
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3715

Abstract—In this paper, we propose an improvement of pattern

growth-based PrefixSpan algorithm, called I-PrefixSpan. The general
idea of I-PrefixSpan is to use sufficient data structure for Seq-Tree
framework and separator database to reduce the execution time and
memory usage. Thus, with I-PrefixSpan there is no in-memory
database stored after index set is constructed. The experimental result
shows that using Java 2, this method improves the speed of
PrefixSpan up to almost two orders of magnitude as well as the
memory usage to more than one order of magnitude.

Keywords—ArrayList, ArrayIntList, minimum support,
sequence database, sequential patterns.

I. INTRODUCTION
HE objective of sequential pattern mining is to find all
frequent sequential patterns with a user-specified

minimum support. The problem of sequential patterns
discovery was inspired by retailing industry problems.
However, the results apply to many scientific and business
domains, such as stocks and markets basket analysis, natural
disasters (e.g. earthquakes), DNA sequence analyses, gene
structure analyses, web log click stream analyses, and so forth.
Suppose the computer shop database contains list of
customers, list of transaction time of each customer, and list of
items bought for each customer’s transaction time, then “80%
of customers buy computer, then earphone, and then digital
camera” may be one of the valuable sequential patterns found.
This purchasing need not be consecutive. Those customers
who buy some other items in between also support this
pattern.

Generally, the sequential pattern mining approaches are
either generate-and-test (also known as apriori) or pattern
growth (also known as divide-and-conquer) or vertical format
method approach. AprioriAll [1] is the earliest sequential
pattern mining algorithm proposed by Agrawal and Srikant in
1995. The following year they generalized the problem to
include time constraints, sliding time window, and user-
defined taxonomy, and presented an apriori-based, improved
algorithm GSP [2]. Either GSP or AprioriAll adopt a multiple-
pass, candidate generation-and-testing approach. This
approach has three drawbacks. Firstly, a very large set of
candidate sequences could be generated in a large database.
Secondly, this approach must scan the database many times.
Lastly, it generates a combinatorially explosive number of
candidates when mining longer sequential patterns. Hence,
this approach may not be sufficient in mining large sequence
databases having numerous and/or long patterns.

FreeSpan [3] and PrefixSpan [4], [5] are two algorithms
adopting divide and conquer approach. In this approach, the
sequence database are recursively projected into a set of
smaller projected database based on the current frequent

pattern(s), and sequential patterns are grown in each projected
databases by exploring only locally frequent fragments [3]. To
improve the performance, FreeSpan offers bi-level projection
technique, which scans the database twice, instead of level-by-
level projection. It has also been showed that FreeSpan runs
considerably faster than GSP. The following year after the
proposal of FreeSpan, Jian Pei et al [4] proposed PrefixSpan
algorithm. Since this algorithm projects only the suffixes, the
size of the projected database shrinks and redundant checking
in every possible location of a potential candidate is reduced.
It offers pseudo projection technique that avoids physical
projections and maintains the suffix by means of a pointer-
offset pair, instead of bi-level projection. In addition,
PrefixSpan with pseudo projection outperformed FreeSpan
with bi-level projection. Note that pseudo projection does not
work effectively on FreeSpan since the next step can be in
both forward and backward directions.

Beside the two horizontal layout approaches mentioned
earlier, the database can also be transformed into vertical
format consisting of items’ id-lists. Mohammed Zaki proposed
SPADE [6], which follows this approach. It scans the database
three times. However, the transformation into vertical format
requires both time and more memory space. Although SPADE
outperforms FreeSpan, the newer publication of PrefixSpan
stated that PrefixSpan still performs better than both of them

[4].
A memory-indexing approach for fast discovery of

sequential patterns, named MEMISP [7] was introduced in
2005. With MEMISP, there is neither candidate generation
nor database projection. Both CPU and memory utilization are
low. Through index advancement within an index set
composed of pointers and position indices to data sequences,
MEMISP discovers sequential patterns by using a recursive
find-then-index technique. Through partition-and-validation
technique of MEMISP, one can still mine an extremely large
database, which is too large to fit into main memory, in two or
more database scans. In order to facilitate fast index
construction and speed up searching from specific positions,
MEMISP uses a variable-length array to store the in-memory
data sequence. Nevertheless, if variable-length array is used to
store the items bought and transaction time only, then one
loses the list of customer. Yet, it is impossible to use 2D or 3D
variable-length array, since one cannot create an array with
non-fix size of either dimension. A specific framework is
required to be proposed to store index set and in-memory
database.

