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MITOS-RCNN: Mitotic Figure Detection in Breast
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Abstract—Studies estimate that there will be 266,120 new cases
of invasive breast cancer and 40,920 breast cancer induced deaths
in the year of 2018 alone. Despite the pervasiveness of this
affliction, the current process to obtain an accurate breast cancer
prognosis is tedious and time consuming. It usually requires a
trained pathologist to manually examine histopathological images and
identify the features that characterize various cancer severity levels.
We propose MITOS-RCNN: a region based convolutional neural
network (RCNN) geared for small object detection to accurately
grade one of the three factors that characterize tumor belligerence
described by the Nottingham Grading System: mitotic count. Other
computational approaches to mitotic figure counting and detection
do not demonstrate ample recall or precision to be clinically viable.
Our models outperformed all previous participants in the ICPR 2012
challenge, the AMIDA 2013 challenge and the MITOS-ATYPIA-14
challenge along with recently published works. Our model achieved
an F- measure score of 0.955, a 6.11% improvement in accuracy from
the most accurate of the previously proposed models.

Keywords—Object detection, histopathology, breast cancer, mitotic
count, deep learning, computer vision.

I. INTRODUCTION

ONE in eight U.S. women will develop invasive breast

cancer at some point in their lives, placing breast cancer

as the second most commonly diagnosed form of cancer,

regardless of gender [1]. The World Health Organization

recommends the use of the Nottingham Grading System for

tumor grading [2]. The Nottingham Grading System is derived

from the assessment of three main morphological features:

nuclear atypia, mitotic count and tubule formation. Nuclear

atypia is described as the deformation of nuclei in a population

of cells and is characterized by the following factors: size

of nuclei, size of nucleoli, density of chromatin, thickness

of nuclear membrane, regularity of nuclear contour, and

anisonucleosis (size variation within a population of nuclei).

Tubule formation is described as the percent of cancer cells

that are in regular tubule formation. As the cancer becomes

more belligerent, the tumor cells proliferate via mitosis (the

process of cellular division), making the mitotic count of a

tumor an important prognostic factor. For this study, we will be

focusing on the most documented and salient feature involved

in an accurate breast cancer prognosis: mitotic count. Mitotic

count needs little to no professional interpretation, due to the

simple metrics used to identify proliferation rates using the

mitotic count per high power field (HPF’s: the area visible

under the maximum magnification power of a microscope) :
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0-9 mitoses per 10 HPF’s is low proliferation, 10-19 mitoses

per 10 HPF’s is moderate proliferation and more than 19

mitoses per 10 HPF’s is severe proliferation.

Despite the prevalence of breast cancer, current methods

for breast cancer prognosis are quite primitive. Trained

pathologists are needed to examine hundreds of high power

fields of histology images. Biopsies often take around two

to ten days for results to return to the patient [1]. Given the

growing number of breast cancer incidences [1], the traditional

method for breast cancer prognosis is not sustainable. A

computational approach would be a much more time and

cost effective alternative, allowing for a streamlined breast

cancer prognosis pipeline. This would allow for the deploying

of pathological services to impoverished areas and the

optimization of care centers globally.

(a) Prophase (b) Metaphase

(c) Late Anaphase (d) Telophase

Fig. 1 Different stages of mitosis. The shape variation across stages can
cause low mitotic figure detection accuracy

However, there are some complications that limit the

accuracy of both computational and manual mitotic count

extraction. Obtaining an accurate mitotic count is quite a

challenge, as mitoses are often of low density, but high

variation throughout HPF’s [3]. Such variation is seen across

the four phases of mitosis (prophase, metaphase, anaphase and

telophase), with each phase having its own distinct size and

shape (see Fig. 1). Mitotic figures in the anaphase or telophase

stage of mitosis are often misclassified as 2 mitotic figures

rather than 1. The low density of mitotic figures is evident in
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the metrics used to classify various cancer severity levels using

mitotic counts: 0-9 mitoses per 10 HPF’s is low proliferation,

10-19 mitoses per 10 HPF’s is moderate proliferation and

more than 19 mitoses per 10 HPF’s is severe proliferation.

On average there are about 0-2 mitotic figures per HPF.

Low density and high variation of mitotic figures makes

scanning through hundreds of HPF’s a tedious task when done

manually and makes the practice susceptible to human error.

For example, apoptotic cells (cells undergoing preprogrammed

cell death) and other debris accumulated while preparing the

tissue sample are often confused with mitoses due to their

shaded, circular appearance. Irregularities in hematoxylin and

eosin (H&E) staining across cancer research/treatment centers

also add to the variation of breast cancer histopathology

images.

