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Abstract—Reusable launch vehicles (RLVs) present a more 

environmentally-friendly approach to accessing space when 
compared to traditional launch vehicles that are discarded after each 
flight. This paper studies the recyclable nature of RLVs by presenting 
a solution method for determining minimum-fuel optimal trajectories 
using principles from optimal control theory and particle swarm 
optimization (PSO). This problem is formulated as a minimum-
landing error powered descent problem where it is desired to move 
the RLV from a fixed set of initial conditions to three different sets of 
terminal conditions. However, unlike other powered descent studies, 
this paper considers the highly nonlinear effects caused by 
atmospheric drag, which are often ignored for studies on the Moon or 
on Mars. Rather than optimizing the controls directly, the throttle 
control is assumed to be bang-off-bang with a predetermined thrust 
direction for each phase of flight. The PSO method is verified in a 
one-dimensional comparison study, and it is then applied to the two-
dimensional cases, the results of which are illustrated. 
 

Keywords—Minimum-fuel optimal trajectory, particle swarm 
optimization, reusable rocket, SpaceX. 

I. INTRODUCTION 
CCESS to space has traditionally been barred by the high 
cost of purchasing space on a launch vehicle, which is 

typically about one hundred million dollars or more for a 
primary payload. This steep price is partially attributed to the 
expendable nature of traditional chemical rockets: the entire 
multi-million-dollar vehicle is discarded after the mission is 
completed, which is extremely wasteful and inefficient. To 
bring down the cost per launch, aerospace companies are now 
looking at making their launch systems partially reusable. One 
such vehicle is the SpaceX Falcon 9 rocket, which currently 
has an expendable second stage and an experimental reusable 
first stage. 

While the Falcon 9 is the first of its kind in the rocket 
industry, the powered descent and landing problem has been 
around since the Apollo era and has been solved using a 
multitude of methods for many different scenarios. To give 
two examples, the Moon landing is one of history’s most 
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famous feats, while landing on Mars is a problem that has 
been of increasing interest in the past decade or so. Ahn et al. 
[1] present a solution to the two-dimensional lunar landing 
problem using pseudo-spectral methods and sequential 
quadratic programming, while Ramanan and Lal [2] use 
Pontryagin’s Maximum Principle and a controlled random 
search method. Ocampo [3], on the other hand, presents a 
comparison of several solution methods to the lunar landing 
problem. Acikmese and Ploen [4] and Carson et al. [5] present 
two studies of powered descent guidance for a Mars Landing 
using lossless convexification and formulating the problem as 
a second-order cone problem. This type of formulation 
guarantees a convergence on the globally optimal solution, but 
requires an extensive reformulation of the original problem. 
For example, Acikmese and Ploen [4] introduce slack 
variables and use changes in variables to ensure that the cost 
function, state constraints, and control constraints are always 
convex. 

The motivation for studying this problem is that RLVs still 
pose a relatively new challenge that is not very well 
understood yet. There is plenty of literature that solve powered 
descent trajectories on Mars and on the Moon, as previously 
mentioned, but few studies have analyzed landing trajectories 
on Earth. This is likely because Earth’s environment is 
significantly different from that of Mars or the Moon due to 
the presence of a substantial atmosphere. Atmospheric effects 
can typically be neglected for studies involving Mars or the 
Moon because the Martian atmosphere is thin and can often be 
ignored, whereas the Moon lacks an atmosphere altogether. 
However, the studies that have used Earth as its setting also 
tend to disregard the atmospheric effects to avoid the 
difficulties associated with the equations of motions becoming 
highly nonlinear when drag and lift become involved. This 
paper aims to add to the discussion of in-atmosphere optimal 
landing trajectories on Earth. In these types of problems, it is 
desired to find a feasible trajectory that satisfies initial and 
terminal conditions and remains within specified bounds and 
constraints while minimizing an objective such as the fuel 
consumed or the terminal condition errors. The numerical 
optimization methods that are often used to find these 
trajectories typically fall into two different classifications: 
indirect or direct. Rao [6], Stryk and Bulirsch [7], and Betts 
[8] describe the advantages and disadvantages of these two 
methods in greater detail. However, there exists another class 
of optimization methods, called derivative-free methods, that 
are becoming increasingly popular for solving complex 
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problems such as the ones commonly faced by the aerospace 
industry. As the name suggests, these methods do not require 
derivative information that is typically needed for direct and 
indirect methods. This makes formulating the optimal control 
problem and generating a numerical solution much easier. One 
such method that falls under this category, PSO, has been 
selected as the method of choice for this paper for its ease of 
implementation and acceptable accuracy. The PSO method 
was originally proposed by Kennedy and Eberhart in 1995, 
and is based on the cooperative movement of a flock of flying 
birds [9]. Birds can learn and coordinate their behavior based 
upon their individual experience as well as the shared 
experience of the entire flock. PSO emulates this by iteratively 
searching the search space and updating each particle’s 
movement based on the history of other particles. These 
iterations continue until some stopping criterion is met, such 
as a prescribed error between consecutive iterations or a 
maximum number of iterations. 

