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Abstract—In this paper, we propose an improvement of pattern 

growth-based PrefixSpan algorithm, called I-PrefixSpan. The general 
idea of I-PrefixSpan is to use sufficient data structure for Seq-Tree 
framework and separator database to reduce the execution time and 
memory usage. Thus, with I-PrefixSpan there is no in-memory 
database stored after index set is constructed. The experimental result 
shows that using Java 2, this method improves the speed of 
PrefixSpan up to almost two orders of magnitude as well as the 
memory usage to more than one order of magnitude. 
 

Keywords—ArrayList, ArrayIntList, minimum support,  
sequence database, sequential patterns.  

I. INTRODUCTION 
HE objective of sequential pattern mining is to find all 
frequent sequential patterns with a user-specified 

minimum support. The problem of sequential patterns 
discovery was inspired by retailing industry problems. 
However, the results apply to many scientific and business 
domains, such as stocks and markets basket analysis, natural 
disasters (e.g. earthquakes), DNA sequence analyses, gene 
structure analyses, web log click stream analyses, and so forth. 
Suppose the computer shop database contains list of 
customers, list of transaction time of each customer, and list of 
items bought for each customer’s transaction time, then “80% 
of customers buy computer, then earphone, and then digital 
camera” may be one of the valuable sequential patterns found. 
This purchasing need not be consecutive. Those customers 
who buy some other items in between also support this 
pattern. 

Generally, the sequential pattern mining approaches are 
either generate-and-test (also known as apriori) or pattern 
growth (also known as divide-and-conquer) or vertical format 
method approach. AprioriAll [1] is the earliest sequential 
pattern mining algorithm proposed by Agrawal and Srikant in 
1995. The following year they generalized the problem to 
include time constraints, sliding time window, and user-
defined taxonomy, and presented an apriori-based, improved 
algorithm GSP [2]. Either GSP or AprioriAll adopt a multiple-
pass, candidate generation-and-testing approach. This 
approach has three drawbacks. Firstly, a very large set of 
candidate sequences could be generated in a large database. 
Secondly, this approach must scan the database many times. 
Lastly, it generates a combinatorially explosive number of 
candidates when mining longer sequential patterns. Hence, 
this approach may not be sufficient in mining large sequence 
databases having numerous and/or long patterns. 

FreeSpan [3] and PrefixSpan [4], [5] are two algorithms 
adopting divide and conquer approach. In this approach, the 
sequence database are recursively projected into a set of 
smaller projected database based on the current frequent 

pattern(s), and sequential patterns are grown in each projected 
databases by exploring only locally frequent fragments [3]. To 
improve the performance, FreeSpan offers bi-level projection 
technique, which scans the database twice, instead of level-by-
level projection. It has also been showed that FreeSpan runs 
considerably faster than GSP. The following year after the 
proposal of FreeSpan, Jian Pei et al [4] proposed PrefixSpan 
algorithm. Since this algorithm projects only the suffixes, the 
size of the projected database shrinks and redundant checking 
in every possible location of a potential candidate is reduced. 
It offers pseudo projection technique that avoids physical 
projections and maintains the suffix by means of a pointer-
offset pair, instead of bi-level projection. In addition, 
PrefixSpan with pseudo projection outperformed FreeSpan 
with bi-level projection. Note that pseudo projection does not 
work effectively on FreeSpan since the next step can be in 
both forward and backward directions. 

Beside the two horizontal layout approaches mentioned 
earlier, the database can also be transformed into vertical 
format consisting of items’ id-lists. Mohammed Zaki proposed 
SPADE [6], which follows this approach. It scans the database 
three times. However, the transformation into vertical format 
requires both time and more memory space. Although SPADE 
outperforms FreeSpan, the newer publication of PrefixSpan 
stated that PrefixSpan still performs better than both of them 

[4]. 
A memory-indexing approach for fast discovery of 

sequential patterns, named MEMISP [7] was introduced in 
2005. With MEMISP, there is neither candidate generation 
nor database projection. Both CPU and memory utilization are 
low. Through index advancement within an index set 
composed of pointers and position indices to data sequences, 
MEMISP discovers sequential patterns by using a recursive 
find-then-index technique. Through partition-and-validation 
technique of MEMISP, one can still mine an extremely large 
database, which is too large to fit into main memory, in two or 
more database scans. In order to facilitate fast index 
construction and speed up searching from specific positions, 
MEMISP uses a variable-length array to store the in-memory 
data sequence. Nevertheless, if variable-length array is used to 
store the items bought and transaction time only, then one 
loses the list of customer. Yet, it is impossible to use 2D or 3D 
variable-length array, since one cannot create an array with 
non-fix size of either dimension. A specific framework is 
required to be proposed to store index set and in-memory 
database. 