In this paper, we introduce an improved version of
PrefixSpan named I-PrefixSpan. This algorithm improves
PrefixSpan in two ways: (1) it implements sufficient data
structure for Seq-Tree framework to build the in-memory
database sequence and to construct the index set, and (2)
instead of keeping the whole in-memory database, it

 Dhany Saputra, Dayang R. A. Rambli, Oi Mean Foong

Mining Sequential Patterns Using I-PrefixSpan

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3716

implements separator database to store the transaction
alteration signs.

The remainder of the paper is organized as follows. The
sequential pattern mining terms are explained and PrefixSpan
algorithm is illustrated in SectionII. Section III presents the I-
PrefixSpan algorithm. The experimental results and analysis
of the proposed I-PrefixSpan algorithm are described in
Section IV. We conclude the study in Section V.

II. DEFINITION OF TERMS AND THE PREFIXSPAN ALGORITHM

A. Terms Definition

Let I = {i1, i2, …, in} be a set of all items. Itemset is a non-
empty subset of I. A sequence is an ordered list of itemsets. A
sequence s is denoted by <s1 s2 … sl>, where sj is an itemset. sj
is also called an element of the sequence, and denoted as (x1
x2 … xm), where xk is an item. If an element has only one item,
the brackets can be omitted. For example, element (x) is
written as x. An item can occur at most once in an element of
a sequence, but it can occur multiple times in different
elements of a sequence. The number of items in a sequence is
called the length of a sequence. A sequence α = <a1 a2 …
an> is called a subsequence of another sequence β = <b1 b2 …
bm> and β is a supersequence of α, denoted as α β, if there
exists integers 1 ≤ j1 < j2 <…< jn ≤ m such that a1 ⊆ bj1, a2 ⊆
bj2, …, an ⊆ bjn.

A sequence database S is a set of tuples <sid, s> where sid
is a sequence_id and s is a sequence. A tuple <sid, s> is said
to contain sequence α, if α is a subsequence of s. The support
of a sequence α in a sequence database S is defined as the
number of tuples in the database containing α, denoted as:

 (1)

Given a positive integer min_support as the support

threshold, a sequence α is called a sequential pattern for a
large sequence in a sequence database S if support(α) ≥
min_support.

Sequential pattern mining is defined as finding complete set
of sequential patterns in the sequential database, given
min_support threshold.

B. The PrefixSpan

As mentioned in the analysis of FreeSpan algorithm in [4],
one may consider two pitfalls of implementing FreeSpan: (1)
redundant checking at every possible position of a potential
candidate sequence and (2) the large size of projected
database. To avoid the former pitfall, items within an itemset
must first be ordered. We can assume that they are always
ordered alphabetically without loss of generality. To avoid the

latter pitfall, projection can be done just by following the
order of the prefix of a sequence and project only the suffix.

The algorithm of PrefixSpan is as follows:

Algorithm PrefixSpan

Input : A sequence database S, the minimum support

threshold min_support

Output : The complete set of sequential patterns

Metode : Call PrefixSpan(<>,0,S)

procedure PrefixSpan (α, L, αS)

1) Scan αS once, find each frequent item b, such that:
a) b can be assembled to the last element of α to form a

sequential pattern; or
b) can be appended to α to form a sequential pattern.
2) For each frequent item b, append it to α to form a

sequential pattern 'α and output 'α .
3) For each 'α , construct 'α -projected database 'αS .

