after cutting off hCl into
c clusters

svc:= silhouette value obtained for c clusters
if svmax < svc then

svmax = svc

C = c

end if
end for

return [D1, . . . , DC , xnm
1 , . . . , xnm

C ]

As a result of this partitioning of the original data D, we
obtain a number C of subsets D1, . . . , DC , where the number
of points in the subsets is not necessarily the same. There is
no restriction on the minimal number of points in a subset.
For each Dc, c = 1, 2, . . . , C, which contains more than one
point, the values of the non-monotone variables are fixed to
the cluster mean xnm

c . Furthermore, an estimate f̂(xm) of f is
obtained based only on the values of the monotone variables
xm for the points belonging to Dc. This is done by using Sill
networks, which guarantees that the function approximation is
monotone within each subset.

If a cluster with only one point is created (i.e., an outlier
in respect to the values of the non-monotone variables is
detected), then the cluster mean takes the values of the non-
monotone variables for that point, and the function approx-
imation is just the label of the point. The reasoning for not
ignoring the one-point clusters is as follows. Suppose we want
to predict the label `z of a new point z, which is closer to a
one-point cluster than to the others (meaning that the values
of the non-monotone variables are similar). Now if z also has
values of the monotone variables that are similar to those of
the point in the cluster, then the predicted label is expected to
be also close to the label of the point. However if the values of
the monotone variables are dissimilar between the points then
z can be considered as a point without an analog in the data
(i.e., outlier) but its label can be still predicted by using the
function estimations from all the clusters as described below.

In the next step of our approach, for each subset Dc, c =
1, 2, . . . , C, we define

ψc(xnm) = ‖α (xnm − xnm
c )‖−1

,

where ‖·‖ is the Euclidean distance norm weighted by α,
xnm ∈ D are the values of the non-monotone variables and
xnm

c is the mean (centroid) value based on the non-monotone
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variables for the points falling in cluster c. By definition ψ ≥ 0
and it determines the distance of a point x to the mean xnm

c

of cluster c. By normalizing ψ with

ϕc(xnm) =
ψc(xnm)

∑C
c=1 ψc(xnm)

, (9)

we obtain a function ϕ ≥ 0, for which

C
∑

c=1

ϕc(xnm) = 1, for all xnm.

Hence, ϕ can be considered as a weight function or kernel
in Nadaraya-Watson form ([12], [13]).

Finally, we convolute ϕc with the corresponding monotone
approximations f̂c(xm) for all clusters by

f̂(xm, xnm) =

C
∑

c=1

ϕc(xnm) · f̂c(xm)

to obtain the final estimate of f .
The outline of the algorithm for partial monotonicity is

given in Algorithm 1.

Algorithm 1 Building partially monotone models
Constr set := Construction data
Test set := Test data
xm := set of monotone variables from Constr set
xnm := set of non-monotone variables from Constr set
xm

Tset := set of monotone variables from Test set
xnm

Tset := set of non-monotone variables from Test set
[D1, . . . , DC , xnm

1 , . . . , xnm
C ]=
=CLUSTER(Constr set(xnm),α)

for all xTset ∈ Test set do
for c := 1 to C do

MonNetc(xm):= Sill network trained on Dc(xm, `)
fc(xm

Tset):= output of MonNetc(xm
Tset)

ψc(xnm
Tset) = ‖α (xnm

Tset − xnm
c )‖−1

ϕc(xnm
Tset) = ψc(xnm

Tset)/
∑C

c=1 ψc(xnm
Tset)

end for

f̂(xm
Tset, xnm

Tset) =
∑C

c=1 ϕc(xnm
Tset) · f̂c(xm

Tset)
end for

In the following theorem we show that our estimator has
universal approximation capabilities.

Theorem 4.1: Suppose D = (xm, xnm, `) is a data set of
N points generated by the following process:

`x = f(xm, xnm) + ε,

where f is a function monotone in xm and ε is a random
variable with zero mean.

As an approximation of f(xm, xnm) we take a partially
monotone estimator of the form

f̂(xm, xnm) =
C

∑

c=1

ϕc(xnm) · f̂c(xm) (10)

where C is a number of clusters (subsets) of D, ϕ(xnm) is a
positive weight function in xnm and f̂(xm) is the output of
a Sill network built on xm. Then f̂(xm, xnm) is a consistent
estimator of f(xm, xnm) for N → ∞ and sufficiently many
clusters C.