This paper is organized as follows. In Section II, the bang-
off-bang control profile is explained and justified, followed by 
an introduction to the expected phases of flight during a 
typical reusable rocket trajectory. The vehicle and 
environment parameters are then specified. In Section III, 
modeling assumption are made, which are then used to define 
the dynamics equations of the system that move the vehicle 
from the initial boundary conditions to the terminal boundary 
conditions, subject to state and control constraints. Then, the 
minimum-fuel, minimum-landing error cost function is 
defined. In Section IV, a brief overview of the MATLAB PSO 
iteration steps is presented, as well as a summary of how this 
function is used in the author’s MATLAB scripts. These 
scripts are then verified in a one-dimensional study, and the 
results of this verification are illustrated and can be compared 
to the same study conducted by Ocampo. In Section V, the 
three terminal landing cases are simulated, the results of which 
demonstrate that the solution method is capable of finding 
minimum-fuel trajectories. Lastly, Section VI presents a few 
concluding remarks. 

II. PROBLEM STATEMENT 
The problem of interest for this paper is determining the 

optimal control history and two-dimensional state trajectories 
that allow the booster to move from the point of stage 
separation to the designated terminal conditions and perform a 
successful landing. The selection of this optimal trajectory will 
be determined by the optimizing switching times for the thrust 
throttle control and the total time of flight, thereby minimizing 
the fuel consumption and terminal condition errors. The 
switching times and final time are chosen as the decision 
variables because it has been demonstrated by Kirk [10] that a 
minimum-fuel trajectory utilizes “bang-off-bang” control. The 
boostback burn serves the specific purpose of limiting the 
downrange translation of the rocket, thus the fuel expenditure 
for this maneuver is essential for targeting the desired landing 
location. Following this, using Kirk’s fuel-optimal strategy, 

the vehicle will coast with the throttle off until the landing 
burn is initiated, possibly using atmospheric drag to slow it 
down slightly. The landing burn is then used to complete a 
gravity turn maneuver and reduce the vehicle’s velocity to 
zero at the exact moment it reaches zero altitude. Using this 
switching system, it can be assumed that the throttle is at 
100% for the boostback phase, 0% for the coasting phase, and 
100% for the landing phase. 

Although SpaceX employs the use of a reentry burn to 
adjust the vehicle’s velocity profile and to protect the engines, 
it has been omitted from this paper due to lack of available 
information regarding the heating and stress limitations of 
actual launch vehicles, as well as the complicated 
aerodynamic interactions between the rocket’s exhaust and the 
atmosphere. Additionally, based on Kirk’s “bang-off-bang” 
requirement, the inclusion of a reentry burn would constitute a 
non-optimal control for minimizing fuel. This is due to the fact 
after the reentry burn is completed and some kinetic energy is 
dissipated, gravity continues to accelerate the vehicle. This 
reduction and increase in velocity prior to the landing burn 
constitutes a waste in fuel from a minimum-fuel optimization 
standpoint. 

At the time of writing, the only operational reusable rocket 
is the SpaceX Falcon 9. Because of this, the Falcon 9 v1.1 
launch vehicle specifications will be used for this study [12]. 
A summary of the vehicle’s performance parameters, as well 
as some system parameters, is detailed in Table I. 