4) Call PrefixSpan ('α , L+1, 'αS)

Instead of generating intermediate projected databases, we

create the index set by registering all the position index of the
associated customer by means of a (pointer, offset) pair,
where pointer is a pointer to the corresponding sequence and
offset represent the positions of the projected suffix in the
sequence. Offset should be an integer, if there is a single
projection point; and a set of integers, if there are multiple
projection points. Each offset indicate the starting projection
position in a sequence.

It is reported that PrefixSpan and MEMISP are different
although they both utilize memory for fast computation [7].
Yet, PrefixSpan with pseudo projection technique seems to
work in a similar way with MEMISP, except when the
database cannot be held in main memory. For this exceptional
case, MEMISP uses partition-and-validation technique which
scans database more than once, depends on the memory
available and the size of the sequence database.

III. I-PREFIXSPAN

A. Seq-Tree Framework
There are no documentations found for any framework to

store the in-memory database and index set, except in
MEMISP [7]. It is said that MEMISP uses variable-length
arrays to hold the data sequences in memory. Nevertheless, if
variable-length array is used to store the items bought and

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3717

Fig. 1 Seq-Tree Framework

transaction time only, then the list of customers will be
missing. Still, it is impossible to use two-dimensional or three-
dimensional variable-length array, since it is not possible to
create an array with non-fix size of either dimension. Seq-Tree
framework with sufficient data structure is the other
contribution in I-PrefixSpan which is used to store in-memory
sequence database and to construct the index set. Seq-Tree is a
general tree with two certain characteristics: (1) all leaves
must be located at the same depth and (2) the height of the
tree is at least 2.

Definition 1 (Array of Items Bought, Array of Transaction
Time, Array of Customers)
Let Tc.t = {i1, i2, …, in} be the list of all items by a customer on
one transaction time of an in-memory sequence database,
where c is the customer id of the associated customer, t is the
transaction id of the associated transaction time of this
customer c on transaction time t. Tc.t is stored in a variable-
length array named array of items bought.
Let Cc = {Tc.1, Tc.2, …, Tc.m} be the list of all transaction time
of a customer with customer id c of the same in- memory
sequence database, where m is the number of transaction ids
of customer c. Tc is stored in a variable-length array named
array of transaction time.
Let A = {C1, C2, …, Cp} be the list of all customers, where p is
the number of customers in the associated sequence database.
A is stored in a variable-length array named array of
customer.

Definition 2 (Array of Offset, Array of Pointers, Array of
Prefixes)
Let Ptpr.pt = {o1, o2, …, on} be the list of all offsets by a prefix
on one pointer of an index set, where pr is the 1-sequence
(prefix) to be mined, pt is the pointer of this prefix, and n is
the number of offset for prefix pr of pointer pt. Ptpr.pt is stored
in a variable-length array named array of items offset. Let
Prpr = {Ptpr.1,Ptpr.2, …, Ptpr.m} be the list of all pointers of a
prefix c, where m is the number of pointers of prefix pr. Prpr
is stored in a variable-length array named array of pointers.
Let B = {Pr1, Pr2, …, Prp} be the list of all prefixes, where p is

the number of distinct items. B is stored in a variable-length
array named array of prefixes.

Fig. 1 above describes how the representation of Seq-Tree
looks like. This framework will be applied to store the
sequence database into memory and to construct the index set.
The mathematical definition of Seq-Tree framework is divided
into two functionalities: (1) for in-memory sequence database
and (2) for constructing index set.

For in-memory sequence database, let C = {C1, C2,…, Cn}
be an array of customers, where n is the number of distinct
customers in the sequence database. Cf is an array of
transaction time for customer f, where Cf = {Cf.1, Cf.2, …, Cf.m},
m denotes how many transactions Cf makes, and 1 < f < n.
Then, Cf.j is an array of items bought by customer f in
transaction time j, where Cf.j = {B1, B2, …, Bk}, k denotes how
many items bought for transaction time Cf.j, 1 < j < m, B1 ⊆ I,
B2 ⊆ I, …, Bk ⊆ I, I = {i1, i2, …, ip} is the list of distinct items,
and p is the number of distinct items. Then the Seq-Tree
framework for in-memory sequence database is C.