In this paper, we introduce an improved version of 
PrefixSpan named I-PrefixSpan. This algorithm improves 
PrefixSpan in two ways: (1) it implements sufficient data 
structure for Seq-Tree framework to build the in-memory 
database sequence and to construct the index set, and (2) 
instead of keeping the whole in-memory database, it 
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implements separator database to store the transaction 
alteration signs. 

The remainder of the paper is organized as follows. The 
sequential pattern mining terms are explained and PrefixSpan 
algorithm is illustrated in SectionII. Section III presents the I-
PrefixSpan algorithm. The experimental results and analysis 
of the proposed I-PrefixSpan algorithm are described in 
Section IV. We conclude the study in Section V. 
 
II. DEFINITION OF TERMS AND THE PREFIXSPAN ALGORITHM 

A.   Terms Definition 

Let I = {i1, i2, …, in} be a set of all items. Itemset is a non-
empty subset of I. A sequence is an ordered list of itemsets. A 
sequence s is denoted by <s1 s2 … sl>, where sj is an itemset. sj 
is also called an element of the sequence, and denoted as (x1 
x2 … xm), where xk is an item. If an element has only one item, 
the brackets can be omitted. For example, element (x) is 
written as x. An item can occur at most once in an element of 
a sequence, but it can occur multiple times in different 
elements of a sequence. The number of items in a sequence is 
called the length of a sequence. A sequence α = <a1 a2 … 
an> is called a subsequence of another sequence β = <b1 b2 … 
bm> and β is a supersequence of α, denoted as α  β, if there 
exists integers 1 ≤ j1 < j2 <…< jn ≤ m such that a1 ⊆ bj1, a2 ⊆ 
bj2, …, an ⊆ bjn. 

A sequence database S is a set of tuples <sid, s> where sid 
is a sequence_id and s is a sequence. A tuple <sid, s> is said 
to contain sequence α, if α is a subsequence of s. The support 
of a sequence α in a sequence database S is defined as the 
number of tuples in the database containing α, denoted as: 

 

      (1) 

 
Given a positive integer min_support as the support 

threshold, a sequence α is called a sequential pattern for a 
large sequence in a sequence database S if support(α) ≥ 
min_support. 

Sequential pattern mining is defined as finding complete set 
of sequential patterns in the sequential database, given 
min_support threshold. 

 
B.  The PrefixSpan 

As mentioned in the analysis of FreeSpan algorithm in [4], 
one may consider two pitfalls of implementing FreeSpan: (1) 
redundant checking at every possible position of a potential 
candidate sequence and (2) the large size of projected 
database. To avoid the former pitfall, items within an itemset 
must first be ordered. We can assume that they are always 
ordered alphabetically without loss of generality. To avoid the 

latter pitfall, projection can be done just by following the 
order of the prefix of a sequence and project only the suffix. 

 
The algorithm of PrefixSpan is as follows: 
 
Algorithm PrefixSpan 
 
Input : A sequence database S, the minimum support  

threshold min_support 
 
Output : The complete set of sequential patterns 
 
Metode : Call PrefixSpan(<>,0,S) 
 
procedure PrefixSpan (α, L, αS ) 

1) Scan αS  once, find each frequent item b, such that: 
a) b can be assembled to the last element of α to form a 

sequential pattern; or 
b) <b> can be appended to α to form a sequential pattern. 
2) For each frequent  item b, append it to α to form a 

sequential pattern 'α  and output 'α . 
3) For each 'α , construct 'α -projected database 'αS . 

4) Call PrefixSpan ( 'α , L+1, 'αS ) 

 
Instead of generating intermediate projected databases, we 

create the index set by registering all the position index of the 
associated customer by means of a (pointer, offset) pair, 
where pointer is a pointer to the corresponding sequence and 
offset represent the positions of the projected suffix in the 
sequence. Offset should be an integer, if there is a single 
projection point; and a set of integers, if there are multiple 
projection points. Each offset indicate the starting projection 
position in a sequence. 

It is reported that PrefixSpan and MEMISP are different 
although they both utilize memory for fast computation [7]. 
Yet, PrefixSpan with pseudo projection technique seems to 
work in a similar way with MEMISP, except when the 
database cannot be held in main memory. For this exceptional 
case, MEMISP uses partition-and-validation technique which 
scans database more than once, depends on the memory 
available and the size of the sequence database. 