Prior computational approaches to mitotic figure detection

in breast cancer histopathological images within the scope

of contests do not generalize well to new sets of data,

resulting in relatively poor performance on an evaluation

dataset. Outside the scope of participants in a mitotic figure

detection challenge, several improvements have been made,

but the methods are not accurate enough for clinical viability.

Deep learning is a growing field geared towards multi-scale

pattern detection using deep neural network architectures.

Adaptations of models like the convolutional neural network

(CNN) can extract high level features from images to be used

for object detection tasks like obtaining a mitotic count. One

example of such a model is the Faster-RCNN proposed by

[4], which uses features from an image to produce spatial

coordinates for bounding boxes associated with certain classes.

We propose MITOS-RCNN: an adaptation of the

Faster-RCNN model geared towards the automatic detection

and counting of mitotic figures in breast cancer histopathology

images. Our model was trained using the ICPR 2012, AMIDA

2013 and MITOS-ATYPIA-14 challenge datasets. We later

compare the results of our models when fed sample images

to those of previous works and demonstrate that our model

significantly outperforms all other approaches.

II. RELATED WORK

A. Deep Learning

Although deep learning methodologies have just recently

begun to gain popularity, the underlying theory and

applications have been present for quite some time. One of

the earlier applications of deep learning for image analysis was

the work done by [5] using CNN’s for handwritten zip code

classification. However, support vector machines outperformed

CNN’s during this time due to the lack of computational

resources available for deep learning methodologies to be

successful. Reference [6] improved upon the work done by

[5] with the introduction of CNN’s for general object image

classification and outperformed all existing methods in the

ImageNet Large Scale Visual Recognition Challenge, thus

showing the promise of deep learning techniques. Reference

[7] unified object classification tasks and object detection tasks

with the original RCNN model. Models like the Fast-RCNN

[8] and the Faster-RCNN [4] improved the speed at which

these models would be trained and evaluated, resulting in close

to real-time object detection.

B. Mitotic Figure Detection

Prior contests have been held with the sole purpose of

discovering novel approaches to detecting mitotic figures in

histology images such as MITOS challenge at ICPR 2012

[9] and the AMIDA 2013 challenge [10]. The winners of

MITOS contest, [11], utilized a deep, max-pooling CNN

which operates on patches of pixels and their respective color

channels and classifies those pixels as mitotic or not mitotic

figures, ultimately achieving an F-measure score of 0.782. The

model was trained to formulate features based on training

images, contrasting the other contestants use of handcrafted

features. Ciresan et al.’s work was one of the first applications

of CNN’s in a histopathological context.

The AMIDA 2013 challenge [10] proved to be quite similar,

as contestants either employed classifiers (e.g. random forest

classifiers) that relied upon hand-crafted features or utilized

deep learning methodologies similar to those previously

proposed in the MITOS challenge. Ciresan et al. [11] prevailed

once again with the use of Multi Column Max-Pooling

Convolutional Neural Networks (MCMPCNN). This new

approach utilized a probabilistic representation of whether a

pixel was a mitosis or not along with three 10-layer networks

working in tandem. Reference [11] achieved an F-measure

score of 0.611 with this approach.

Winners of the MITOS-ATYPIA-14 challenge achieved an

F-measure score of 0.356 using a model called the Deep

Cascaded Network [12] consisting of the following main

steps: (1) candidate mitotic figure detection using a fully

convolutional network and (2) discrimination classification of

the detected mitotic figures candidates using a CNN.

Recent advances in mitotic figure detection outside the

scope of contests have been made by various works. For

example, [13] employed a CNN paired with a crowd-sourced

learning architecture and achieved an F-measure of 0.433.

Additionally, Saha et al. [14] use both hand-crafted and learned

features in their proposed model, achieving an impressive

F-measure score of 0.900.

Our proposed approach builds upon the most successful

prior works by utilizing a modified Faster-RCNN tuned for

the detection of small objects, which matches the speed

of previous CNN implementations but with more accurate

detections.

III. MATERIALS

A. Dataset Description

Our evaluation set of data consists of 100 samples of each

of the “mitotic figure” and “not mitotic figure” classes spread

across 187 HPF subsections.