For index set, let A = {A1, A2,…, Ap} be an array of prefixes,
where p is the number of distinct items. Ax is an array of
pointers for item ix, 1 ≤ x ≤ p. Ax = {Ax.1, Ax.2, …, Ax.n}, where
n is the number of distinct customers in the sequence
database. Ax.f is the list of offset for index set Ax for customer
f, where 1 < f < n, and Ax.f = {D1, D2, …, Dy}, where y is the
occurrence frequency for item ix on array of customer Cf, 1 ≤ y
≤ Dy. 1 < y < length(Cf), where length(Cz) is the number of
items bought by customer Cz + number of transaction time by
customer Cz, and 1 < D1 < length(Cz), 1 < D2 < length(Cz), …,
1 < Dy < length(Cz). Then the Seq-Tree framework for index
set is A.

For in-memory sequence database, the ArrayIntList is used
to store items bought for each customer while an integer sign
could act as transaction time separator and ArrayList is used
to store those collections of items bought for all customers.
For index set, the ArrayIntList stores the offset, while an
ArrayList stores those arrays of offset for all customers, and
another ArrayList stores this ArrayList of offset of all
customers for all length-1 prefixes.

1 1 2 3 1 3 4 3 6 1 4 3 2 3 1 5 5 6 1 2 4 6 3 2 5 7 1 6 3 2

1 2 3 4 5

3

1 2 3 4 1 2 3 4 5 1 2 3 4 5 6

1 2 3 4

NULL

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3718

B. Separator Database
Separator Database is proposed to store the list of separator

indices on each customer. Previously, PrefixSpan used either
disk-based access or in-memory database to build the
intermediate index set [4] [5] [7]. I-PrefixSpan does not use
any of them to create the intermediate index set since it is
time-consuming to recheck all items one by one inside the
original sequence database. To put it briefly, I-PrefixSpan
only registers the indices of the transaction time-stamp
separators, instead of keeping the in-memory sequence
database until the mining is finished.

Having created separator database when scanning the
database at the first step of PrefixSpan and having the in-
memory database deleted, then for each candidate pattern with
current pattern's index list curr_pat, separator list s_list, and
candidate item's index list can_pat,

IF (last element of current pattern is appended to
candidate item) THEN

for (i=1 to curr_pat.getSize())
separatorPoint = an s_list number closer but
not less than curr_pat.getElementAt(i);

IF (can find any can_pat number after
separatorPoint) THEN

++SUPPORT_COUNT;
Break for;

ELSE
Continue for;

ELSE IF (last element of current pattern is
assembled to candidate item) THEN

for (i=1 to curr_pat.getSize())
separatorPoint = an s_list number closer but
not less than curr_pat.getElementAt(i)

IF (can find any can_pat number before
separator_Point and after
curr_pat.getElementAt(i)) THEN

++SUPPORT_COUNT;
Break for;

ELSE
Continue for;

Example: For the sequence <(a)(a,b)(b)(c)(b,c)> in a
sequence database, I-PrefixSpan stores the index set offset of
prefix <(a)> as {1, 3}, <(b)> as {4, 6, 10}, and <(c)> as {8,
11}. The separator list stored is {2, 5, 7, 9, 12}.

To get pattern <(a)(b)>, the first index of <(a)> is
retrieved, that is 1. Then, the separator list with index number
closer but higher than 1 is retrieved, that is 2. Lastly, all
indices in <(b)> with index number closer but higher than 2 is
retrieved, that is 4, 6, and 10. The intermediate index set for
<(a)(b)> is yielded, that is {4, 6, 10}.

To get pattern <(a,b)>, the first index of <(a)> is retrieved,
that is 1. Then, the separator list with index number closer but
higher than 1 is retrieved, that is 2. Next, index in <(b)> index
in <(b)> with index number higher than 3 but lower than 5 is

retrieved, that is 4. The intermediate index set for <(a,b)> is
yielded, that is {4}.

