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Abstract—One challenge faced by procurement decision-maker 

during the acquisition process is how to compare similar products 
from different suppliers and allocate orders among different products 
or services. This work focuses on allocating orders among multiple 
suppliers considering rebate. The objective function is to minimize 
the total acquisition cost including purchasing cost and rebate benefit. 
Rebate benefit is complex and difficult to estimate at the ordering 
step. Rebate rules vary for different suppliers and usually change 
over time. In this work, we developed a system to collect the rebate 
policies, standardized the rebate policies and developed two-stage 
optimization models for ordering allocation. Rebate policy with 
multi-tiers is considered in modeling. The discontinuous cost 
function of rebate benefit is formulated for different scenarios. A 
piecewise linear function is used to approximate the discontinuous 
cost function of rebate benefit. And a Mixed Integer Programing 
(MIP) model is built for order allocation problem with multi-tier 
rebate. A case study is presented and it shows that our optimization 
model can reduce the total acquisition cost by considering rebate 
rules. 
 

Keywords—Discontinuous cost function, mixed integer 
programming, optimization, procurement, rebate.  

I. INTRODUCTION 

HE costs associated with the acquisition, receipt, 
movement, storage, use, maintenance, and disposal of a 

product or service are considered by procurement team. One 
challenge in the acquisition process is how to compare similar 
products from different suppliers and allocate orders among 
different products or services. For example, the procurement 
allocation problem is studied in [1] where a leader supplier 
firm must consider actions of their competitors. Instead of 
considering leader suppliers and their competitors differently 
as in [1], our work focuses on allocating orders among a group 
of exchangeable parts from multiple suppliers from the 
buyer’s perspective. Two most important cost components 
considered by buyers during acquisition process are purchase 
cost and rebate. Usually suppliers provide rebate benefit if the 
order size during a period achieves a pre-defined threshold. In 
this study, we develop an optimization model to minimize the 
acquisition cost including purchase cost and rebate benefit. 
Other factors like receipt, movement, storage, use, 
maintenance, and disposal could be found in studies related to 
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Total Cost of Ownership (TCO) [2]. 
Rebate policy could be very complex. First, rebate rules 

vary for different suppliers and usually are changing over 
time. It becomes more complex when one product is under 
several rebate policies. Moreover, sometimes supplier 
provides multiple tiers of rebate rates according to different 
trigger thresholds. There are quite a few studies focusing on 
different rebate policies [3]-[6]. Reference [3] developed a 
model for Total Quantity Discount (TQD) problem where the 
discounted prices apply to all goods bought from the supplier, 
not only to those goods exceeding the volume threshold. 
Reference [4] compared three types rebate rules: no rebate 
policy, a proportional rebate policy and a utility rebate policy. 
Procurement team may get the rebate policy in various formats 
from different suppliers. How to collect the rebate policy and 
transform them into a structured data format is key to the 
implementation of the model. To deal with different rebate 
policies, we first standardize the rebate policies and design a 
system collect different rebate polices automatically. For 
example, the TQD problem can be a special case collected by 
the system. Instead of looking through different policies and 
compare them manually, this study considers rebate policy 
collection and develops the optimization model which 
considers rebate policy and provide optimized order volume 
suggestion to procurement team.  

Another challenge faced by buyers is that rebate is usually 
triggered by accumulating order during a time window. 
However, when buyers place order in the middle of time 
window, they are unsure whether the rebate benefit could be 
triggered and which level of rebate rates could be achieved at 
the end of the given time window. To deal with this challenge, 
one approach is to divide the plan horizon into several stages 
and use different models or strategies for different stages [7]-
[9]. In [7], a three-stage procurement optimization problem is 
developed to deal with uncertainties on production shortages 
at the suppliers or competition from other firms. In this study, 
we developed two-stage optimization models for ordering 
allocation. One stage is to make acquisition decision at the 
beginning and middle of time window for rebate 
accumulation. The second stage is to make acquisition 
decision at last part of time window for rebate accumulation. 
The system can track the accumulate order information and 
use the optimization models to provide order allocation 
solution for buyers. 