The proof is given in Appendix I.

B. Simulation studies

In this section, we present the results from the simulation
studies designed to test the effectiveness of our approach
for partial monotonicity. We generate an artificial data set
D based on a set of independent variables and a continuous
dependent variable computed by applying a function that is
monotone only on a subset of the independent variables and
non-monotone in the others.

Now based on D thus generated we want to build a model
for predicting the dependent variable. Since the problem is
partially monotone, we apply our approach for partial mono-
tonicity as an appropriate method for estimation.

To obtain sound assessment for the performance of our
approach, we use standard neural networks with weight decay
and partially monotone linear models in the form of (4)
as benchmark methods for comparison. The standard neural
networks consist of one input layer, one hidden layer and one
continuous output. In the hidden layer the activation function
is sigmoid, whereas in the output it is linear. In addition, the
weight decay is used as a regularization method to prevent
the networks from overfitting. This is done by adding to the
network’s error the term λ

∑

ij w2
ij to penalize large weights,

where λ is the weight decay parameter.
Given that our target function is continuous, the comparison

between our approach and the benchmark methods is based on
the mean-squared error (MSE) as a measure for the quality of
estimation. In addition, as the data generating process (true
function f(x)) is known, we use the bias-variance decom-
position of MSE to gain more insight into the performance
of the methods used in the simulation studies. As shown in
[14], MSE can be decomposed into three components: squared
bias, variance and irreducible error (variance of the noise term
ε). Since the last component is independent of the model
constructed and does not affect the comparative study, it is
omitted from the computations of the MSE. Thus, in our
simulations for each estimation f̂x|MD

based on method MD

applied on a data set D, MSE is computed by

MSE = Bias2 + Variance,

where

Bias2 = (f(x) − ED[f̂x|MD
])2,

and

Variance = ED[(f̂x|MD
− ED[f̂x|MD

])2].

Furthermore, to obtain more complete performance analysis,
the experiments with our approach for partial monotonicity
and neural networks with weight decay are conducted by
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TABLE I
FACTORS WITH THEIR VALUES USED IN THE SIMULATION EXPERIMENTS ON PARTIALLY MONOTONE PROBLEMS

Approach for partial monotonicity Neural networks with weight decay 
Levels (values) Levels (values) Factors 
1 2 3 

Factors 
1 2 3 

1 # points in data 50 150 250 1 # points in data 50 150 250 
2 Noise level ( 2

εσ ) 0.01 0.5 2 2 Noise level ( 2
εσ ) 0.01 0.5 2 

3 # groups in Sill net 2 3 4 3 # hidden neurons  3 9 15 
4 # planes in Sill net 2 3 4 4 Weight decay 0.000001 0.00001 0.0001 
 

using several factors with different values for comparison; see
Table I.

All possible combinations of four three-value factors require
the experiment with each method to run 81 times (34). To
reduce the effort and experimental cost in the simulations, we
use the so-called fractional factorial design ([15]), where only
a certain number of combinations of factor values are taken to
carry out the experiments. This is done in a systematic way by
combining each value of each factor only once with each level
of the other factors. In our case the fractional design requires
only nine runs (trials) with each method.

For each run we generate a collection of 100 data samples
following the data generating procedure described in the
experimental set-up. For computational convenience the values
of the independent variables in each set are fixed whereas
the value of the dependent variable varies across different
data samples. The approach for partial monotonicity, neural
networks with weight decay and partially monotone linear
models are applied on the same collections of data samples.

From the experiments with each method we obtain nine
estimations of the two measures–squared bias and variance
of the models. Next, these results are used to compute the
expected value E(Θijkl) of each measure Θ for all possible
combinations of factor values (i, j, k, l), where i, j, k and l

range from one to three. As described in [15], this can be done
by fitting the exponential model

E(Θijkl) = exp
(

µ+(µ1
i − µ) + (µ2

j − µ)+

+ (µ3
k − µ) + (µ4

l − µ)
)

,
(11)

where µ is the total mean computed over all nine estimations,
µ1

i , µ2
j , µ3

k and µ4
l are the means for each factor value;

the exponential fit guarantees that the estimated E(Θijkl) is
positive. For example, for the combination of factor values
(50 data points, σ2

ε = 0.5, four groups, three planes), i.e.,
(i = 1, j = 2, k = 3, l = 2) the approach for partial
monotonicity has not been run. To compute E(Θ1232), we use
the corresponding means µ1

1, µ2
2, µ3

3 and µ4
2 in (11).