Similarly, to get pattern <(a)(b,c)>, the intermediate index
set from previous step is retrieved, that is <(a)(b)>={4, 6,
10}. The first index of <(a)(b)> is retrieved, that is 4. Then,
the separator list with index number closer but higher than 4 is
retrieved, that is 5. Next, an index in <c> with index number
higher than 4 but lower than 5 is searched, but there is no such
number. Proceed to the next index of <a>, which is 6.
Then, the separator list with index number closer but higher
than 6 is retrieved, that is 7. Next, index in <c> with index
number higher than 6 but lower than 7 is searched, but there
are no such number. Proceed to the next index of <(a)(b)>,
that is 10. Then, the separator list with index number closer
but higher than 10 is retrieved, that is 12. Next, index in <c>
with index number higher than 10 but lower than 12 is
retrieved, that is 11. The intermediate index set for <(a)(b,c)>
is yielded, that is {11}.

On those three mining cases, i.e. mining <(a)(b)>, <(a,b)>,
and <(a)(b,c)> index set, the support count is added to 1
respectively since the intermediate index can be yielded.

IV. EXPERIMENTAL RESULTS

To test the proposed algorithm, a series of performance
studies were conducted. All experiments were conducted on
an Intel ® Pentium ® 4 CPU 3.20 GHz (2 CPUs) with 512
MB RAM, running Microsoft Windows XP Professional (5.1,
Build 2600) and implementing Java 2 using JDK 1.6.

The subsequent three tests compare performance of
PrefixSpan and the proposed I-PrefixSpan on small database.
The synthetic datasets used in our experiments were generated
using Quest Synthetic Data Generation Code for Association
and Sequential Patterns software [1]. The same data generator
has been used in most studies on sequential pattern mining.

The first test is on Dataset-1 (C1k|N10|T2|S2|t4|i6), which
contains 1000 sequences and 10 distinct items. Both the
average number of items in a transaction and the average
number of transaction in a sequence are set to 2. On average, a
frequent sequential pattern consists of four transactions, and
each transaction is composed of 6 items. Fig. 2 below shows
the processing time of those two algorithms. I-PrefixSpan
consistently outperforms PrefixSpan. On average, I-
PrefixSpan is about 2.2 faster than PrefixSpan. It is probably
not a big deal when the support is 1% (I-PrefixSpan = 11.39
seconds, PrefixSpan = 25.425 seconds), but it will be a
considerable problem when the support is 0.2% (I-PrefixSpan
= 295.025 seconds, PrefixSpan = 658.24 seconds).

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3719

0

100

200

300

400

500

600

700

0.2
0%

0.3
0%

0.4
0%

0.5
0%

0.6
0%

0.7
0%

0.8
0%

0.9
0%

1.0
0%

Minimum Support

Ru
nt

im
e

(s
ec

on
d)

PrefixSpan
I-PrefixSpan

Fig. 2 CPU performance of the two algorithms on Dataset-1

The second test is on Dataset-2 (C1k|N150|T2|S2|t4|i6),

which has the same distribution properties with Dataset-1
except that it has 150 distinct items. Fig. 3 below shows the
processing time of those two algorithms. I-PrefixSpan
persistently outperforms PrefixSpan. The lower the minimum
support, the clearer the excellence performance of I-
PrefixSpan. When the minimum support is 1%, I-PrefixSpan
(7.67 seconds) is almost 4 times faster than PrefixSpan
(30.269 seconds). When the minimum support is dwindled to
0.4%, I-PrefixSpan (46.853 seconds) is approximately 4.8
times faster than PrefixSpan (225.302 seconds). Moreover,
when the support threshold is 0.2%, I-PrefixSpan (264.98
seconds) runs almost two orders of magnitude faster than
PrefixSpan (19,582.97 seconds).

