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Abstract—Dynamic characteristics of a four-lobe journal bearing 

of micropolar fluids are presented. Lubricating oil containing 

additives and contaminants is modelled as micropolar fluid. The 

modified Reynolds equation is obtained using the micropolar 

lubrication theory and solving it by using finite difference technique. 

The dynamic characteristics in terms of stiffness, damping 

coefficients, the critical mass and whirl ratio are determined for 

various values of size of material characteristic length and the 

coupling number. The results show compared with Newtonian fluids, 

that micropolar fluid exhibits better stability.  

 

Keywords—Four-lobe bearings, dynamic characteristics, stability 
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I. INTRODUCTION 

OTATING machines carrying large rotor loads and working 

at high speeds encounter the problem of instability. Non-

circular bearings have the advantage of being more stable 

than the conventional circular bearings [1-3]. The new type of 

bearing, namely, four-lobe pressure bearing was studied by 

Bhushan [4]. Advances in technology and in many practical 

lubrication applications necessitate the development of 

improved lubricants where the Newtonian fluids constitutive 

approximation is not a satisfactory engineering approach to 

lubrication problems. The experimental results support the 

achievement of better lubricating effectiveness on blending 

small amount of ling-chained additives with the Newtonian 

lubricants Micropolar fluids obtained from the general 

microfluids by imposing the assumption of the skew 

symmetry of the gyration tensor and the microisotropic 

property are the simplest subclass of microfluids in which 

microstructure is still presents [5]. A number of theories of the 

microcontinuum have been developed to explain the behavior 

of these fluids as polymeric fluids [6]. Hauang et al.[7] 

presented the dynamic characteristics of finite-width journal 

bearings lubricated with micropolar fluids. The effects of 

micropolar lubricants and three-dimensional irregularities in 

hydrodynamic journal bearings were studied by Lin [8]. The 

dynamic characteristics of journal bearings lubricated with 

micropolar fluids were presented by Das et al.[9]. Prabhkaran 

Nair et al.[10] presented an analysis of the deformation effect 

of the bearing liner on the static and dynamic characteristics of 

an elliptical journal bearing with a micropolar lubricant.  In 

recent investigation, the static characteristics of a noncircular 

journal bearing (two-lobe, three-lobe and four-lobe) lubricated 

with a micropolar fluids were studied by Rahmatabadi et 

al.[11]. In the present work, dynamic characteristics in terms 

of stiffness, damping coefficients, the critical mass and whirl 

ratio are determined for various values of size of material 
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characteristic length and the coupling number  for a four-lobe 

journal bearing lubricated with a micropolar fluids. 

II. MODIFIED REYNOLDS EQUATION 

Under the usual assumptions made for the lubrication film, 

the assumptions of the absence of body forces, body couples 

and constancy of characteristic coefficients across the film of 

the micropolar fluid, the modified Reynolds equation in 

dimensionless form is written in the following form [7]: 
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N et l are two parameters distinguishing  a micropolar fluid 

from a Newtonian fluid. N is a dimensionless parameter 

called the coupling number which couples the linear and 

angular momentum equations arising due to the 

microrotational effect of the  suspended particles in the fluid. 

l  represents the interaction between the micropolar fluid and 

the film gap and is termed as the characteristics length of the 

micropolar fluid.                               

A. Bearing Geometry and Boundary Conditions 

The configuration of the four-lobe bearing is shown in 

Fig.1. The non-dimensional fluid film thickness for each lobe 

is given by Bhushan [4]: 
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The eccentricity ratios and the attitude angles of each lobe for 

the bearing are given by: 
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The pressure boundary conditions in dimensionless form are:
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Eq.(7a) is result from the fact that the ends of the bearing are 

exposed to the ambient pressure, while Eqs.(7b)and (7c) are 

the Reynolds (Swift-Stieber) conditions.  

B. Stability Analysis 

The linearized equations of the disturbed motion of the journal 

centre are [3]:  
.. . .
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Where the fluid film stiffness and damping coefficients are 

respectively given by 
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Equations (8) are used to study the stability of the bearing 

system. Harmonic solution of the type: 

 ,  t tx xe y yeλ λ= =                                                      (11)                                                                                        

will be assumed [3] where iλ η ν= +  is a complex 

frequency. The sign of the real partη allows the system 

stability to be defined. If (η < 0) the system is stable and vice 

versa. On the threshold of stability η =0, x and y are pure 

harmonic motions with a frequency iλ ν= .Thus equations  

can be written as: 
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Fig. 1 Four-lobe journal bearing  
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For a nontrivial solution the determinant must vanish and 

equating the real and imaginary parts to zero gives:
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From equations (13) and (14), the critical mass and the whirl 

ratio γ  are calculated. cM is the critical mass parameter 

above which the bearing is  unstable.  

