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 
Abstract—Particles are the most common and cheapest 

reinforcement producing discontinuous reinforced composites with 
isotropic properties. Conventional fabrication methods can be used to 
produce a wide range of product forms, making them relatively 
inexpensive. Optimising composite development must include 
consideration of all the fundamental aspect of particles including 
their size, shape, volume fraction, distribution and mechanical 
properties. Research has shown that the challenges of low fracture 
toughness, poor crack growth resistance and low thermal stability can 
be overcome by reinforcement with particles. The unique properties 
exhibited by micro particles reinforced ceramic composites have 
made them to be highly attractive in a vast array of applications.  

 
Keywords—Ceramic composites, Mechanical properties, Micro- 

particles, Thermal stability. 

I. INTRODUCTION 

UE to technological progress, conventional metal alloys, 
ceramics, and polymeric materials have become 

insufficient to meet increasing demands on product 
capabilities and functions [1]. Hence, materials with unusual 
combinations of properties that cannot be met by the 
conventional materials are needed. This is especially true for 
materials that are needed for aerospace, underwater, and 
transportation applications. For example, aircraft engineers are 
increasingly searching for materials that have low densities, 
high strength and toughness (stiffness), high impact and 
thermal stability, high corrosion and wear resistance [2]. This 
is a rather formidable combination of properties. Hence, 
material-property combinations and ranges have been and are 
being extended by the development of composite materials 
[3]. Composites are being sought after as replacement for 
these conventional materials due to the unique properties they 
exhibit in various applications. Composites represent a 
definite combination of chemically and structurally different 
constituent materials whose combination produces a 
synergistic effect and aggregate properties that are different 
from those of its constituents [2]. Materials containing fibers 
or particles reinforcement belong to the class of materials 
known as composite [4]. A composite can be defined as a 
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combination of two or more distinct materials at a 
macroscopic level to attain new properties that cannot be 
achieved by those individual components. Different from 
metallic alloys, each material keeps its own chemical, physical 
and mechanical properties [5]. However, the properties of 
composites are strongly dependent on the characteristics of 
their constituents in terms of distribution and mode of 
interaction. This is why composites’ behaviours are either the 
volume fraction sum of constituents’ properties or synergy 
resulting in improved characteristics. Similarly, the 
concentration and geometry of reinforcements with regard to 
shape, size and distribution usually imparts significantly on 
the composite’s properties [2].  

Compared with traditional metallic materials, the main 
advantages of composites are: good vibration damping ability, 
long fatigue life and high wear, creep, corrosion and thermal 
resistances [5]. The above advantages make composite 
materials to be widely used in various fields. In aeronautic 
structures, composite materials are increasingly being utilised 
to decrease weight for payload and radius purposes. For 
example, the percentages by weight of composites in USA 
fighter jets increased from 2% in F-15E to 35.2% in F-35/CV. 
The overall structure of Euro fighter Typhoon is composed of 
40% carbon-fiber composite materials. For commercial 
aircrafts, the usage percentages of fiber-reinforced composite 
materials in the latest Boeing B787 and newly designed 
Airbus A350-XWB reach 50% and 52% respectively. To meet 
the performance and fuel efficiency requirements, the 
consumption of composites in automobile industry is growing. 
The blades of wind turbines are normally made of composites 
to improve electrical energy efficiency [5]. In ships or 
infrastructures, composite materials with high corrosion 
resistance have received wide acceptance. Above all, the brake 
and engine parts working in high temperature are often 
fabricated from metal or ceramic composites. 

II. MATERIALS SELECTION IN CERAMIC MATRIX COMPOSITES 

(CMCS) 

Some criteria need to be considered before a right selection 
of reinforcement and matrix materials can be made. Some of 
these criteria are inter-related and are: compatibility, thermal 
property, fabrication method, application and cost [6]. The 
chemical stability, wettability and compatibility of the 
reinforcement with the matrix material are important, not only 
for materials fabrication, but also for application because all 
reinforcements are not compatible with every matrix. The 
wetting and bonding between the matrix and reinforcement are 
generally regarded as the major issues in producing composite 
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materials [7]. The matrix acts as the bonding element and its 
main function is to transfer and distribute the load to the 
reinforcement material. The transfer of load depends on the 
bonding between the matrix and the reinforcement. However, 
the bonding depends on the type of matrix and reinforcement 
as well as the fabrication technique. The matrix material is 
used in various forms for different fabrication methods, for 
example powder is used in powder metallurgy and liquid 
matrix material is used in liquid metal infiltration, squeeze 
casting and compo-casting. Matrix selection depends not only 
on desirable properties but also on which material is best 
suited for a particular composite manufacturing technique. 
The matrix should be chosen after giving careful consideration 
to the chemical compatibility with the reinforcement, its 
ability to wet, its own characteristic properties and processing 
behaviour [8].  