In our optimization models, we focus on rebate policy with 
multi-tiers, i.e., there are multiple trigger volumes and rebate 
rates. Buyers can get higher rebate rate when higher trigger 
volume is achieved. The discontinuous cost function of rebate 
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benefit for multi-tier rebate policy is formulated. Piecewise 
linear function is used to approximate the discontinuous cost 
function of rebate benefit. MIP model is built for order 
allocation problem with multi-tier, multi-supplier. References 
[10] and [11] study a volume discount auction with piece-wise 
linear supply curves either consider a single product or assume 
the prices charged by a supplier for different commodities are 
independent. In our study, we considered the rebate interaction 
of different commodities under four scenarios. 

In this article, we provide introduction and literature review 
on rebate in Section I. Section II is about the complexity of 
rebate policy under different scenarios and a system to track 
rebate benefit and support decision. In Section III, we 
formulated the two-stage optimization models to deal with 
rebate. Section IV includes a case study. Finally, conclusion is 
in Section V.  

II. REBATE POLICY 

In this section, we will describe different scenarios of 
rebate, standardize the rebate policies and design a system 
collect different rebate polices automatically. Typically, 
supplier will provide rebates when buyers’ orders are qualified 
for certain rules. However, the complexity of the rebate 
policies increases the difficulties for companies to make the 
optimal decisions. After we study different rebate policies of 
purchasing Hard Disk Drives, we find that the rebate policy 
can be partitioned into two parts, constraints and rebates rules. 

Constraints are the requirements that buyers need to achieve 
to apply the rebates. Once the constraints are achieved, the 
corresponded rebates will be applied based on rebate rules. 
Rebate rules include a set of rebate benefits on a group of 
products qualified for rebate. 

On a product perspective, each product involved in rebate 
policy is under one of three different scenarios. The simplest 
scenario is that a product is considered under both constraints 
and rebate rules. In this case, the product can contribute to 
achieve constraints, if the constraints are achieved, the rebates 
will also be applied to it. For example, the rebate policy says 
that if Product A’s volume achieved Y Units, then rebate (X%) 
will be applied to Product A. A more complex scenario is that 
a product is considered under constraints but not rebate rules. 
In this case, the product can contribute to achieve the 
constraints. However, if the constraints are achieved, the 
rebates will not be applied to the product itself but other 
products. For example, the rebate policy says that Product A is 
counted toward the attainment but excluded from the rebate 
payment. The last scenario is that the product is considered 
under rebate rules but not constraints. In this case, the product 
itself does not contribute to achieve the constraints, but once 
the constraints are achieved, the rebates will be applied on it. 
For example, the rebate policy said that Product A is not 
counted toward the attainment but included in the rebate 
payment. 

On a rebate policy perspective, each rebate policy is a 
combination of constraints and rebate rules. Within single 
rebate policy, it is an “AND” relationship among constraints, 
as well as rebate rules (as shown in Fig. 1). The rebates will be 

only applied if the constraints are qualified. 
 

 

Fig. 1 Rebate Policy with Constraints Part and Rebates Part 
 

If the whole rebate policy only contains a single trigger 
threshold and rebate rate, it is called “One-Tier Rebate 
Policy”. If the whole rebate policy contains multiple trigger 
thresholds and rebate rates, it is called “Multi-Tier Rebate 
Policy. 

A. User Interface to Collect Rebate Policies 

It is found that rebate policies from different suppliers are 
different after we studied different rebate policies of 
purchasing process. And the rebate policy from one supplier is 
changing over time. Suppliers usually update their rebate rules 
regularly e.g., monthly or quarterly. To facilitate and 
standardize the process of updating rebate policy and 
transforming them to structured data, a user interface (Fig. 2) 
is designed to enter the rebate policy. Before users enter the 
constraints and rebates, they need to specify the rebate policy 
belongs to which Year, Quarter, Supplier, and Product Type. 
After that, users can start to enter the constraints, the left-hand 
side of the blue line is product description fields, these are for 
users to specify which products will be considered to meet 
constraints. By default, no products will be considered into 
constraint scope. On the right-hand side there are three fields 
to select, the first one is “In Scope”, which allows the user to 
specify the products that they specified at the left-hand side 
whether will be considered in scope to meet the constraint or 
not. The second field is the constraint trigger type. There are 
three different trigger types which are units, USD and PB 
(drive petabytes). For example, if the trigger type is set to be 
units, the total units of products specified on the left-hand side 
need to meet certain units’ threshold to enable rebates. The 
last field allows users to specify the period that the constraints 
will cover. For example, in Fig. 2, if user selects both 2017/Q4 
and 2017/Q3, the accumulated order within these 2 quarters 
will be compared to the constraint threshold. 