C. Solution Procedure 

The modified Reynolds equation (1) is solved using the 

finite difference technique with Gauss Seidel method 

the boundary conditions (7). Integration of the pressure, the 

horizontal and vertical components of the load are calculated 

for the four lobes of the bearing. By giving small values for 
.

x  and 
.

y around the equilibrium position, the stiffness and 

damping coefficients can be calculated.  
Applying the central finite-difference scheme to equation 

the value of any pressure is given by: 
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Where the values of the constants Ai 

comparing this equation with equation.(1)

III. RESULTS AND DISCUSSIO

The dynamic characteristics for a four

bearing are computed for an ellipticity ratio of 0.5 and 

R/L = 1  . The ellipticity ratio used in this study is 0.5. The 

micropolar effects become insignificant and the fluid converts 

to Newtonian fluid as. L → ∞  or N →
validity of the present analysis, the results in terms of the 

stiffness and damping coefficients for a four

bearing lubricated with a Newtonian fluid are compared with 

the results published [5]. The results agree very well. The 

effect of non-dimensional characteristics length of th

micropolar fluid and the coupling number on the critical mass 

and the whirl ratio are shown in figures 2 and 3. From fig.2, it 

is observed that from the Newtonian fluid, the critical mass 

increases with an increasing of N and it converges to that of 

Newtonian fluid as  L → ∞  . In Fig.3, it can be observed 

that the whirl ratio decreases with an increase of the parameter 

N and at high values of L, the whirl ratio tends the Newtonian 

fluid.  The variation of critical mass with non
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ESULTS AND DISCUSSION 

The dynamic characteristics for a four-lobe journal 

bearing are computed for an ellipticity ratio of 0.5 and 

. The ellipticity ratio used in this study is 0.5. The 

micropolar effects become insignificant and the fluid converts 

0→ . To establish the 

esults in terms of the 

stiffness and damping coefficients for a four-lobe journal 

bearing lubricated with a Newtonian fluid are compared with 

the results published [5]. The results agree very well. The 

dimensional characteristics length of the 

micropolar fluid and the coupling number on the critical mass 

and the whirl ratio are shown in figures 2 and 3. From fig.2, it 

is observed that from the Newtonian fluid, the critical mass 

increases with an increasing of N and it converges to that of 

. In Fig.3, it can be observed 

that the whirl ratio decreases with an increase of the parameter 

N and at high values of L, the whirl ratio tends the Newtonian 

fluid.  The variation of critical mass with non-dimensional 

characteristic length L for various values of eccentricity ratio 

at N
2
 =0.6 is shown in Fig.4. This figure shows that the critical 

mass decreases with an increase of the eccentricity ratio 

initially then increases after 

variation of the whirl ratio with L for various of eccentricity 

ratio at N
2
 =0.6. It can be observed that as the eccentricity 

ratio increases the whirl ratio deceases. 

Fig. 2 Variation of Mc with 

 

 

 

Fig. 3 Variation of γ with 

 

 

The variation of critical mass with 

characteristic length L for various values of eccentricity ratio 

at N2 =0.6 is shown in Fig.4. This figure shows that the critical 

mass decreases with an increase of the eccentricity ratio 

initially then increases after 

variation of the whirl ratio with L for various of eccentricity 

ratio at N
2
 =0.6. It can be observed that as the eccentricity 

ratio increases the whirl ratio deceases. 

 

 

 

Mc  

γ  

)                                                                    

)                                                                             

characteristic length L for various values of eccentricity ratio 

=0.6 is shown in Fig.4. This figure shows that the critical 

mass decreases with an increase of the eccentricity ratio 

initially then increases after = 0.15ε . Fig.5 shows the 

variation of the whirl ratio with L for various of eccentricity 

=0.6. It can be observed that as the eccentricity 

ratio increases the whirl ratio deceases.  

 

 

with L  for different values of 
2N  

with L  for different values of 
2N  

The variation of critical mass with non-dimensional 

characteristic length L for various values of eccentricity ratio 

=0.6 is shown in Fig.4. This figure shows that the critical 

mass decreases with an increase of the eccentricity ratio 

initially then increases after = 0.15ε . Fig.5 shows the 

variation of the whirl ratio with L for various of eccentricity 

=0.6. It can be observed that as the eccentricity 

ratio increases the whirl ratio deceases.  

L  

L  



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:5, No:11, 2011

2123

 

Fig. 4 Variation of Mc with L  for different values of 

 

 

 

Fig. 5 Variation of γ
 
with L  for different values of 

 

IV. CONCLUSIONS 

Based on the results presented in this paper, the following 

conclusions can be made: 

1) The critical mass increases while the whirl ratio for 

the four-lobe 1ournal bearing decreases with an 

increase of the parameter N 

2) At high values of L, the critical mass and the whirl 

ratio for this journal bearing converge to that for 

Newtonian fluid. 

3) The stability of the four-lobe journal bearing is 

improved by using a micropolar 

Newtonian fluid.  
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 fluid compared to a 

NOMENCLATURE

c               major clearance 

ijC            dimensionless damping coefficients  

e              eccentricity 

pe             mc c− , ellipticity 

h              oil film thickness 

ijK           dimensionless stiffness coefficients

L             bearing ratio 

N            coupling number 

l              material length  

M             mass of journal  

P              pressure  

R              journal radius  

W'            bearing load 

W          
2( / ) / iW c R RLµ

load 

, ,x y z   circumferential,  radial     and    axial   co

respectively 

δ              /pe c , ellipticity ratio

ε             e/c, eccentricity ratio based on major clearance

ε             e/cm,    eccentricity   ratio   based   on minor 

clearance  

θ             angular coordinate 

1 2 3 4, , ,e e e eθ θ θ θ     angular   coordinates   at  the  end  of 

bearing pads 

1 2 3 4, , ,s s s sθ θ θ θ   angular coordinates at the start of bearing 

pads 

1 2 3 4, , ,t t t tθ θ θ θ   angular    coordinates  at    the   trailing 

edges  

µ             lubricant Viscosity 

vk           spin viscosity 

vµ           viscosity coefficient for 

ν             whirl frequency 

γ             whirl ratio 

φ             attitude angle 

ω            angular velocity of the journal
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