IV. METHODS

A. Data Preprocessing and Augmentation

Our model takes in only 299x299 px images as input

and resizes any input to this dimension. We split each
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TABLE I
THE DIMENSIONS, RESOLUTION AND NUMBER OF FRAMES FROM EACH OF THE TWO SCANNERS: THE APERIO SCANSCOPE XT AND THE HAMAMATSU

NANOZOOMER 2.0-HT
Scanner Dimensions of x40 frame (px) Res. at x40 (μm/px) # of Frames

Aperio 1539 * 1376 0.2455 2622
Hamamatsu 1663 * 1485 0.2273 2016

image into 16 equal subsections to make sure minimal

downsampling of each image takes place. This allows for more

“attention” to small-scale features. Since the Faster-RCNN

outputs bounding box spatial coordinates, we introduced a

new dataset, MITOS-BOXES, using the preexisting centroid

coordinates and annotating box regions by hand for each

mitotic and non-mitotic figure. Due to the relatively small size

of our dataset, we introduced artificially augmented versions

of existing data to create more samples for the model to learn

from and to prevent overfitting. We rotated all images by preset

values (90◦, 180◦, 270◦), as we believed that keeping raw

pixel data intact would be beneficial for the model. Due to the

inconsistency of staining techniques across the data sources,

all image data was normalized via a procedure described by

[15] (original samples were kept in dataset). The final size of

the dataset was 37,104 HPF’s.

B. Proposed Model

Our proposed model (see Fig. 2 for diagram of architecture)

is a variation of [4] proposed Faster-RCNN model and

is composed of two main modules: (1) a region proposal

network (RPN) which returns regions of interest (ROI’s) and

(2) a detection network which classifies and discriminates

regions of interests while performing a bounding box

regression, ultimately returning spatial coordinates with

associated classes. We utilized the VGG-16 model [16] as

our base feed-forward CNN in order to extract powerful

hierarchical features from an input image. We refer to the

’conv1 3’, ’conv2 3’, ’conv3 3’, ’conv4 3’ and ’conv5 3’

layers of the VGG-16 network as conv1, conv2, conv3, conv4,

conv5, respectively. Region proposals are generated during the

two-stage top-down cascade multi-scale proposal generation

process, where features from both the conv3 and conv4 feature

maps are aggregated and used by two separate RPN’s: RPN1

and RPN2. The generated region proposals are then fed

into two sibling fully connected layers (FCreg and FCcls)

to regress bounding box spatial coordinates and classify the

generated region proposals as being either “mitotic figure” or

“not mitotic figure”.
1) Small Scale Object Detection: [17] proved that with the

standard Faster-RCNN architecture, the minimum detectable

object size was around 44px. This is due to the loss of

information as the feature map representation dimensionality

is reduced via the pooling layers within the feed-forward

network. Essentially, the later conv layer feature maps contain

rich abstract-level features which are far too coarse to be

used for extraction of features pertaining to small objects. A

44px object detection threshold is not optimal for the detection

of mitoses, as the average size of the mitotic figures in our

MITOS-BOXES dataset was around 30px. To avoid this issue

we omit the conv5 layer and utilize the feature maps from

only conv3 and conv4, allowing for the minimum detectable

object size to be 15px and 22px, respectively [17].

2) Two-Stage Top-Down Cascade Multi-Scale Proposal
Generation: Our adapted RCNN model generates multi-scale

proposals at two distinct stages of the network using

features aggregated from multiple convolutional layers in a

top-down manner in order to obtain more refined proposals

for specifically small-scale objects. This allows the model

to use semantic knowledge from both higher and lower

level features to produce accurate object detections. RPN1

follows the conv4 layer and generates around 15k proposals

(most of which are discriminated via NMS thresholding of

0.7). RPN2 utilizes features aggregated from a feature map

consisting of both conv3 and conv4 concatenated. To obtain a

concatenated feature map, the conv4 feature map is upsampled

by a subsequent deconvolutional layer in order to obtain

a resolution matching that of conv3. Then, we normalize

each layer using L2 norm, concatenate the two feature maps

to obtain conv3+4 and reduce the conv3+4 feature map to

a dimension of 256x1x1. RPN2 utilizes inputs from two

sources: (1) the proposals from RPN1 and (2) the output of a

“sliding window” operating on the conv3+4 feature map with

a scale of 642px and a 1:1 aspect ratio. Proposals are further

refined by the model by discriminating low-quality proposals

generated by RPN2 via NMS thresholding of 0.7 and then

fed into an ROI pooling layer to normalize region proposal

scales.

3) Detection Network: The detection network of our model

is identical to that of the RCNN’s proposed by [4] and [8].

Two sibling output layers make up this detection network:

a bounding box classification layer and a bounding box

regression layer. Both networks are fully-connected layers and

receive the refined region proposals from the RPN2 layer

of the model after the proposal scales have been normalized

by the ROI pooling layer. The bounding box classification

layer, FCcls, outputs a softmax probability distribution, p =
(p0...pk), over the 0th ...kth classes for every region proposal,

where the softmax function is defined as:

P (ci|x) = exp(yi)∑N
j exp(yj)

. (1)

Given an input, x, the softmax function computes the

probability of a class, ci, using the classification score for the

ith class, yi, and the classification scores for all the classes.