 
III. I-PREFIXSPAN 

A.  Seq-Tree Framework 
There are no documentations found for any framework to 

store the in-memory database and index set, except in 
MEMISP [7]. It is said that MEMISP uses variable-length 
arrays to hold the data sequences in memory. Nevertheless, if 
variable-length array is used to store the items bought and  
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Fig. 1  Seq-Tree Framework 

 
transaction time only, then the list of customers will be 
missing. Still, it is impossible to use two-dimensional or three-
dimensional variable-length array, since it is not possible to 
create an array with non-fix size of either dimension. Seq-Tree 
framework with sufficient data structure is the other 
contribution in I-PrefixSpan which is used to store in-memory 
sequence database and to construct the index set. Seq-Tree is a 
general tree with two certain characteristics: (1) all leaves 
must be located at the same depth and (2) the height of the 
tree is at least 2. 

 
Definition 1 (Array of Items Bought, Array of Transaction 
Time, Array of Customers)  
Let Tc.t = {i1, i2, …, in} be the list of all items by a customer on 
one transaction time of an in-memory sequence database, 
where c is the customer id of the associated customer, t is the 
transaction id of the associated transaction time of this 
customer c on transaction time t. Tc.t is stored in a variable-
length array named array of items bought.  
Let Cc = {Tc.1, Tc.2, …, Tc.m} be the list of all transaction time 
of a customer with customer id c of the same in- memory 
sequence database, where m is the number of transaction ids 
of customer c. Tc is stored in a variable-length array named 
array of transaction time.  
Let A = {C1, C2, …, Cp} be the list of all customers, where p is 
the number of customers in the associated sequence database. 
A is stored in a variable-length array named array of 
customer. 
 
Definition 2   (Array of Offset, Array of Pointers, Array of 
Prefixes) 
Let Ptpr.pt = {o1, o2, …, on} be the list of all offsets by a prefix 
on one pointer of an index set, where pr is the 1-sequence 
(prefix) to be mined, pt is the pointer of this prefix, and n is 
the number of offset for prefix pr of pointer pt. Ptpr.pt is stored 
in a variable-length array named array of items offset. Let 
Prpr = {Ptpr.1,Ptpr.2, …, Ptpr.m} be the list of all pointers of a 
prefix c, where m is the number of pointers of prefix pr. Prpr 
is stored in a variable-length array named array of pointers. 
Let B = {Pr1, Pr2, …, Prp} be the list of all prefixes, where p is 

the number of distinct items. B is stored in a variable-length 
array named array of prefixes. 

Fig. 1 above describes how the representation of Seq-Tree 
looks like. This framework will be applied to store the 
sequence database into memory and to construct the index set. 
The mathematical definition of Seq-Tree framework is divided 
into two functionalities: (1) for in-memory sequence database 
and (2) for constructing index set. 

For in-memory sequence database, let C = {C1, C2,…, Cn} 
be an array of customers, where n is the number of distinct 
customers in the sequence database. Cf is an array of 
transaction time for customer f, where Cf = {Cf.1, Cf.2, …, Cf.m}, 
m denotes how many transactions Cf makes, and 1 < f < n. 
Then, Cf.j is an array of items bought by customer f in 
transaction time j, where Cf.j = {B1, B2, …, Bk}, k denotes how 
many items bought for transaction time Cf.j, 1 < j < m, B1 ⊆ I, 
B2 ⊆ I, …, Bk ⊆ I, I = {i1, i2, …, ip} is the list of distinct items, 
and p is the number of distinct items. Then the Seq-Tree 
framework for in-memory sequence database is C. 

For index set, let A = {A1, A2,…, Ap} be an array of prefixes, 
where p is the number of distinct items. Ax is an array of 
pointers for item ix, 1 ≤ x ≤ p. Ax = {Ax.1, Ax.2, …, Ax.n}, where 
n is the number of distinct customers in the sequence 
database. Ax.f is the list of offset for index set Ax for customer 
f, where 1 < f < n, and Ax.f = {D1, D2, …, Dy}, where y is the 
occurrence frequency for item ix on array of customer Cf, 1 ≤ y 
≤ Dy. 1 < y < length(Cf), where length(Cz) is the number of 
items bought by customer Cz + number of transaction time by 
customer Cz, and 1 < D1 < length(Cz), 1 < D2 < length(Cz), …, 
1 < Dy < length(Cz). Then the Seq-Tree framework for index 
set is A. 