Next, we compute MSE by summing up the corresponding
estimations of the squared bias and variance for all possible
combinations of factor values.

Finally, as there are two factors (number of data points and
noise level), which are the same in the experiments, we want to
compare the performance of the methods for all combinations
of values (i, j) (in total nine) of these two factors. For this
purpose, within each (i, j), out of all nine value combinations

we take the minimum estimated value with corresponding
variance of MSE over the other two factors.

To draw more general conclusions from our simulation
study, we conduct two types of experiments, which are de-
scribed below.

a) Experiment–1: First, two vectors of N values, xm and
xnm, are generated independently from each other. The values
of vector xm are drawn from the uniform distribution on [0,1].
The vector xnm is composition of two sub-vectors each of size
N/2 points, which are drawn from two normal (Gaussian)
distributions: N (0.02, 0.05) and N (0.08, 0.05). Finally, we
compute the values of a third vector ` by applying a monotone
function on xm and a non-monotone function on xnm plus a
random perturbation ε ∼ N (0, σ2):

` = 3 + sin

(

π

2
xm

)

(

2 + sin(2πxnm)
)

+ ε. (12)

Hence, we can consider xm and xnm as the independent
variables and ` as the dependent variable in a data set D =
(xm, xnm, `) of N points.

On the data thus generated, we apply the approach for
partial monotonicity (PartMon), neural networks with weight
decay (NNet) and partially monotone linear models (PMon-
Lin). The results are summarized in Table II.

We can draw several conclusions based on the results
obtained in this experiment:

• Given the universal approximation capabilities of stan-
dard neural networks, it is not surprising that they achieve
closer approximations (i.e., lower squared bias) than our
approach for partial monotonicity and partially linear
monotone models.

• However, the flexible nature of neural networks and the
random initialization of the network weights lead to
higher variances across different runs compared to the
other two approaches; this finding is especially valid for
small or very noisy data sets.

• The flexibility of the mixture modeling employed by
our approach for partial monotonicity allows our method
to make considerably better approximations (smaller
squared bias) than the partially linear monotone models
across data sets with different number of points and noise
levels; this leads, however, to higher variances of the
models.

• In terms of minimum MSE standard neural networks
considerably outperform both partially monotone models
for data sets with small noise level (σ2

ε = 0.01). For
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TABLE II
MINIMUM MSE OBTAINED BY THE THREE METHODS IN EXPERIMENT–1

50 points 150 points 250 points 
Method 

0.012 =εσ  0.52 =εσ  22 =εσ 0.012 =εσ 0.52 =εσ  22 =εσ  0.012 =εσ 0.52 =εσ 22 =εσ  

SQUARED BIAS 
PartMon 0.0672   0.0764    0.1090    0.0241    0.0275    0.0392    0.0352 0.0401 0.0572 
NNet 0.0065    0.0102    0.0171    0.0047    0.0074    0.0124    0.0042 0.0066 0.0111 
PMonLin 0.1324    0.1326    0.1331    0.0952    0.0953    0.0957    0.1170 0.1172 0.1176 

VARIANCE  
PartMon 0.0035    0.0604    0.2199    0.0024    0.0403    0.1466    0.0008 0.0141 0.0513 
NNet 0.0087    0.1473    0.6510    0.0024    0.0404    0.1783    0.0016 0.0278 0.1228 
PMonLin 0.0006    0.0245    0.0918    0.0002    0.0102    0.0381    0.0001 0.0053 0.0197 

MINIMUM MSE 
PartMon 0.0707    0.1368    0.3289    0.0265    0.0677    0.1858    0.0361 0.0542 0.1085 
NNet 0.0152    0.1575    0.6680    0.0071    0.0477    0.1907    0.0059 0.0344 0.1339 
PMonLin 0.1330 0.1571    0.2249    0.0954    0.1055    0.1337    0.1171 0.1224 0.1373 
 