Fig. 3 is an example of a rebate policy with two constraints 
and one rebate rule. In one of the constraints, there are two 
tiers of trigger thresholds, and correspondingly there are two 
tiers of rebate rates. 

In the example of multi-tier rebate policy in Fig. 3, suppose 
a supplier updates the HDD rebate policy for 2017 first 
quarter, the user can create a rebate policy with two 
constraints. The first constraint is that the total order of ‘Drive 
Family 1’ and ‘Drive Family 2’ drives should reach 40,000 
units during the time window of 2017 Q1. The second 
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constraint includes two tiers of thresholds, i.e., the total order 
of ‘Drive Family 1’ drive with 1.8TB Capacity during the time 
window should achieve 6,000 units (or 8,000 units). Only 
when both constraints are satisfied, the rebate on ‘Drive 
Family 1’ drive with 1.2TB Capacity is enabled. There are two 

tiers of rebate rates, 8% and 10%. Once the user finishes all 
information entering and confirms the rules, the rules will be 
collected and transformed into structured data so that later can 
be used in the optimization algorithm. 

 

 

Fig. 2 User Interface of Rebate Collection 
 

 

Fig. 3 Multi-Tier Rebate Policy Example 
 

B.  Acquisition Cost Optimization System  

To support decisions on procurement, an acquisition cost 
optimization system (Fig. 4) is developed. It has three key 
phases. Phase I is data collection, model input data like rebate 
policies (include constraints and rebates) and purchase price 
are collected through a User Interface (UI). The historical 
orders are also collected. Phase II is to transform the data into 
a format that can be fitted into the model, then run the 
optimization model. Phase III is to present the final optimal 
solution which includes the optimal order volume, potential 
saving, and cost summary. 

 
 

Fig. 4 Acquisition Cost Optimization System 
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TABLE I 
NOMENCLATURE 

𝑥  real number decision variable. The order quantity of part k 
(𝑘 ∈ 𝐾) 

𝑦 ,  binary decision variable. 𝑦 , 1, if 𝑥  falls in the jth interval 

of rebate policy q; 𝑦 , 0, if 𝑥  doesn’t fall in the jth interval 
of rebate policy q 

𝑧 ,  real number decision variable. 𝑧 , 0 only when 𝑥  falls in 
the (s-1)th or sth interval. 

K the set of exchangeable parts 

O  the order volume 

𝑝  purchase price of part k (𝑘 ∈ 𝐾) 

�̅�  average rebate benefit of part k (𝑘 ∈ 𝐾) 

𝑙  maximum order quantity for part k (𝑘 ∈ 𝐾) 

𝑔  minimum order quantity for part k (𝑘 ∈ 𝐾) 

Q the set of rebate policies in consideration 

q  one rebate policy in set Q (𝑞 ∈ 𝑄). q= {𝐶 , 𝐷 , 𝐸 } 

𝐶   a set of parts which can be counted to trigger the rebate in 
policy 𝑞 (𝑞 ∈ 𝑄) 

𝐷   a set of parts to which the rebate applied in policy 𝑞 (𝑞 ∈ 𝑄) 

𝐸   a set of pairs of rebate rate and trigger threshold in policy 𝑞 
(𝑞 ∈ 𝑄) 

𝐴   the total volume of accumulated order of all parts in 𝐶  during 
the time window of rebate (𝑞 ∈ 𝑄) 

𝐵   the total cost of accumulated order of all parts in 𝐷 (𝑞 ∈ 𝑄) 

𝑅 , 𝑥   the rebate benefit of part k in rebate policy 𝑞 where the order 
volume of part k is 𝑥  (𝑘 ∈ 𝐾, 𝑞 ∈ 𝑄) 

𝐼𝐴 ,   the indicator on whether 𝑘 ∈ 𝐶  (𝑘 ∈ 𝐾, 𝑞 ∈ 𝑄)  

𝐼𝑅 ,   the indicator on whether 𝑘 ∈ 𝐷  (𝑘 ∈ 𝐾, 𝑞 ∈ 𝑄)  