 
TABLE I 

VEHICLE AND MODEL PARAMETERS 
Vehicle Parameter Value 

Specific Impulse, ISP (s) 282 
Liftoff Thrust, T (kN) 5,886 
Drag Coefficient, CD 0.75 

Diameter, d (m) 3.66 
Gravity, g0 (m/s2) 9.80665 

Air Density at Sea Level, ρ0 (kg/m3) 76,501 
Scale Height, h0 (m) 7,500 

 
The hypothetical mission will be to insert a 5,000-kg 

payload into orbit using a gravity turn trajectory, which would 
require an 89.92° kick maneuver at 400 m altitude. The 
equations of motion used in this launch simulation are 
described by Curtis [13]. This launch phase is not optimized 
and is only used to determine practical values for the position 
and velocity conditions at stage separation, and it is assumed 
that the second stage of the rocket can complete the primary 
mission. The launch simulation also assumes that 10% of the 
first-stage fuel available at launch is reserved for the 
boostback and landing burns. If desired, the launch phase and 
amount of reserved propellant can potentially be optimized as 
well, but their optimization depends on the primary mission 
objective, i.e. the mass of the payload and the desired orbit, 
and the desired first-stage landing location. The states at stage 
separation, now being used as the initial conditions, are 
included with the boundary conditions in Table II. 
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Fig. 1 Typical mission profile for Falcon 9 reusable rocket [11] 

 
III. OPTIMIZATION MODELING 

An accurate system model is required to properly optimize 
the landing trajectory. This begins with some simplifying 
assumptions, which are then used to build the dynamic 
equations that described the motion of the rocket. As 
previously mentioned, when dealing with an in-atmosphere 
analysis, the drag terms in these equations are highly 
nonlinear, which typically makes them difficult to work with. 
This is due to drag being quadratically dependent on the 
vehicle’s velocity, as well as exponentially dependent on the 
vehicle’s altitude. 

A. Modeling Assumptions 
To begin, several assumptions are made to simplify the 

problem and make finding a solution more feasible. 
 A point-mass dynamical model, with specified thrust 

directions during the boostback and landing phases, is 
used. 

 Drag effects are considered in the equations of motion, 
but lift effects are neglected due to the gravity turn 
trajectory producing a zero angle of attack. 

 The flight path is constrained to the two-dimensional 
plane, where altitude is the positive y-axis and downrange 
is positive the x-axis, over a non-rotating flat earth and 
constant gravitational field. 

 The throttle control system is perfect and experiences 
zero-lag and zero-error during flight. 

 The maximum thrust is assumed to be constant and 
independent of atmospheric pressure. 

Although these assumptions should not be applied to real-
world simulations, the resulting simulation and solution can 
still be used to gain a better understanding of the system’s 
behavior and can be used as a stepping stone for more accurate 
models. 

B. Dynamic Model 
The forces acting on the rocket and the two-dimensional 

Cartesian coordinate system that the rocket resides in are 
illustrated in Fig. 2. The thrust force  has a constant 
magnitude, as previously mentioned, and points at an angle 

 measured counterclockwise from the positive x-direction. 
The velocity  of the rocket points along the flight path 
angle  measured counterclockwise from the positive x-
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direction. The drag force  points opposite to the velocity 
vector and has a magnitude that is nonlinearly dependent on 
altitude  and velocity , defined by 

 

  (1) 
 
where  is the atmospheric density at sea level, 

 is the scale height,  is the drag 
coefficient, and  is the circular cross sectional area defined 
by a radius of 3.66 meters. The weight  of the rocket 
always points in the negative y-direction and has a magnitude 
dependent on the variable mass  of the vehicle and 
Earth’s gravity constant . 
 

 
Fig. 2 Force-body diagram and Cartesian coordinate system 

 
Using Newton’s second law, the thrust, drag, and weight 

forces can be resolved into components in the x- and y-
directions: 

 
          (2) 

 
 

Replacing the acceleration terms in (2) with the rates of 
change of the velocities in the x-direction  and y-
direction , the velocity dynamic equations can be defined 
as: 

 
        (3) 

 

 
The dynamics of the downrange distance  and the 

altitude  are defined as: 
 

            (4) 
    

 
Lastly, the mass flow rate of the rocket is defined by: 
 

                             (5) 

 
where  is the bounded throttle and  is the vehicle’s 
specific impulse, which is a measure of the rocket engine’s 
performance. 