Basically, the prime role of reinforcement material in the 
matrix is to carry load. The reinforcement (fibers, whiskers, 
particles) etc. increases strength, stiffness (toughness) and 
temperature resistance capacity. The correct selection of 
reinforcement type, geometry or shape is important in order to 
obtain the best combination of properties at substantially low 
cost. When selecting the reinforcement materials, the shape, 
size, surface morphology, structural defects, inherent 
properties (strength, moduli and density) and chemical 
compatibility with the matrix must be considered [9].  

III. CONCEPT OF CMCS 

Many pure ceramic materials are hard, wear-resistant and 
can withstand prolonged service at high temperatures. 
However, a major limitation of these materials is their inherent 
brittleness. The purpose of developing ceramic matrix 
composites (CMCs) is to improve the desirable properties 
(especially toughness) of ceramics by adding reinforcements 
and limiting their inherent weaknesses. Naturally, it is often 
found that there is an improvement in strength and toughness 
of ceramic matrix composites [10]. Hence, the development of 
CMCs imparts various improvements over ceramics such as: 
degree of anisotropy on incorporation of fibers, increased 
fracture toughness, elongation to rupture up to 1%, and higher 
dynamic load capability. The increase in toughness in CMCs 
can be explained by energy dissipation mechanism where fiber 
matrix debonding, crack deflection, fiber bridging and fiber 
pull-out are the common failure mechanisms. Some common 
examples of CMCs are: Continuous SiC fiber reinforced glass-
ceramics, Zirconia-toughened and SiC whisker toughened 
alumina and Carbon-Carbon composites. 

IV. CHALLENGES 

Monolithic ceramics can be used up to very high 
temperatures in the range of 1000°C to 2000°C with excellent 
creep resistance and high stiffness. However, the main 
disadvantage of monolithic ceramics is their low fracture 
toughness which leads to brittle fracture and detrimental 
thermal shock resistance. Hence, ceramic matrix composites 
are developed to overcome these challenges and maintain all 

the advantages of monolithic ceramics. Unfortunately, most of 
the composite components produced are currently too 
expensive for mass production due to the high cost of raw 
materials and the production time required. The cost of 
ceramic matrix composites (CMCs) strongly depends on 
composition and manufacturing route. It varies between some 
hundreds and thousands of dollars per kilogramme ($/kg). 
CMCs are expensive compared to other materials and the high 
price has to pay off by longer service life or by a unique 
performance in value-added products [11]. Alternative 
reinforcement phase morphologies have to be investigated in 
order to reduce the cost of ceramic matrix composites while 
retaining the attractive properties. This approach typically 
involves the use of less expensive, discontinuous 
reinforcement phase via powder metallurgy and casting 
techniques. The major reason for using particles is to reduce 
the cost of the composites. So the reinforcement has to be 
readily available in the quantities, size and shape required at 
low cost. It is certain that cost effectiveness of mass-produced 
composite components can only be achieved by using low 
cost, high reliability materials, new high-speed processing 
techniques and new structural design approaches [11].  

Design methodologies, materials use philosophies, and 
durability data that will enhance material choice need to be 
developed. Improving material choice improves the economic 
viability of the class of materials. Economic viability 
assessments of composite joining and inspection technology is 
needed to determine whether reduced assembly costs (from 
parts consolidation) offsets the higher manufacturing cost (of 
large parts). It is clear that an aggressive research and 
development portfolio should be followed and several orders 
of cost reduction resulting from major breakthroughs are 
needed before composites become the material of choice for 
the automobiles makers [11].  