TABLE III
ARCHITECTURES OF SILL NETWORKS AND STANDARD NEURAL NETWORKS FOR WHICH THE MINIMUM MSE IS OBTAINED BY THE MODELS IN

EXPERIMENT–1

Approach for partial monotonicity 
(groups × planes) 

Neural networks with weight decay 
(hidden nodes−weight decay) 

Number of points Number of points Noise level 
50 150 250 

Noise level 
50 150 250 

0.012 =εσ  3 × 2 3 × 2 3 × 2 0.012 =εσ  9−0.000001  9−0.000001  9−0.000001  

0.52 =εσ  3 × 4 3 × 4 3 × 4 0.52 =εσ  3−0.000001 3−0.000001 3−0.000001 
22 =εσ  3 × 4 3 × 4 3 × 4 22 =εσ  3−0.000001 3−0.000001 3−0.000001 

 

larger data sets (N = 150 or N = 250) and reasonable
noise level (σ2

ε = 0.5), neural networks produce slightly
lower MSE than our approach for partial monotonicity.

• For very noisy data sets with insufficient number of
points (N < 250), the minimum MSE is achieved by
the partially monotone linear models; this is indication
that the other two flexible models overfit the data set (by
fitting the noise inherent in it). However, for very noisy
data sets (σ2

ε = 2) with more data points the lowest MSE
is obtained by our approach for partial monotonicity,
which indicates that the true relationship between the
dependent and independent variables can be captured with
sufficient number of points.

• Standard neural networks perform remarkably bad on
small and very noisy data sets–for data sets with N = 50
their minimum MSE is bigger almost twice than that
obtained from our method and three times than that
obtained from the partially monotone linear models; this
result can be explained by the fact that standard neural
networks do not use in the modeling process any prior
knowledge about the partial monotonicity of the true
function.

In addition to the accuracy, we also checked the architec-
tures of Sill and standard networks for which the minimum
MSE is obtained; see Table III.

The results show that for all data sets our approach for
partial monotonicity reaches the minimum MSE with Sill

networks with three groups; for noisier data, however, it
requires more hyperplanes to find a close approximation. In
contrast, standard neural networks with nine hidden nodes lead
to the minimum MSE for data sets with small level of noise,
whereas for noisier data three hidden nodes are enough.

Finally, we checked the number of clusters found by our
approach for partial monotonicity at each run. Given that the
non-monotone variable has been generated by two normal
distributions it is expected the approach to find them. It turned
out that our approach detects two clusters in all runs with
data sets with 50 and 250 points irrespective of the noise
level. For data sets with 150 points, the approach detects ten
clusters with respect to the non-monotone variable. A possible
explanation could be that once generated the non-monotone
variable is fixed for a data set with a certain number of points;
so, it is very likely that the clustering procedure applied in
our approach would tend to find the same number of clusters
across the runs.

b) Experiment–2: For our second experiment we first
generate five vectors of N points as follows:

• x1, x2, x3 are drawn from the uniform distribution on
[0,1],

• x4 is a composition of two sub-vectors each of size N/2
points, which are drawn from two normal (Gaussian)
distributions: N (0.02, 0.05) and N (0.08, 0.05), and

• x5 is drawn from the normal distribution with mean 0.5
and variance 0.1.
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TABLE IV
MINIMUM MSE OBTAINED BY THE THREE METHODS IN EXPERIMENT–2

50 points 150 points 250 points 
Method 

0.012 =εσ  0.52 =εσ  22 =εσ 0.012 =εσ 0.52 =εσ  22 =εσ  0.012 =εσ 0.52 =εσ 22 =εσ  

SQUARED BIAS 
PartMon 0.0288 0.0705 0.1290 0.0164 0.0400 0.0731 0.0106 0.0260 0.0476 
NNet 0.0094 0.0113 0.0236 0.0037 0.0103 0.0214 0.0036 0.0100 0.0209 
PMonLin 0.1282 0.1293 0.1301 0.0841 0.0846 0.0853 0.0799 0.0804 0.0811 

VARIANCE  
PartMon 0.0249 0.1369    0.4641    0.0071    0.0389    0.1320    0.0045 0.0249 0.0845 
NNet 0.0093    0.2207    1.0666    0.0059    0.0858    0.4149    0.0033 0.0480 0.2320 
PMonLin 0.0013    0.0572    0.2378    0.0004    0.0187    0.0771    0.0003 0.0114 0.0468 