The fully connected layer used for bounding box regression,

FCreg , outputs a vector of regression offsets, tk =
(tkx, t

k
y , t

k
w, t

k
h), specifying a scale-invariant transformation (of

the top-left corner of the box (x, y) and the width and height

of the box (w, h)) to the input region proposal coordinates for

each of the k classes.
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Fig. 2 The architecture of our proposed MITOS-RCNN model, from the VGG-16 convolutional layers to the fully-connected layers outputting the final
detections

4) Training: The loss function being minimized during the

training process takes into account the loss from both modules

of the detection network - the regression network, Lreg , and

the classification network, Lcls - and is defined as:

L(pi, ti) =
1

Ncls

∑

i

Lcls(pi, p
∗
i )+λ

1

Nreg

∑

i

p∗iLreg(ti, t
∗
i ),

(2)

where i is the anchor index (anchors are synonymous with

bounding box proposals), pi is the “objectness” of the anchor

i, p∗i is the predicted “objectness” of the anchor i, ti is the

coordinate vector of the bounding box prediction, t∗i is the

coordinate vector for the ground truth bounding box with a

positive anchor, Ncls is the batch size, Nreg is the number of

anchors, Lcls is the log loss over the object and not object

classes, Lreg = R(ti − t∗i ) (R is the robust loss function

described by [8]) and λ is a balancing hyperparameter (set

to 10 in our implementation).

Our model was trained in the same fashion as the

Faster-RCNN [4]. Weights in all layers of the RCNN

were initialized from a zero-mean Gaussian distribution with

standard deviation of 0.01, while all VGG-16 layers remained

with their pre-trained weights. We trained the fine-tuned the

RCNN model with our proposed MITOS-BOXES dataset

using standard stochastic gradient descent (SGD) [5]. Batch

size was kept to 10 images. The model was trained for 60,000

mini-batches with a learning rate of 0.001 and then 20,000

mini-batches with a learning rate of 0.0001. A momentum of

0.9 and a weight decay of 0.0005 was used.

C. Implementation Details

Both the training and testing process were performed on

the Google Cloud Platform ML Engine. We used 5 NVIDIA

Tesla K80 GPUs and 3 parameter servers in order to distribute

the training process. The testing process only required a single

NVIDIA Tesla K80 GPU. Dataset augmentation/preprocessing

and model evaluation was done locally on a computer running

TABLE II
COMPARATIVE PERFORMANCE OF OUR PROPOSED RCNN ADAPTATION

VERSUS THE STANDARD FASTER-RCNN MODEL AND A FASTER-RCNN
MODEL WITH ONLY conv4 FEATURES

Method F1 score

Faster-RCNN [4] 0.502
Faster-RCNN w/ conv4 0.709

Proposed 0.955

the MacOS High Sierra operating system with a 2.7 GHz Intel

Core i5 processor and 8 GB of RAM. Our implementation was

in the Tensorflow machine learning framework [18].

V. RESULTS

See Fig. 3 for sample detections.

A. Metrics

We used the F-measure (or F1 score) score as the benchmark

metric for our model. The F-measure score is defined as the

harmonic mean of precision and recall:

F1 = 2 ∗ precision ∗ recall
precision+ recall

, (3)

where precision and recall are defined as:

precision =
TP

TP + FP
, (4)

recall =
TP

TP + FN
, (5)

and TP is the number of true positives, FP is the number

of false positives and FN is the number of false negatives.

Reference [3] describe a true positive detection as a detection

that is at most 8 μm from the centroid of a ground truth mitosis.
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(a) Mitotic figure, Apeiro scanner (b) Non-Mitotic figure, Apeiro scanner

(c) Mitotic figure, Hamamatsu scanner (d) Non-Mitotic figure, Hamamatsu scanner

Fig. 3 Sample detections of “mitotic figures” and “not mitotic figures” on HPF subsections from both an Apeiro scanner and a Hamamatsu scanner

Ground Truth
Positive Negative Total

Prediction
Positive 72 31 103
Negative 28 69 97

Total 100 100 200
Ground Truth

Positive Negative Total

Prediction
Positive 53 58 111
Negative 47 42 89

Total 100 100 200
Ground Truth

Positive Negative Total

Prediction
Positive 96 5 101
Negative 4 95 99

Total 100 100 200

Fig. 4 Confusion matrices (from top to bottom): the standard Faster-RCNN,
the Faster-RCNN with only conv4 features, and our proposed model