𝑟   the rebate rate of ith tier in rebate policy q 

𝑚 ,   The number of intervals in piecewise linear cost function of 
part k for rebate policy q (𝑘 ∈ 𝐾, 𝑞 ∈ 𝑄) 

III. MODELING  

In this session, we developed optimization models for order 
allocation problem considering multiple products and multiple 
rebate policies. Suppose a buyer plans to place an order o with 
quantity O, we built an optimization model to minimize the 
acquisition cost to help this buyer to satisfy order o. Several 
products from different suppliers with similar function can be 
used to satisfy this order o. These products are called 
exchangeable parts for order o, denoted as 𝐾 . Since the 
optimization model is built and solved for each order 
separately in this paper, we simplify 𝐾  into K. These 
exchangeable parts have different unit purchase price and are 
under different rebate policies. The buyer should make 
decision on how many part k for each 𝑘 ∈ 𝐾 to buy to satisfy 
the order o and minimize the acquisition cost. 

One widely applied rebate policy is that if the accumulated 
order of a certain part during a time window [T0, T] reaches a 
threshold, the supplier will provide a percentage of rebate for 
this part at the end of the time window T. Usually suppliers 
update rebate policy by month or quarter. T0 is defined as the 
start date of a month/quarter is and T is defined as the end date 
of a month/quarter. In this work, we assume that rebate of 
different parts from different suppliers has same time window 
for order accumulation. Rebate policies for different parts with 
different time window is not considered in this study. 

One challenge faced by buyers is that they are unsure 
whether the accumulated order for one part can trigger rebate 
or not at the end of the time window when they make 

procurement decision in the middle of [T0, T]. In this study, 
we divided the time window [T0, T1] into two stages [T0, T1] 
and [T1, T]. We develop different models for these two stages. 

A. Stage 1 

During [T0, T1], the final rebate rate is uncertain. In this 
study, we define the potential rebate rate as �̅� . �̅�  can be 
estimated by calculating the average rebate benefit per unit 
based on historical rebate benefit for each exchangeable part.  

We built a Linear Programming (LP) to minimize the 
acquisition cost. 

Objective function 
 

min ∑ 𝑝 �̅� ∙ 𝑥∈   (1) 
 
Subject to 

∑ 𝑥∈ 𝑂  (2) 
 

𝑔 𝑥 𝑙   ∀𝑘 ∈ 𝐾 (3) 
 

𝑥 0, ∀𝑘 ∈ 𝐾 (4) 
 

There is one type of decision variables in this model, 𝑥  
∀𝑘 ∈ 𝐾. Equation (1) is the objective function of the 
optimization model. The total cost sums up the cost of all 
exchangeable parts. Equation (2) is the order constraint. The 
total order of exchangeable parts must satisfy the total 
required order quantity O. Equation (3)  has two parts. It 
contains the availability constraint. This constraint is to ensure 
the order for one part is under the maximum limit of the 
suppliers can provide at one time. It also contains the 
minimum order constraint. This constraint is to balance the 
order among different exchangeable parts. The purpose is to 
avoid allocating 100% of the order on one part because the 
buyers want to maintain the relationship with all suppliers. 
Equation (4) is to ensure all decision variables are non-
negative. 

B. Stage 2 

During [T1, T], the accumulated order has been tracked and 
whether there is a chance to trigger rebate is clearer. Suppose 
there is a set of polices 𝑄 about rebate in consideration, 𝑞 
(𝑞 ∈ 𝑄) is one rebate policy in set 𝑄. 𝑄 is collected through a 
user interface, standardized and stored. As explained in 
Section II, one rebate policy contains constraints and rebate 
rules. In this section, the trigger type in consideration is unit. 
i.e., the volume of accumulated order must satisfy the 
constraints. It can be easily extended to consider other trigger 
types like dollar or PB (drive petabytes) by multiplying 
volume by purchase price or capacity respectively. We start 
from a simple rebate policy with one constraint and one rebate 
rule. The rebate policy can be represented by 𝑞 = {𝐶 , 𝐷 , 
𝐸 }. There are three components in the 𝑞. 𝐶  is a set of parts 
which can be counted to trigger the rebate. The total volume 
of accumulated order of all parts in 𝐶  is denoted as 𝐴 . 𝐷  is 
a set of parts to which the rebate applied. The total cost of 
accumulated order of all parts in 𝐷  is denoted as 𝐵 . 𝐸  is a 
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set of pairs of rebate rate and trigger threshold. 𝐸 = [{𝑟 , 𝑣 }, 
{𝑟 , 𝑣 }, …, {𝑟 , 𝑣 }], where 𝑣 𝑣 ⋯ 𝑣 , 𝑟
𝑟 ⋯ 𝑟 . N is the number of tiers. If 𝑣 𝐴 𝑣 , the 
rebate benefit confirmed is 𝑟 ∙ 𝐵 . 