From observation, the constants in the drag term can be 
consolidated into a new constant  for convenience. 
Additionally, the terms that include flight path angle  can 
be expressed in terms of the x and y components of velocity, 
thus removing an extra variable. Using this, these terms can 
then be described as: 
 

 
 

 
 

   (6) 

 

 

 
Applying (6) to (3)-(5), the equations of motion that 

describe the dynamics of the reusable rocket are presented as: 
 

 
 

 
 

       (7) 
 

 

 

 

 
The set in (7) is used during the boostback phase because it 

allows for a thrust direction  to be specified. During this 
phase, the thrust direction is set to 180° since only the 
downrange translation of the vehicle must be limited, while 
the “upwards” translation is inconsequential. The vehicle’s 
state is represented by the five-element vector 

, which is composed of the 
downrange distance, altitude, horizontal velocity, vertical 
velocity, and mass, respectively. The throttle control , as 
previously mentioned, is equal to 1 during the boostback 
phase. Additionally, the thrust level  is equal to one-third of 
the total lift-off thrust, simulating the use of only three of the 
nine engines for the boostback burn. 

Alternatively, it is desired to use a different set of equations 
for the coasting phase and the landing phase. These equations 
reflect a modified version of the gravity turn maneuver 
described by Curtis, and can be expressed as: 
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where  is the radius of the Earth. The only 
difference between Curtis’ equations and the equations 
presented here is the negative sign on the thrust term, which 
forces the thrust vector to always point opposite to the velocity 
vector. This maneuver is fuel-optimal due to all the energy 
being used to slow the vehicle rather than being used for 
steering; steering is achieved passively by using gravity, hence 
the name “gravity turn”. 

The vehicle states for these phases is represented by the 
five-element vector , which is 
composed of the downrange distance, altitude, velocity, 
flightpath angle, and mass, respectively. The throttle control 

 is equal to 0 during the coasting phase, and is then equal 
to 1 during the landing phase. The thrust level  for the 
landing phase is equal to one-ninth of the total liftoff thrust, 
simulating a one-engine landing burn. 

C. Mission Boundary Conditions 
The objective of the mission is the bring the launch vehicle 

from its initial conditions at stage separation, as previously 
mentioned, to three different sets of terminal conditions, 
which are detailed Table II. The first landing case represents 
the desire to simply land anywhere downrange, so no 
downrange terminal condition has been specified. The second 
landing case represents the desire to land at a specified 
location downrange, such as on a barge out at sea. Lastly, the 
third landing case represents the desire to land back at the 
launch site. These three cases were chosen for being possible 
objectives for companies seeking to use reusable rockets. 
 

TABLE II 
BOUNDARY CONDITIONS 

State Fixed 
Initial 

Case 1 
Terminal 

Case 2 
Terminal 

Case 3 
Terminal 

Downrange (km) 
Altitude (km) 

X-Velocity [km/s] 
Y-Velocity [km/s] 

Mass [kg] 

D. Constraints 
For the system to behave accurately, constraints must be 

placed. In this case, the altitude must remain greater than or 
equal to zero to ensure the vehicle remains above ground, the 
mass must remain greater than or equal to the structural mass 
to ensure that fuel is still available throughout the flight, and 
the throttle must be bounded to zero or one. 

 
 

Due to the formulation of the optimal control problem using 
bang-bang control, the throttle constraint will automatically be 
met. However, the state constraints cannot be explicitly met by 
the PSO method. Even so, the constraints on mass and altitude 
will still be checked in the final solution to determine whether 
a feasible trajectory has been found. 

E. Objective Function 
Properly formulating the cost function is crucial to having 

the optimization solver provide an accurate solution. It can be 
stated that minimizing the fuel consumption over the entire 
flight is equivalent to maximizing the terminal mass  at 
the terminal time . This is done by having a negative sign 
with the mass term; the more mass that remains at touchdown, 
the more negative the value is, thus minimizing the cost 
function value. Also, since the problem is formulated in an 
initial value problem framework, minimizing the error 
between the states at the terminal time , , , 
and  and the desired terminal conditions is required for 
a feasible solution. To penalize the errors, their values are 
positive, thus increasing the cost function value rather than 
minimizing it. This can be expressed as: 
 

 

                    (10) 
 

For the terminal downrange distance error , the 
term will be omitted completely for the unspecified 
downrange landing. Otherwise,  will be equal to 200 km for 
the specified downrange landing, and 0 km for the return-to-
launch-site landing. The terminal altitude error term, as well as 
the terminal velocity terms, does not include a desired 
terminal condition because the desired terminal condition will 
always be zero at touchdown. If the altitude at the terminal 
time is not zero, then the landing is not successful. Likewise, 
if the terminal velocities are not zero, then the landing is 
unsuccessful. These error terms are squared since both 
positive and negative deviations are equally undesirable. 