MINIMUM MSE 
PartMon 0.0537 0.2074 0.5931 0.0235 0.0789 0.2051 0.0151 0.0509 0.1321 
NNet 0.0187 0.2320 1.0902 0.0096 0.0961 0.4363 0.0069 0.0580 0.2529 
PMonLin 0.1295 0.1865 0.3679 0.0845 0.1033 0.1624 0.0802 0.0918 0.1279 
 

Next, we generate a vector ` by

` = 3 + sin

(

π

2
x1x2x3

)

(

2 + sin(2πx4x5)
)

+ ε. (13)

Hence, xm =
{

x1, x2, x3
}

, xnm =
{

x4, x5
}

, and D =
(xm, xnm, `) is a data set of N points.

Analogously to Experiment–1, we apply our approach for
partial monotonicity, standard neural networks with weight
decay, and partially monotone linear models on 100 generated
samples in the form of D to predict `. We compare again the
three methods by using the same factors with their levels in
Table I. A summary of the results from our second experiment
is given in Table IV.

The following more general conclusions can be drawn from
the results obtained from our second experiment:

• Neural networks lead to more accurate models in terms
of smaller MSE for data sets with a low level of noise
compared to the partially monotone models. Their vari-
ance and thus MSE, however, increases considerably for
nosier data sets; although the weight decay has been
used as a regularization method, these results clearly
indicate overfitting–a typical problem often encountered
in the application of neural networks. The incorporation
of monotonicity constraints in the partially monotone
models helps to overcome this problem and to capture
the true relationships in the target function.

• For considerably noisy data sets, especially with fewer
data obseravtions, partially monotone linear models tend
to have smaller MSE; this is due to the fact that despite
their higher bias, they have much smaller variance across
different runs compared to the more flexible counterpart
methods.

• Our approach for partial monotonicity leads to models
that are more accurate and with low variance for data
sets with a moderate noise level and a larger number of
data points.

The architectures of Sill and standard neural networks
for which the minimum MSEs are obtained are reported
in Table V. On the one hand, the results show that Sill

networks with three groups and three hyperplanes achieve the
best performance in this experiment irrespective of the noise
level and the size of the data sets. On the other hand, the
architectures of standard neural networks for which lowest
errors are achieved vary considerably among different types of
data sets. This finding indicates that for a particular data set
our approach is less dependent on the network’s architecture to
obtain good approximation results, in contrast to the standard
neural networks which are more sensitive to the noise level,
the size of the data and the number of independent variables.

Finally, we check again the number of clusters detected
in our approach across the runs; see Table VI. In contrast
to Experiment–1, here for the different types of data sets
within the 100 runs, our approach finds different number of
clusters. This can be explained by the fact that in our second
experiment we have two non-monotone variables drawn from
different distributions. Hence, the noise level and the size of
the data set would have an effect on the clustering procedure
for determining the right number of data subsets. In general,
given our data generating procedure, we would expect that
our approach would find two clusters; their centroids would
be vectors containing two values corresponding to the means
used to generate the non-monotone variables. The results
show that for all types of data sets, in majority of runs
our approach detects indeed two clusters; the percentage of
detected two clusters is above 50%, except for noisy data
with 150 observations. Not surpisingly, our approach is more
capable to find the right number of two clusters for less noisy
data sets, irrespective of the number of observations. Of course
larger data provides more information and as the results show
the approach tends to detect correctly the number of clusters:
in more than 80% of the runs it finds two or at most three
clusters for data sets with 250 observations with different noise
levels.