For in-memory sequence database, the ArrayIntList is used 
to store items bought for each customer while an integer sign 
could act as transaction time separator and ArrayList is used 
to store those collections of items bought for all customers. 
For index set, the ArrayIntList stores the offset, while an 
ArrayList stores those arrays of offset for all customers, and 
another ArrayList stores this ArrayList of offset of all 
customers for all length-1 prefixes. 

1 1 2 3 1 3 4 3 6 1 4 3 2 3 1 5 5 6 1 2 4 6 3 2 5 7 1 6 3 2

1 2 3 4 5

3

1 2 3 4 1 2 3 4 5 1 2 3 4 5 6

1 2 3 4
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B.    Separator Database 
Separator Database is proposed to store the list of separator 

indices on each customer. Previously, PrefixSpan used either 
disk-based access or in-memory database to build the 
intermediate index set [4] [5] [7]. I-PrefixSpan does not use 
any of them to create the intermediate index set since it is 
time-consuming to recheck all items one by one inside the 
original sequence database. To put it briefly, I-PrefixSpan 
only registers the indices of the transaction time-stamp 
separators, instead of keeping the in-memory sequence 
database until the mining is finished. 

Having created separator database when scanning the 
database at the first step of PrefixSpan and having the in-
memory database deleted, then for each candidate pattern with 
current pattern's index list curr_pat, separator list s_list, and 
candidate item's index list can_pat, 
 
IF (last element of current pattern is appended to 
candidate item) THEN 

for (i=1 to curr_pat.getSize()) 
separatorPoint = an s_list number closer but 
not less than curr_pat.getElementAt(i); 
 
IF (can find any can_pat number after 
separatorPoint) THEN 

++SUPPORT_COUNT; 
Break for; 

ELSE 
Continue for; 

 
ELSE IF (last element of current pattern is 
assembled to candidate item) THEN 

for (i=1 to curr_pat.getSize()) 
separatorPoint = an s_list number closer but 
not less than curr_pat.getElementAt(i) 
 
IF (can find any can_pat number before 
separator_Point and after 
curr_pat.getElementAt(i)) THEN 

++SUPPORT_COUNT; 
Break for; 

ELSE 
Continue for; 
 

 
Example: For the sequence <(a)(a,b)(b)(c)(b,c)> in a 
sequence database, I-PrefixSpan stores the index set offset of 
prefix <(a)> as {1, 3}, <(b)> as {4, 6, 10}, and <(c)> as {8, 
11}. The separator list stored is {2, 5, 7, 9, 12}. 

To get pattern <(a)(b)>, the first index of <(a)> is 
retrieved, that is 1. Then, the separator list with index number 
closer but higher than 1 is retrieved, that is 2. Lastly, all 
indices in <(b)> with index number closer but higher than 2 is 
retrieved, that is 4, 6, and 10. The intermediate index set for 
<(a)(b)> is yielded, that is {4, 6, 10}. 

To get pattern <(a,b)>, the first index of <(a)> is retrieved, 
that is 1. Then, the separator list with index number closer but 
higher than 1 is retrieved, that is 2. Next, index in <(b)> index 
in <(b)> with index number higher than 3 but lower than 5 is 

retrieved, that is 4. The intermediate index set for <(a,b)> is 
yielded, that is {4}. 

Similarly, to get pattern <(a)(b,c)>, the intermediate index 
set from previous step is retrieved, that is <(a)(b)>={4, 6, 
10}. The first index of <(a)(b)> is retrieved, that is 4. Then, 
the separator list with index number closer but higher than 4 is 
retrieved, that is 5. Next, an index in <c> with index number 
higher than 4 but lower than 5 is searched, but there is no such 
number. Proceed to the next index of <a><b>, which is 6. 
Then, the separator list with index number closer but higher 
than 6 is retrieved, that is 7. Next, index in <c> with index 
number higher than 6 but lower than 7 is searched, but there 
are no such number. Proceed to the next index of <(a)(b)>, 
that is 10. Then, the separator list with index number closer 
but higher than 10 is retrieved, that is 12. Next, index in <c> 
with index number higher than 10 but lower than 12 is 
retrieved, that is 11. The intermediate index set for <(a)(b,c)> 
is yielded, that is {11}. 

On those three mining cases, i.e. mining <(a)(b)>, <(a,b)>, 
and <(a)(b,c)> index set, the support count is added to 1 
respectively since the intermediate index can be yielded. 
 

IV. EXPERIMENTAL RESULTS 

To test the proposed algorithm, a series of performance 
studies were conducted. All experiments were conducted on 
an Intel ® Pentium ® 4 CPU 3.20 GHz (2 CPUs) with 512 
MB RAM, running Microsoft Windows XP Professional (5.1, 
Build 2600) and implementing Java 2 using JDK 1.6. 