We define 𝑅 𝑥  as the total rebate benefit of k. The total 
acquisition cost can be formulated as  

 
∑ 𝑝 ∙ 𝑥 𝑅 𝑥∈   (5) 

 
𝑅 , 𝑥  is the rebate benefit of part k in rebate policy 𝑞 where 
the order volume of part k is 𝑥 . 
 

𝑅 𝑥 ∑ 𝑅 , 𝑥∈   (6) 
 
Note that 𝐶  and 𝐷  are usually different. 𝐼𝐴 ,  is the 

indicator on whether 𝑘 ∈ 𝐶 . If ∈ 𝐶  , 𝐼𝐴 , =1, else 𝐼𝐴 , =0. 
Similarly, 𝐼𝑅 ,  is the indicator on whether 𝑘 ∈ 𝐷 . If 𝑘 ∈ 𝐷  
is, 𝐼𝑅 , =1, else 𝐼𝑅 , =0. 

There are four scenarios for each part. The cost function 
under the four scenarios described above is in Fig. 5. 

 

 

Fig. 5 Rebate benefit by X under different scenarios 
 
1) 𝐼𝐴 , =0, 𝐼𝑅 , =0 (Fig. 5 (a)). In this case, no rebate 

benefit is related to k from rebate policy q. 
2) 𝐼𝐴 , =0, 𝐼𝑅 , =1 (Fig. 5 (b)). In this case, part k is not 

required in constraint to trigger rebate. However, when 
rebate constraint is achieved, rebate will be applied to 
park k. The rebate on part k is counted as benefit rebate. 

3) 𝐼𝐴 , =1, 𝐼𝑅 , =0 (Fig. 5 (c)). In this case, the rebate rate 
is not applied to part k. However, ordering part k helps 
satisfy the constraints and thus helps parts in 𝐷  get 
rebate. The rebate on parts in 𝐷  is counted as benefit 
rebate. 

4) 𝐼𝐴 , =1, 𝐼𝑅 , =1 (Fig. 5 (d)). In this case, park k is 
counted toward to attainment in constraints, and thus it 
can help parts in 𝐷  get rebate. Also, when rebate 
constraint is achieved, rebate rate is applied to park k. The 

two parts of savings are counted as benefit rebate. 
Suppose the at the time t (𝑇1 𝑡 𝑇), for a multi-tier 

rebate policy, if the accumulated order required to trigger 
rebate 𝐴  is 𝑣 𝐴 𝑣 . The gap to trigger next level is 

𝐺 𝑣 𝐴 , 𝐺 𝑣 𝐴 , …., 𝐺 𝑣 𝐴 . 
𝑅 , 𝑥  can be formulated as 

 

𝑅 , 𝑥 = 𝑟 ∙ 𝐵 ∙ 𝐼𝐴 , 𝑟 ∙ 𝑝 ∙ 𝑥 ∙ 𝐼𝑅 ,   
0 𝑥 𝐺  

(7) 

= 𝑟 ∙ 𝐵 ∙ 𝐼𝐴 , 𝑟 ∙ 𝑝 ∙ 𝑥 ∙ 𝐼𝑅 ,  
𝐺 𝑥 𝐺  

(8) 

= …  
= 𝑟 ∙ 𝐵 ∙ 𝐼𝐴 , 𝑟 ∙ 𝑝 ∙ 𝑥 ∙ 𝐼𝑅 ,  

𝐺 𝑥  

(9) 

 
In this study, we approximate the discontinuous cost 

function using piecewise linear function.  
Fig. 6 is the cost functions approximated using piecewise 

linear function for scenario 3) and 4). 
 