The results from both simulation studies indicate that there
is no method that is superior in all the cases. Depending on
the size of and the noise inherent in the data set, any of the
three methods can achieve the best performance. In practice, of
course, the data generating process is unknown, so we cannot
determine beforehand which is the most appropriate method
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TABLE V
ARCHITECTURES OF SILL NETWORKS AND STANDARD NEURAL NETWORKS FOR WHICH THE MINIMUM MSE IS OBTAINED BY THE MODELS IN

EXPERIMENT–2

Approach for partial monotonicity 
(groups × planes) 

Neural networks with weight decay 
(hidden nodes−weight decay) 

Number of points Number of points Noise level 
50 150 250 

Noise level 
50 150 250 

0.012 =εσ  3 × 3 3 × 3 3 × 3 0.012 =εσ  3−0.000001  9−0.000001  9−0.000001  

0.52 =εσ  3 × 3 3 × 3 3 × 3 0.52 =εσ  15−0.00001 15−0.00001 15−0.00001 
22 =εσ  3 × 3 3 × 3 3 × 3 22 =εσ  3−0.00001 3−0.00001 3−0.00001 

 

TABLE VI
NUMBER OF CLUSTERS FOUND BY THE APPROACH FOR PARTIAL MONOTONICITY AT EACH RUN

 Number of points 
 50 150 250 

Noise level Number of clusters – Percentage from 100 runs 
2 - 68 % 2 - 89 % 2 -   74 % 
7 -   1 % 4 -   1 % 3 -   18 % 
8 -   3 % 5 -   1 % 5 -     1 % 
9 -   9 % 8 -   5 % 7 -     5 % 

10 - 19 % 10 -   4 % 9 -     1 % 

0.012 =εσ  

    10 -     1 % 
2 - 55 % 2 - 54 % 2 -   59 % 
4 -   1 % 4 -   7 % 3 -   21 % 
5 -   1 % 5 -   6 % 4 -     1 % 
7 -   2 % 6 -   4 % 5 -     6 % 
8 -   1 % 7 -   4 % 6 -     4 % 
9 - 11 % 8 -   2 % 7 -     4 % 

10 - 29 % 9 -   9 % 8 -     1 % 
  10 - 14 % 9 -     1 % 

0.52 =εσ
 

    10 -     3 % 
2 - 68 % 2 - 44 % 2 - 71 % 
7 -   1 % 4 -   5 % 3 - 13 % 
9 -   9 % 5 -   7 % 4 -   5 % 

10 - 22 % 6 -   1 % 5 -   1 % 
  7 -   8 % 6 -   4 % 
  8 -   8 % 7 -   2 % 
  9 - 18 % 9 -   3 % 

22 =εσ
 

  10 -   9 % 10 -   1 % 
 

to model the data. We expect, however, that in real cases
our approach for partial monotonicity and standard neural
networks would outperform partially monotone linear models
as the former are more flexible. Furthermore, due to the
monotonicity constraints our approach would lead to more
stable models than the models derived from the unconstrained
standard neural networks. This is confirmed by the case study
presented in the next section.

C. Case study on abalone age prediction

In contrast to the regression problem of house pricing
described in [16], here we present the results obtained from
the application of the approach for partial monotonicity on a
classification problem of predicting abalone age.

The abalone shellfish data set is publicly available at the
UCI Repository of machine learning databases ([17]); it has
been used as a benchmark to which various machine learning

techniques have been applied in earlier studies ([18], [19],
[20]). The data have been originally collected by an agency in
the Australian state of Tasmania for ongoing research purposes
([21]). The objective is to predict the age of abalone shellfish
based on eight physical measurements. Determining the age
of abalone in the laboratory is time- and labor-consuming
process–it requires cutting the shell through the cone, staining
it and counting the number of rings through a microscope.
Therefore, faster prediction can be done based on physical
abalone measurements, which are easily obtained. In the
current data set there are eight measurements (attributes); see
Table VII. We transformed the nominal-valued sex attribute
into continuous-valued by assigning the values of 0.1 for
infant, 0.2 for male, and 0.3 for female. We also apply a
simple transformation on the attributes WHOLE WEIGHT and
SHUCKED WEIGHT to guarantee that all inputs are in the
range [0, 1].
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TABLE VII
DEFINITION OF THE VARIABLES FOR THE ABALONE DATA

Symbol Definition 
SEX   Male, Female, and Infant 
LENGTH   Longest shell measurement (mm) 
DIAMETER   Perpendicular to length  (mm) 
HEIGHT   With meat in shell (mm) 
WHOLE WEIGHT  Whole abalone (grams)  
SHUCKED WEIGHT  Weight of meat (grams) 
VISCERA WEIGHT Gut weight after bleeding (grams) 
SHELL WEIGHT After being dried (grams) 