TABLE III
COMPARATIVE RESULTS INVOLVING RECENTLY PUBLISHED WORKS AND

CONTEST WINNERS

Reference F1 score

[11] 0.782
[10] 0.611
[12] 0.356
[13] 0.433
[14] 0.900

Proposed 0.955

B. Comparative Results

1) Two-Stage Top-Down Cascade Multi-Scale Proposal
Generation Results: To display the efficacy of our custom

two-stage top-down cascade multi-scale proposal generation

method, we implemented a standard Faster-RCNN along with

a Faster-RCNN only using conv4 features and trained the

models in a fashion identical to that of [4]. Table II shows

the performance of our proposed model alongside the other

2 benchmark models. Our custom region proposal network

improved upon the standard Faster-RCNN model by 90% and

the Faster-RCNN with only conv4 features by 35%.

2) Comparison with Previously Proposed Methods: Table

III shows the results of our model in comparison to recently

published works and contest winners. Our approach was

6.22% more accurate than the previous high F1 score

of 0.900 achieved by the model proposed by [14]. Our

method outperformed all previously proposed approaches

which utilized both handcrafted features and deep learning

methodologies.

3) Computation Time: Most previous works do not

document the time it takes for model evaluation. We found

that, on average, our model took 0.5 seconds to process 1 HPF.

Reference [14] report that their model took 0.3 seconds per

HPF. This increase in our model’s forward propagation time

can be attributed to the increased complexity of our model due

to the need for 2 RPN’s.

VI. DISCUSSION

A. Significance

Computerized extraction of mitotic counts from HPF’s

allows for a streamlined breast cancer prognosis pipeline. A
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biopsy taking 2 - 10 days [1] can be reduced significantly

if manual mitotic figure counting was omitted from the

current prognostic pipeline. Our contribution advances the

state-of-the-art in computerized breast cancer prognosis,

hopefully towards fully automated breast cancer prognosis in

clinical practice.

Outside the scope of computerized medical imaging, the

detection of small-scale objects is a practice applicable to

many problems. Reference [17] proposed that his model be

used for company logo detection in images where logos make

up small fractions of the image. Satellite images also have

many small artifacts or landmarks scattered around large,

high-resolution images. Detecting such small objects with

great accuracy is made possible by our proposed model. The

future applications are abundant and promising.

B. Limitations

While models utilizing learned features may be more

accurate than their counterparts relying on hand-crafted

features, deep learning models of this scale have their

limitations due to their computationally-exhaustive nature.

Training a deep learning model like our proposed model

requires GPU’s in order to rapidly calculate extensive amounts

of large-scale matrix operations along with large sets of

varied, yet consistent data. Without multiple GPU’s the time

to complete training iterations can increase exponentially to

infeasible values. Due to the advent of cloud computing

power for deep learning models, we were able to address

the issue of dealing with computationally taxing operations.

However, there were more complications regarding the data

which the model was trained, tested and evaluated on.

While our dataset sources utilized the same set of tissue

scanners (meaning relatively similar image characteristics),

the histopathological images were from different labs using

different staining protocols. Although we normalized the stain

color across all images in our dataset, there would still be

stain irregularities across our dataset which could result in

increased false-positive or false-negative detections. Since our

model was trained on data originally annotated by trained

pathologists, our model was subject to human biases and error.

The same variation of mitotic figures described in Section I

also affects pathologists, meaning that misclassification are

quite likely. Introducing a “not mitotic figure” class to account

for low-confidence pathologically-annotated mitotic figures

was an attempt to solve this problem, but there is no guarantee

that pathologists correctly identified all mitotic figures with

relatively high confidence. Apart from the inconsistencies or

irregularities within our dataset, the size of our dataset is a

pertinent problem for deep learning models. Many large-scale

models rely on massive datasets during the training process.

We artificially increased the dataset size and variation through

augmentation techniques, but our dataset was still quite small

compared to the size of the datasets utilized by other works.

For example, the VGG-16 model (our base feed-forward

network) was trained on a dataset with upwards of a million

samples of image data [16].

VII. CONCLUSION

We propose a variant of the Faster-RCNN architecture

in order to detect mitotic figures in breast cancer

histopathological images with great speed and accuracy. Our

two-stage top down multi-scale region proposal generation

process enables our model to detect small objects such as

the mitotic figures. Our results reinforce the strength of our

proposed model in comparison to previously proposed works.

Our proposed model achieved an F-measure score of 0.955, the

highest accuracy achieved to date. Our model utilizes purely

learned features to detect mitotic figures, thus displaying the

strength of learned features compared to the hand-crafted

features used by other works.
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