 

Fig. 6 Piecewise Linear Rebate Benefit 
 

After applying the piecewise linear, suppose there are 𝑚 ,  
intervals and 𝑚 , +1 breakpoints, the break points are 

𝑏 , 0, 𝑏 , 𝐺 , ∆, 𝑏 , 𝐺 , , …., 𝑏 ,
, 𝑀. ∆ is 

a small value, e.g., 1. 𝑀 is a big value which is bigger than the 
order size O and the largest threshold of policy q. We define 

that 𝑦 ,  is a binary decision variable. 𝑦 , 1 if 𝑥  falls in 

the jth interval, and 𝑦 , 0 if 𝑥  doesn’t fall in the jth 

interval. We define that 𝑧 ,  is a decision variable. 𝑧 , 0 
only when 𝑥  falls in the (s-1)th or sth interval. 

𝑅 , 𝑥  can be reformulated as below. 
 

𝑅 , 𝑥 𝑧 , ∙ 𝑅 , 𝑏 , 𝑧 , ∙ 𝑅 , 𝑏 ,

⋯ 𝑧 ,
, ∙ 𝑅 , 𝑏 ,

,    

(10) 

 
where  

𝑦 , 𝑦 , ⋯ 𝑦 ,
, 1 (11) 

 

𝑥 𝑧 , ∙ 𝑏 , 𝑧 , ∙ 𝑏 , ⋯ 𝑧 ,
, ∙ 𝑏 ,

,  (12) 
 

𝑧 , 𝑧 , ⋯ 𝑧 ,
, 1 (13) 

 

𝑧 , 𝑦 , , 𝑧 , 𝑦 , 𝑦 , , …,  𝑧 ,
, (14) 
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𝑦 ,
, 𝑦 ,

, ,  𝑧 ,
, 𝑦 ,

,  
 
The optimization model for the 2nd stage can be formulated 

as: 
 
𝑚𝑖𝑛 ∑ 𝑝 ∙ 𝑥∈ ∑ 𝑅 𝑥∈ ∑ 𝑝 ∙ 𝑥∈

∑ ∑ 𝑅 , 𝑥∈∈

∑ 𝑝 ∙ 𝑥∈ ∑ ∑ 𝑧 , ∙ 𝑅 , 𝑏 , 𝑧 , ∙∈∈

𝑅 , 𝑏 , ⋯ 𝑧 ,
, ∙ 𝑅 , 𝑏 ,

,   

(15) 

 
Subject to 

∑ 𝑥∈ 𝑂  (16) 
 

𝑔 𝑥 𝑙 ,   ∀𝑘 ∈ 𝐾 (17) 
 

𝑥 0 , ∀𝑘 ∈ 𝐾 

𝑦 ,  is 0 or 1, ∀𝑘 ∈ 𝐾, 𝑞 ∈ 𝑄, 𝑗 1,2, … , 𝑚𝑘,𝑞,  
𝑧 , 0, ∀𝑘 ∈ 𝐾, 𝑞 ∈ 𝑄, 𝑠 1,2, … , 𝑚𝑘,𝑞,    

(18) 

   

𝑦 , 𝑦 , ⋯ 𝑦 ,
, 1 , ∀𝑘 ∈ 𝐾, 𝑞 ∈ 𝑄 (19) 

 

𝑥 𝑧 , ∙ 𝑏 , 𝑧 , ∙ 𝑏 , ⋯ 𝑧 ,
, ∙ 𝑏 ,

, ,  

∀𝑘 ∈ 𝐾, 𝑞 ∈ 𝑄 

(20) 

   

𝑧 , 𝑧 , ⋯ 𝑧 ,
, 1 , ∀𝑘 ∈ 𝐾, 𝑞 ∈ 𝑄 (21) 

 

𝑧 , 𝑦 , ,  𝑧 , 𝑦 , 𝑦 , , …,  𝑧 ,
, 𝑦 ,

,

𝑦 ,
, ,  𝑧 ,

, 𝑦 ,
, ,  

∀𝑘 ∈ 𝐾, 𝑞 ∈ 𝑄 

(22) 

 
The optimization model can be easily extended for rebate 

policies with multiple constraints and multiple rebate rules. 
When a rebate policy input from user interface has m 
constraints and n rebate rules. We can save the rebate policy 
as n policies, i.e., in each q, there are m constraints and 1 
rebate rule.  