 

TABLE VIII
DEGREE OF MONOTONICITY OF THE ABALONE DATA

Removed variable(s) Comparable pairs DgrMon 
SEX 33708 0.9057 
SEX, WHOLE WEIGHT 33715 0.9057 
SEX, SHUCKED WEIGHT 34683 0.9069 
SEX, WHOLE WEIGHT, SHUCKED WEIGHT 34789 0.9070 

 

The dependent variable needed to be predicted is the number
of rings (age is easily computed by adding 1.5 to the number
of rings); it has 28 values, ranging from 1 to 29 (28 is
missing). Thus, these data can be treated as a regression or a
classification problem. In earlier studies, the response variable
has been discretized into three classes (age-groups): 1-8, 9-10,
11 or more. Here we adopt the same transformation procedure,
and consider the abalone age prediction as a classification
problem.

The original data consist of 4 177 observations (no missing
attribute values). In our study, we take a random sample of 292
observations, which is 7% of the full data set. The sample is
taken such that infants, males, and females, as well as the three
classes are represented in the same proportions like in the full
data.

In the data thus constructed, we expect that the age of
abalone depends monotonically on some of the measurements,
but not on all. For example, if we consider the sex attribute,
the discrimination between males and females is not expected
to be monotone with the age. Furthermore, with the abalone
maturity, the abalone age may not necessarily have monotone
relationships with some of the other physical measurements.
To check for which attributes monotonicity with the age holds,
we conduct a test. This is done by using a measure for the de-
gree of monotonicity (DgrMon) of data, namely the fraction of
monotone pairs of all comparable pairs in the data. Although
the values assigned to the attribute SEX are numerical they
do not imply any ordering; so does not make sense to use this
attribute in the test for monotone relationships. Therefore, the
measure for the degree of monotonicity is computed for the
original data without the attribute SEX and for the data sets
obtained after removing SEX and one or more of the other
variables.

Table VIII shows that the removal of SEX, WHOLE

WEIGHT and SHUCKED WEIGHT leads to a higher number
of monotone pairs out of the increased number of comparable
pairs; the individual removal of the other attributes, not shown
in the table, leads to decrease in the degree of monotonicity
compared to the original data (DgrMon ≤ 0.9052). These
results indicate that we can consider the abalone data as a par-
tially monotone classification problem where SEX, WHOLE
WEIGHT and SHUCKED WEIGHT are the non-monotone
variables, whereas the other attributes are the monotone vari-
ables.

Therefore, we apply our approach for partial monotonicity.
Analogously to the simulation studies, we also use standard
neural networks with weight decay and partially monotone
linear models as benchmark methods for comparison. To
obtain a sound assessment of the generalization capabilities
of the model obtained, we split randomly the original data
into training data of 219 observations (75%) and test data
of 73 observations (25%). The former is used to build a
model whereas the latter is used to test the model performance
measured by the misclassification error. The random partition
of the data is repeated 20 times. We use nine combinations
of parameters for the Sill networks (groups - 2, 3, 4; planes
- 2, 3, 4) and standard neural networks (hidden nodes - 3,
6, 9; weight decay - 0.000001, 0.00001, 0.0001) to get better
insight into the performance of the models. Table IX reports
the minimal, mean and maximal value as well as the variance
of the estimated minimum misclassification error.

The results show that our approach tends to be more ac-
curate on average than standard neural networks and partially
monotone linear models. Furthermore, both types of partially
monotone models exhibit smaller variances upon repeated
sampling than their unconstrained counterpart.

To check the significance of the results we performed
statistical tests. Since the test set in the experiments with the
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TABLE IX
ESTIMATED PREDICTION ERRORS AND VARIANCES OF THE MODELS DERIVED FROM THE APPROACH FOR PARTIAL MONOTONICITY (PARTMON),

STANDARD NEURAL NETWORKS WITH WEIGHT DECAY (NNETS), AND PARTIALLY MONOTONE LINEAR MODELS (PMONLIN) FOR ABALONE DATA

Minimum error Method 
Min Mean Max Variance 

PartMon 0.27 0.31 0.36 0.000 
NNet 0.25 0.32 0.37 0.002 
PMonLin 0.30 0.35 0.38 0.000 

 