The  terms are constant weighting factors that must be 
individual tuned by the user to achieve the desired 
optimization behavior. In this case, the weighting factors 
should be selected to force the terminal error terms to be of the 
same magnitude as the terminal mass or larger, otherwise the 
algorithm will prioritize the remaining fuel rather than 
achieving the desired terminal position and velocity. 

IV. PSO PROCEDURE 
To begin the optimization process, the MATLAB particle 

swarm function generates the initial population with random 
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positions and velocities and calculates the cost function for 
each particle [14]. In this case, the position of each particle is 
a decision vector that contains the switching time(s) and the 
terminal time. The function then iteratively updates the 
randomly-generated swarm population using the steps outlined 
in this section. At an arbitrary iteration  for a particle , 
which is at position : 
 Choose a random subset of  of  particles other than 

particle . 
 Find , the best overall objective function value 

of all neighbors, and , the best position of the 
particle with the best objective function. 

 Update the velocity: 
 

(11) 
 
where  is the inertia component, 

 is the cognitive component, and 
 is the social component. The variable  is the 

inertia weighting factor, the variable  is the self-adjustment 
weighting factor, and the variable  is the social-adjustment 
weighting factor. The vectors  and  are random vectors 
whose entries are chosen from a uniform distribution between 
0 and 1. Lastly,  is the best solution found by particle , 
whereas  is the best solution found so far by the current 
neighborhood. 
 Update the position: 

 
   (12) 
 
using the velocity found in the previous step. 
 Enforce the bounds. If any component of  violates a 

bound, then set it equal to that bound. 
 Evaluate the cost function . 
 If , then set . This ensures that  

contains the best solution that the particle has seen so far. 
 If , then set  and . This ensures 

that  contains the best cost function value found by the 
swarm, and  has the best solution. 

 If the best function value was lowered in the previous 
step, then set . Otherwise, set 

. 
 Update the neighborhood of particles. If : 

a. Set  
b. Set  to . 
c. If , then . 
d. If , then . 
If : 
a. Set  
b. Set 

 
 

The variable  is the stall counter and initially starts equal 
to zero when MATLAB initiates the function. The variable  
is initially equal to the , which is 
initiated by MATLAB by default. Expanding on the particle 
velocity update in (11), the movement of the population of 
solution candidates is based the three components previously 
mentioned. The inertia component represents the influence of 
the particle’s velocity from the previous iteration, the 
cognitive component represents the tendency for the particle 
to move towards its best remembered solution, and the social 
component represents the tendency for the particle to move 
towards the best solution found so far by the entire swarm. 

Although the use of PSO does not necessarily guarantee 
convergence on the globally optimal solution as convex 
optimization does, the global optimal can still be achieved by 
having a large swarm size to sample the entire search space. 
The drawback to this is that it can become computationally 
expensive if the search space is very large, and the number of 
particles is very high. 

A. Program Procedure 
Incorporating the vehicle and model parameters in Table I 

and the initial conditions in Table II, the main MATLAB 
script calls upon the particle swarm function to evaluate the 
objective function script for the initial swarm population. The 
objective function script takes each of the decision vectors of 
switching time(s) and terminal time, uses the MATLAB 

 numerical integrator function to simulate the trajectory 
using (7) and (8), and evaluates the cost function in (10) using 
the terminal mass and terminal state errors. This process 
continues iteratively using the steps in the previous section 
until one of MATLAB’s default stopping criteria is met. 

B. PSO Validation 
To test the validity of the PSO method and written 

MATLAB scripts, the optimization procedure has been 
applied to the solved one-dimensional lunar lander problem 
presented by Ocampo [3]. In her paper, Ocampo wishes to 
find the minimum-fuel landing trajectory for a spacecraft 
initially having a mass , 204 kg of which is 
propellant. The spacecraft is also initially at an altitude 

 and moving upwards at a velocity 
. The vehicle has a maximum thrust , 

a mass flow rate , and is only affected by 
the Moon’s gravity . The equations of motion 
that describe the dynamics of the spacecraft are defined as: 
 

 
 

  (13) 
 

 
 

Ocampo determines that the minimum-fuel optimal control 
history follows a bang-bang control structure, and then 
determines the switching time and the final time using three 
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different methods: explicitly, Newton’s shooting method, and 
finite difference method using MATLAB’s  function. 