For a rebate policy with multiple constraints and 1 rebate 
rule, we can get one cost function and approximated it using 
piecewise linear function. We take the rebate policy in Fig. 3 
with two constraints as an example. The rebate policy can be 
standardized and stored in the same format 𝑞 = {𝐶 , 𝐷 , 𝐸 }. 
𝐶  is set with two lists. The two lists of parts are the 
attainment part for the two constraints. 𝐸 = [{𝑟 , 𝑣 }, 

{𝑟 , 𝑣 }, …, {𝑟 , 𝑣 }] where 𝑣  contains two thresholds. 

Only when the both thresholds are achieved, the rebate rate 𝑟  
can be applied. At the time of making ordering decision, for 
each exchangeable part k, the gaps to trigger rebate for each 
constraint and each tier is calculated. Suppose G1_1 is the gap 
between the accumulated order and threshold of constraint 1. 
G1_2 and G2_2 are the two gaps for two-tier rebate in 
constraint 2. In Fig. 7, we can get one cost function by 
considering both constraints. Piecewise linear function can be 
formulated for this unconscious cost function. Then we can 
model (15)-(22) for order allocation where rebate benefit 

follows these piecewise linear functions.  
 

 

Fig. 7 Rebate Benefit of Multiple Constraint Rebate 

IV. EXPERIMENT 

In this section, we introduce a case study to show the 
benefit of considering rebate policies in the two-stage 
optimization modeling. Four parts are considered, i.e., 
PN0001, PN0002, PN0003, and PN0004. The purchase prices 
of these four parts are set to be $100, $102, $25, $24.5. There 
are two pairs of exchangeable parts. PN0001 and PN0002 are 
exchangeable pair 1. And PN0003, PN0004 are exchangeable 
pair 2. There are two types of orders. The first type can be 
satisfied by exchangeable pair 1. The order quantity follows a 
normal distribution N(2000,10002). The second type of order 
can be satisfied by exchangeable pair 2. The order quantity 
also follows normal distribution N(2000,10002). To balance 
order from suppliers and consider availability constraints, we 
assume the order from each exchangeable part should be 

90% and 10% of the order quantity, i.e., 𝑔 10%𝑂, 
𝑙 90%𝑂, ∀𝑘 ∈ 𝐾.  

Two rebate policies are considered in this experiment: 
 𝑞 = {𝐶 𝑃𝑁0001, 𝑃𝑁0003 , 𝐷 𝑃𝑁0001 , 𝐸

0,0 , 1000,3% , 5000,4% , 7000,7% , 8000, 8% , 
9000,9% , 10000,10%   

 𝑞 ={𝐶  𝑃𝑁0002 , 𝐷 𝑃𝑁0002 , 
𝐸 0,0 , 3000,6% . 

We generate 1000 samples. In each sample, there are four 
orders, order quantity is randomly generated based on normal 
distribution. We divide the time window into two stages. In 
each stage, there are two orders. One order requires parts in 
exchangeable pair 1 to satisfy. The other order requires parts 
in exchangeable pair 2 to satisfy. Table II contains samples of 
two-stage orders generated randomly. When making order 
decision in stage 1, the order quantity in stage 2 is unknown. 

 
TABLE II 

TWO-STAGE ORDER SAMPLES GENERATION 

 Stage 1 Stage 2 

SN Order for 
exchangeable 

pair 1 
N(2000,10002) 

Order for 
exchangeable 

pair 2 
N(2000,10002) 

Order for 
exchangeable 

pair 1 
N(2000,10002) 

Order for 
exchangeable 

pair 2 
N(2000,10002) 

1       2,196        1,614           2,292           1,365  

2       2,339           598                 -             1,890  

… … … … … 

1000       1,209        2,215           1,452           1,484  

 
To evaluate the performance of our two-stage optimization 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:12, No:3, 2018

335

 

 

models, we first consider three simple strategies to allocation 
order. 

Strategy 1: Don’t consider rebate information. Always buy 
the cheaper parts as more as possible, i.e., when type 1 order 
arrives, always buy 90% of PN0001, 10% of PN0002 because 
PN0001 is cheaper than PN0002. When type 2 order arrives, 
always buy 90% of PN0004, 10% of PN0003 because PN0004 
is cheaper. 