1

10

100

1000

10000

100000

0.20% 0.40% 0.60% 0.80% 1.00%

Minimum Support

R
un

tim
e

(s
ec

on
d)

PrefixSpan
I-PrefixSpan

Fig. 3 CPU performance of the two algorithms on Dataset-2

The third test is still on Dataset-2. Fig. 4 below shows the
memory usage comparison between those two algorithms.
Although I-PrefixSpan just slightly outperforms PrefixSpan
when the minimum support is 0.4% or higher, I-PrefixSpan
(44.97 MB) dramatically outperforms PrefixSpan (492.36
MB) when the minimum support is 0.2% in more than one
order of magnitude.

0

100

200

300

400

500

600

0.20% 0.40% 0.60% 0.80% 1.00%

Minimum Support

M
em

or
y

Us
ag

e
(M

B)

PrefixSpan
I-PrefixSpan

Fig. 4 Memory usage of the two algorithms on Dataset-2

When the number of distinct items grows, Seq-Tree

framework with sufficient data structure benefits I-
PrefixSpan. ArrayIntList reduced the uncertainty of the List
element data type by pre-specifying it as an integer primitive
data type, while ArrayList of Integer, which is assumed to be
used by PrefixSpan, still required to box and unbox the non-
primitive Integer data type. Moreover, ArrayList of Integer
needs three times more memory space than ArrayIntList to
store an integer value. When creating index set, ArrayIntList
benefits I-PrefixSpan from retrieval of all items checking on
every data sequence and from appending the pseudoprojection
index whenever it finds the searched frequent items. When
selecting frequent sequential patterns, ArrayIntList benefits I-
PrefixSpan from appending frequent items to current pattern
and from iteration to associated index set to search the
existence of searched item’s offset to decide the support of an
item.

Separator database helps I-PrefixSpan to reduce the memory
space and in-memory database traversal. Separator database
replaces in-memory database with the list of transaction
separators. With separator database, there is no need to
traverse along all items inside all data sequences. I-PrefixSpan
uses separator database to find sequential patterns by
comparing the index set of current pattern and the index set of
items to be assembled or appended, while PrefixSpan
confirms the pointers of the proposed pattern by traversing the
index set into in-memory database sequence.

V. CONCLUSION

The experimental results have shown that I-PrefixSpan
outperforms PrefixSpan, time-wise and memory-wise. Future
research could include the generalization of I-PrefixSpan in
handling constrained mining sequential pattern, which extends
the ability of I-PrefixSpan on (1) time constraint, i.e.
minimum and/or maximum time gaps between adjacent
elements in a pattern, (2) sliding windows, i.e. the new
definition of time for term “same transaction” as specified by
user, and (3) taxonomy, i.e. to include super-category patterns
when necessary.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3720

REFERENCES
[1] R. Agrawal and R. Srikant, “Mining Sequential Patterns,” Journal

Intelligent Systems, vol. 9, No.1, 1997, pp. 33 – 56.
[2] R. Agrawal and R. Srikant, “Mining Sequential Patterns: Generalization

and Performance Improvements,” Research Report RJ 9994, IBM
Almaden Research Center, San Jose, California, December 1995.

[3] J. Han, and M. Kamber, Data Mining: Concepts and Techniques. CA:
Prentice Hall, 2002, ch. 5.

[4] J. Pei, et al, “Mining Sequential Patterns by Pattern Growth: The
PrefixSpan Approach,” IEEE Transaction on Knowledge and Data
Engineering, vol. 16, no. 11, pp.14240-1440, Nov. 2004.

[5] J. Han and J. Pei, "Mining Frequent Patterns by Pattern-Growth:
Methodology and Implications", ACM SIGKDD Explorations (Special
Issue on Scalable Data Mining Algorithms), vol. 2, no. 2, pp.14-20,
December 2000.

[6] M. Zaki, “SPADE: An Efficient Algorithm for Mining Frequent
Sequences,” Journal Machine Learning, vol. 42, nos. 1-2, 2001.

[7] L.M. Yen and L. S.Y. Lee, “Fast discovery of sequential patterns
through memory indexing and database partitioning,” Journal
Information Science and Engineering, vol. 21, pp. 109-128, 2005.

[8] J. Shirazi, Java™ Performance Tuning. CA:O’Reilly, 2003.