Applying the PSO scripts, the results in Figs. 3-7 were 
obtained. Fig. 3 illustrates the control history achieved by the 
switching time of 312.853 seconds and the total time of flight 
of 481.858 seconds found by the PSO method. The blue 
portion of the plot represents when the throttle is off, and the 
red portion represents when the throttle is on. Fig. 4 illustrates 
the altitude history, while Fig. 5 illustrates the velocity history. 
During the unpowered phase, the altitude follows a ballistic 
trajectory as the velocity linearly decreases under the effects 
of constant gravity. Once the switching time occurs and the 
throttle turns on, the velocity follows a nonlinear trajectory to 
zero, which correlates to the nonlinear altitude trajectory 
reaching zero as well. Fig. 6 illustrates that the mass of the 
vehicle remains constant while the throttle is off, as expected, 
but begins to decrease linear when the throttle is turned on. 
Lastly, Fig. 7 represents the altitude versus velocity trajectory 
of the vehicle, where the velocity becomes more negative as 
the altitude decreases, but then both states reach zero after the 
switching time. 

 
Fig. 3 Bang-bang throttle control history from optimizing switching 

time and terminal time 
 

 
Fig. 4 Altitude history from optimizing switching time and terminal 

time 
 

 
Fig. 5 Velocity history from optimizing switching time and terminal 

time 

 

Fig. 6 Mass history from optimizing switching time and terminal time 
 

 
Fig. 7 Altitude versus velocity from optimizing switching time and 

terminal time 
 

These results are comparable to the results obtained by 
Ocampo, which proves the viability of the PSO method. 

V. RESULTS AND DISCUSSION 
With the PSO method verified, it can now be used to 

minimize the cost function in (10), subject to the dynamic 
equations of (7) and (8). The switching times and terminal 
times found by the PSO method will determine the two-
dimensional in-atmosphere landing trajectories for three 
separate cases. This first case is the unspecified downrange 
landing, where it is desired to simply land anywhere 
downrange. Second, a specified landing will be made, where it 
is desired to land at a specific location downrange. Lastly, a 
return-to-launch-site will be analyzed, where the rocket must 
halt and reverse its downrange translation to return to the 
launch pad. The results of these cases will now be presented. 

A. Unspecified Downrange Landing 
The simulation for the unspecified downrange landing case 

will be presented first. This case was chosen to act as a proof-
of-concept for applying the PSO algorithm to a two-
dimensional case. Similar to the lunar lander problem, only 
two decision variables exist: the switching time and the 
terminal time. The switching time, total time of flight, and 
terminal states of this simulation are summarized in Table III. 

As demonstrated, the terminal altitude and velocities are 
within a negligible error of zero, and can thus be said to have 
reached the desired terminal state. The mass also satisfies the 
mass constraint by being greater than 25,600 kg. The bang-
bang throttle control history is illustrated in Fig. 8, where the 
dotted line represents the coasting phase when the throttle is 
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off, and the blue line represents the landing phase when the 
throttle is on. Figs. 9-11 illustrate the mass history, velocity 
history, and two-dimensional altitude versus downrange 
distance trajectory, respectively. 

TABLE III 
UNSPECIFIED DOWNRANGE LANDING RESULTS 

Variable Value 
Boostback Burn Length (s)  

Landing Burn Start Time (s)  
Time of Flight (s)  

Final Downrange Distance (m)  

Final Altitude (m)  

Final Horizontal Velocity (m/s)  
Final Vertical Velocity (m/s)  

Final Mass (kg)  
 

 
Fig. 8 Throttle control history for the unspecified downrange landing 

 

 
Fig. 9 Mass history for the unspecified landing 

 

 
Fig. 10 Velocity history for the unspecified downrange landing 

 

B. Specified 200 km Downrange Landing 
Next, the simulation for the 200-km downrange landing 

case will be presented. For this case, a boostback burn has 
been added to the previous case. The 200-km location has 
been selected for only requiring a minor boostback burn. The 
results of this simulation are summarized in Table IV. 