Strategy 2: Consider the expected rebate rate for parts 
which are qualified for rebate. For example, the expected 
order quantity of type 1 order is 4,000 (the mean of order 
quantity in stage 1 (2000) plus the mean of order quantity in 
stage 2 (2000)). According to 𝑞 , PN0001’s rebate rate is 3%. 
Its price after applying this rebate rate is $100*(1-3%)=$97. 
Similarly, according to 𝑞 , PN0002’s rebate is 6%. Its price 
after applying this rebate rate is $102*(1-6%)=$95.9. PN0002 
is cheaper. When type 1 order arrives, always buy 90% of 
PN0002, 10% of PN0001. Since PN0003 and PN0004 has no 
rebate, when type 2 order arrives, always buy 90% of PN0004, 
10% of PN0003. 

Strategy 3 (best case): Assume we know the order quantity 
at the beginning of time window in each sample, i.e., when 
make decision for pair 1 at stage 1, we not only know the 
order quantity for pair 1 at stage 1, we also know the order 
quantity for pair 2 at stage 1 and the order quantity for pair1 
and 2 at stage 2. In this case, without uncertainty, we can 
always make best decision. This strategy can’t be applied in 
real procurement process because is it impossible to confirm 
all future orders with 100% certainty in advance. We use this 
strategy here as a benchmark. 

We developed the two stages of optimization models in R. 
�̅�  is estimated by calculating the average rebate benefit per 
unit for each rebate policy. We used the rebate benefit and 
order decisions from Strategy 1 experiment to calculate �̅� . 
The average rebate benefit per unit is $2.1 for PN0001and 
PN0003, while the average rebate benefit per unit is $0 for 
PN0002, PN0004. We use these �̅�  values in Strategy 4. 

Table III shows the average purchase cost, rebate benefit 
and total cost of the 1,000 samples in four different strategies. 
Total cost is purchase cost minus rebate benefit. As expected, 
Strategy 3 (best case) has the highest rebate benefit and lowest 
total cost. Two simple strategies, i.e., strategy 1 and 2, have 
obviously higher total cost. Strategy 4 uses our two-stage 
optimization model. Its total cost is the second lowest. We 
also display the rebate benefit and cost of different order 
strategies in Fig. 8. Although Strategy 4 (two-stage) has higher 
purchase cost compared with Strategy 1. However, its rebate 
benefit is 50% higher than Strategy 1. As a result, the total 
cost of Strategy 4 is lower than Strategy 1. Compare with 
Strategy 2, Strategy 4 has lower purchase cost and higher 
rebate benefit, and thus the total cost is lower than strategy 2. 

We use the cost and rebate benefit in Strategy 3 (best case) 
as a benchmark and calculate the difference between the cost 
and benefit in other strategies from the benchmark. Fig. 9 
displays the cost difference from benchmark. It shows that 
cost difference from our two-stage optimization model is 
significantly lower than other strategies. The cost difference 

from strategy 4 is 38% of cost difference from strategy 2, and 
31% of cost difference from strategy 1. It indicates that the 
two-stage optimization models can help the buyer make better 
decision and thus reduce the total acquisition cost. 

 
TABLE III 

COST FROM DIFFERENT ORDER STRATEGIES  

Strategy Purchase Cost Rebate Benefit Total Cost 

Strategy 1 $ 504,749 $ 8,553 $ 487,643 

Strategy 2 $ 511,265 $ 10,885 $ 489,494 
Strategy 3  
best case 

$ 506,289 $ 14,028 $ 478,234 

Strategy 4 
two-stage 

$ 506,897 $ 12,536 $ 481,825 

 

 

Fig. 8 Rebate Benefit and Cost of Different Order Strategy 
 

 

Fig. 9 Cost Difference from Benchmark 

V. CONCLUSION 

Procurement decision-makers can make a significant impact 
for their businesses by considering the TCO for products and 
services during the acquisition process. The complexity of 
rebate policies makes the evaluation of the TCO difficult, 
especially given uncertainty in future business, volumes, and 
ordering needs. However, by creating a two-stage optimization 
model, decision-makers can identify a strategy that results in 
substantially better decisions. This type of modeling can be 
integrated into an organization’s procurement processes by 
ensuring reliable collection of purchase costs, rebate benefits, 
and enabling the modeling to be performed and referenced 
during key decisions points throughout the period when a 
product or service is acquired. 
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