The subsequent three tests compare performance of 
PrefixSpan and the proposed I-PrefixSpan on small database. 
The synthetic datasets used in our experiments were generated 
using Quest Synthetic Data Generation Code for Association 
and Sequential Patterns software [1]. The same data generator 
has been used in most studies on sequential pattern mining. 

The first test is on Dataset-1 (C1k|N10|T2|S2|t4|i6), which 
contains 1000 sequences and 10 distinct items. Both the 
average number of items in a transaction and the average 
number of transaction in a sequence are set to 2. On average, a 
frequent sequential pattern consists of four transactions, and 
each transaction is composed of 6 items. Fig. 2 below shows 
the processing time of those two algorithms. I-PrefixSpan 
consistently outperforms PrefixSpan. On average, I-
PrefixSpan is about 2.2 faster than PrefixSpan. It is probably 
not a big deal when the support is 1% (I-PrefixSpan = 11.39 
seconds, PrefixSpan = 25.425 seconds), but it will be a 
considerable problem when the support is 0.2% (I-PrefixSpan 
= 295.025 seconds, PrefixSpan = 658.24 seconds). 
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Fig. 2 CPU performance of the two algorithms on Dataset-1 

 
The second test is on Dataset-2 (C1k|N150|T2|S2|t4|i6), 

which has the same distribution properties with Dataset-1 
except that it has 150 distinct items. Fig. 3 below shows the 
processing time of those two algorithms. I-PrefixSpan 
persistently outperforms PrefixSpan. The lower the minimum 
support, the clearer the excellence performance of I-
PrefixSpan. When the minimum support is 1%, I-PrefixSpan 
(7.67 seconds) is almost 4 times faster than PrefixSpan 
(30.269 seconds). When the minimum support is dwindled to 
0.4%, I-PrefixSpan (46.853 seconds) is approximately 4.8 
times faster than PrefixSpan (225.302 seconds). Moreover, 
when the support threshold is 0.2%, I-PrefixSpan (264.98 
seconds) runs almost two orders of magnitude faster than 
PrefixSpan (19,582.97 seconds). 
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Fig. 3 CPU performance of the two algorithms on Dataset-2 

The third test is still on Dataset-2. Fig. 4 below shows the 
memory usage comparison between those two algorithms. 
Although I-PrefixSpan just slightly outperforms PrefixSpan 
when the minimum support is 0.4% or higher, I-PrefixSpan 
(44.97 MB) dramatically outperforms PrefixSpan (492.36 
MB) when the minimum support is 0.2% in more than one 
order of magnitude. 
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Fig. 4 Memory usage of the two algorithms on Dataset-2 

 
When the number of distinct items grows, Seq-Tree 

framework with sufficient data structure benefits I-
PrefixSpan. ArrayIntList reduced the uncertainty of the List 
element data type by pre-specifying it as an integer primitive 
data type, while ArrayList of Integer, which is assumed to be 
used by PrefixSpan, still required to box and unbox the non-
primitive Integer data type. Moreover, ArrayList of Integer 
needs three times more memory space than ArrayIntList to 
store an integer value. When creating index set, ArrayIntList 
benefits I-PrefixSpan from retrieval of all items checking on 
every data sequence and from appending the pseudoprojection 
index whenever it finds the searched frequent items. When 
selecting frequent sequential patterns, ArrayIntList benefits I-
PrefixSpan from appending frequent items to current pattern 
and from iteration to associated index set to search the 
existence of searched item’s offset to decide the support of an 
item. 

Separator database helps I-PrefixSpan to reduce the memory 
space and in-memory database traversal. Separator database 
replaces in-memory database with the list of transaction 
separators. With separator database, there is no need to 
traverse along all items inside all data sequences. I-PrefixSpan 
uses separator database to find sequential patterns by 
comparing the index set of current pattern and the index set of 
items to be assembled or appended, while PrefixSpan 
confirms the pointers of the proposed pattern by traversing the 
index set into in-memory database sequence. 

 
V.  CONCLUSION 

The experimental results have shown that I-PrefixSpan 
outperforms PrefixSpan, time-wise and memory-wise. Future 
research could include the generalization of I-PrefixSpan in 
handling constrained mining sequential pattern, which extends 
the ability of I-PrefixSpan on (1) time constraint, i.e. 
minimum and/or maximum time gaps between adjacent 
elements in a pattern, (2) sliding windows, i.e. the new 
definition of time for term “same transaction” as specified by 
user, and (3) taxonomy, i.e. to include super-category patterns 
when necessary. 
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