TABLE X
p-VALUES OF PAIRED T-TESTS AND ONE-SIDED CONFIDENCE INTERVALS FOR THE DIFFERENCE IN ERROR MEANS IN THE ABALONE CASE STUDY

Confidence intervals 
Indicator p-value 95% 90% 
Minimum error (PartMon–NNet) 12.8% (-∞, 0.005) (-∞, 0.001) 
Minimum error (PartMon–PMonLin) 0.0% (-∞, -0.024) (-∞, -0.027) 
Minimum error (NNet–PMonLin) 0.2% (-∞, -0.011) (-∞, -0.014) 

 

TABLE XI
VARIANCE ACROSS DIFFERENT NETWORK ARCHITECTURES WITHIN A RUN WITH THE ABALONE DATA

Variance within a run Method Min Mean Max 
PartMon 0.0013 0.0032 0.0054 
NNet 0.0003 0.0083 0.0496 

 

three methods is the same, there is a natural pairing of the
error rates estimated. Therefore we conducted three paired t-
tests to test the null hypothesis that the models derived from
one method have the same error as the models derived from the
other methods against the one-sided alternatives. The p-values
obtained from the tests are reported in Table X. They show
that the differences in errors obtained from our approach and
standard neural networks are statistically insignificant at 5%
and 10% significance level. Furthermore, the flexible nature
of our approach and standard neural networks leads to models
that can better capture the true relationships in the data. Hence
these models have significantly smaller errors than the partially
monotone linear models.

Table IX suggests that the differences between the variances
of the partially monotone models and standard neural networks
are significant, which is also confirmed by the p-values of
the two F-tests with 19 degrees of freedom, namely 0.2%
and 0.1%; the difference between the variances of the models
derived from our approach and from partially monotone linear
models is statistically insignificant (p-value is 42.1%).

Another interesting observation is the variance of errors
across different Sill and standard network architectures within
a run; see Table XI.

The results show that our approach produce models with
lower variance on average across various network’s architec-
tures compared to standard neural networks with weight decay.
In fact in two out of the twenty runs, standard neural networks

with three and six hidden nodes produced models with 100%
misclassification rate. This result implies that the models
derived from the neural networks have very high variability
and thus higher dependence on the network’s architecture.

V. CONCLUSION

In this paper we considered partially monotone prediction
problems where the response variable depends monotonically
on some but not on all predictor variables. An approach
for building partially monotone models was presented, which
is convolution of weight functions (kernels) based on non-
monotone variables and Sill (monotone) networks built on the
monotone variables only. Simulation and real case studies were
used to test the performance of the approach and to compare it
with the performance of standard neural networks and partially
monotone linear models. First the models derived from our ap-
proach are generally more accurate that the partially monotone
linear models on artificial and real data. Compared to standard
neural networks our approach achieves comparable accuracy
but significantly smaller variance upon repeated sampling.
Hence, the incorporation of partial monotonicity constraints
leads not only to models that are in accordance with the
decision maker’s expertise but also to more stable models.

APPENDIX I
PROOF OF THEOREM 4.1

Suppose we take both the number of clusters C and the
number of points in each cluster equal to

√
N . Then for
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N → ∞, within the cluster c, Var(xnm) → 0, i.e., xnm

tends to the cluster mean xnm
c . Hence, for each c, the value

of xnm is fixed and we make a local monotone estimation
f̂c(xm) of f by using a Sill network based on the values of
xm for the points belonging to that cluster. This estimation is
guaranteed to be close to the local value of the true function
due to the sufficiently large number

√
N of points in a cluster,

and the universal approximation capabilities of Sill networks
(Theorem 3.1, [5]).

Hence we can consider
(

xnm
c , f̂c(xm)

)C

c=1
as a sample of

C independent observations. Then we use these empirical data
to find an approximation of f based on xnm by

f̂(xm, xnm) =

C
∑

c=1

ϕc(xnm) · f̂c(xm), (14)

where ϕc(xnm) is the positive weighted function defined in
(9).

As f̂(xm) is monotone in xm, the overall approximation is
a class of partially monotone functions, which has the form of
Nadaraya-Watson’s estimator with kernel ϕ(xnm). As shown
in [12] and [13], the approximation in (14) is a consistent
estimator of f(xm, xnm).
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