 
TABLE IV 

200 KM DOWNRANGE LANDING RESULTS 
Variable Value 

Boostback Burn Length (s)  
Landing Burn Start Time (s)  

Time of Flight (s)  
Final Downrange Distance (m)  

Final Altitude (m)  
Final Horizontal Velocity (m/s)  

Final Vertical Velocity (m/s)  
Final Mass (kg)  

 

 
Fig. 11 Altitude versus downrange distance for the unspecified 

downrange landing 
 

As demonstrated, the terminal altitude and velocities are 
again within a negligible error of zero, and can thus be said to 
have reached the desired terminal state. Similarly, the desired 
downrange distance of 200 km has been hit exactly. The mass 
once again satisfies the mass constraint by being greater than 
25,600 kg. The control history is illustrated in Fig. 12 where 
the blue line represents the boostback burn when the throttle is 
on, dotted line represents the coasting phase when the throttle 
is off, and the blue line represents the landing phase when the 
throttle is on. Figs. 13-15 illustrate the mass history, velocity 
history, and two-dimensional altitude versus downrange 
distance trajectory, respectively. 

 

 
Fig. 12 Throttle control history for the 200-km downrange landing 
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Fig. 13 Mass history for the 200-km downrange landing 

 

 
Fig. 14 Velocity history for the 200-km downrange landing 

 
Fig. 15 Altitude versus downrange distance for the 200-km 

downrange landing 
C. Return-to-Launch-Site Landing 
Lastly, the simulation for the return-to-launch-site landing 

case will be presented. For this case, a significantly longer 
boostback burn than the previous case is required to complete 
the return. This location has been selected for being a potential 
landing destination for companies in the future. The results of 
this simulation are summarized in Table V. 

 
TABLE V 

RETURN-TO-LAUNCH-SITE LANDING RESULTS 
Variable Value 

Boostback Burn Length (s)  
Landing Burn Start Time (s)  

Time of Flight (s)  
Final Downrange Distance (m)  

Final Altitude (m)  

Final Horizontal Velocity (m/s)  

Final Vertical Velocity (m/s)  
Final Mass (kg)  

 
As demonstrated, the terminal position and velocities are all 

essentially zero, and can thus be said to have reached the 
desired terminal state. The final mass satisfies the mass 

constraint by being greater than 25,600 kg, but with an 
extremely small fuel margin remaining. The control history is 
illustrated in Fig. 16, where the blue line represents the 
boostback burn when the throttle is on, dotted line represents 
the coasting phase when the throttle is off, and the blue line 
represents the landing phase when the throttle is on. Figs. 17-
19 illustrate the mass history, velocity history, and two-
dimensional altitude versus downrange distance trajectory, 
respectively. 
 

 
Fig. 16 Throttle control history for the return-to-launch-site landing 

 

 
Fig. 17 Mass history for the return-to-launch-site landing 

 

 
Fig. 18 Velocity history for the return-to-launch-site landing 

 

 
Fig. 19 Altitude versus downrange distance for the return-to-launch-

site landing 
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VI. CONCLUSION 
A successful optimization method for finding the minimum-

fuel reusable rocket landing trajectories in three different cases 
has been presented. The method uses PSO to determine the 
switching time(s) and terminal times for the throttle control. 
During the boostback phase (if one is used), the thrust points 
in the negative x-direction in order to limit the downrange 
translation. During the landing phase, the vehicle uses a 
gravity turn maneuver where the thrust always points opposite 
to the velocity vector. The trajectories that result from these 
decision variables satisfy the two-point boundary value 
problems in an initial value problem framework, where the 
terminal state errors are minimized using a cost function. 
Additionally, the terminal mass is maximized in the cost 
function. 

The use of PSO is advantageous because of its ability to 
converge on accurate solution in relatively large search spaces 
despite having no prior knowledge or approximation of what 
the optimal solution might be. Having an accurate initial guess 
is typically required for other optimization methods, which 
can be a difficult task to accomplish. Additionally, the absence 
of derivative information, such as the costate equations or the 
Hamiltonian equation, is beneficial in easily setting up the 
optimization problem. 

While this paper can potentially provide useful insights into 
the behavior of reusable rocket landings, future work can 
greatly improve the accuracy results of this study by removing 
some, or all, of the simplifying assumptions. Changing the 
coordinate system from a two-dimensional plane using a flat, 
non-rotating Earth to a three-dimensional system using a 
circular, rotating Earth would only require a change in the 
equations of motion, which can be done relatively easily. 
Incorporating rigid-body dynamics would also be beneficial, 
but would require significantly more work. 
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