V. MICRO-SCALE PARTICULATE CMCS 

There are materials which have metallic inclusions 
essentially within a ceramic matrix. However, the term micro-
scale particles (metal) ceramic composite is usually taken to 
mean a material that has been designed such that the metal is 
in the form of inclusions that are isolated from each other 
(rather than forming a continuous network) and which deform 
plastically, thereby producing a toughening increment. There 
are examples of such composites e.g., tungsten in glass [12], 
molybdenum in alumina [13], iron, cobalt and nickel in 
magnesia [14], nickel and aluminium in glass [5]. An 
increasing interest in this group of materials developed in the 
late 1980s and early 1990s, a period during which a number of 
allied topics were being explored. Alongside this, there was 
the development of ceramic composites produced by directed 
metal oxidation which tended to give materials a continuous or 
partially continuous network of a metallic phase. When a 
particulate (micro) second phase is introduced into a brittle 
matrix, there are several toughening mechanisms that may 
operate but the maximum benefit is derived from the micro-
metallic particles if they are able to deform plastically and 
bridge an advancing crack. This is easy to achieve in systems 
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Fig. 3 R-curves of unreinforced and reinforced samples of Al2O3 
ceramic composites 

I. Fatigue Resistance of CMCs 

In case of cyclic loading of ceramic based products, if there 
is a minor crack, it may propagate rapidly and sudden failure 
may occur. In case of fiber reinforced ceramics, cracks may be 
arrested by the reinforcement in ceramics and failure can get 
delayed. Therefore, the fracture toughness of ceramic matrix 
composites has to be investigated in order to find the number 
of cycles to failure for a particular product. Significant 
progress has been made in understanding the crack growth 
resistance and strength behaviour of metal particles reinforced 
ceramic matrix composites (MPCMCs) and other ductile 
phase reinforced brittle systems subjected to mechanical loads. 
For an advancing crack to be attracted to an inclusion, rather 
than being repelled by it, the elastic modulus of the inclusion 
must be lower than that of the matrix. This is not a problem 
for most engineering ceramic/metal combinations. The 
toughening should increase with the volume fraction and yield 
strength of metal particles. There is, however, a limit to the 
amount of metallic phase that can be added if the particles are 
to remain isolated from each other and hence contribute 
effectively to the toughening [27]. However, if the inclusion 
becomes too large the difference in the coefficients of thermal 
expansion of the metal and the ceramic matrix is likely to 
result in cracking. This may lead to an advancing crack being 
able to by-pass the particle [27].  

VII. THERMAL STABILITY OF CMCS 

Monolithic ceramics are very sensitive to thermal stress 
because of their high Young's modulus and low elongation 
capability. Temperature differences and low thermal 
conductivity create different elongations, which together with 
the high Young's modulus generate high stress. This results in 
cracks, rupture and brittle failure. In ceramic composites, the 
particles bridge the cracks and the components show no 
macroscopic damage, even if the matrix has cracked. The 
application of ceramic composites in brake disc demonstrates 
their effectiveness under extreme thermal shock conditions. 
Thermal stability is important for an application where the 

component is often subjected to thermal cycling, or when the 
material cannot be allowed to expand (where close tolerances 
are needed). It is also important to have small differences in 
the coefficients of thermal expansion (CTE) when different 
materials are combined to avoid internal stress and thermal 
mismatch strain being generated in the composites [17]. The 
CTE of the composite depends on the volume fraction of the 
reinforcement and CTE normally decreases with increasing 
particle content [18].  

The thermal crack shielding and shock damage in a double-
edge cracked metal particle reinforced ceramic composite 
subjected to sudden cooling at the cracked surfaces was 
studied. Under severe thermal shocks, the crack will grow but 
will be bridged by the plastically stretched metal particles. A 
linear softening bridging law is used to describe the metal 
particle bridging behaviour. An integral equation of the 
thermal crack problem incorporating the bridging effect is 
derived and the thermal stress intensity factor at the bridged 
crack tip is calculated numerically. It is found that the thermal 
stress intensity factor is significantly reduced by the metal 
particle bridging. While the crack growth in thermally shocked 
monolithic ceramics is unstable, the metal-particle-reinforced 
composite can withstand sufficiently severe thermal shocks 
without failure [28]. 

VIII. CONCLUSION 

Ceramic composites which are reinforced with particles are 
emerging as a class of advanced engineering structural 
materials. Research has shown that low fracture toughness and 
poor crack growth resistance can be overcome by 
reinforcement with particles. Micro-particles reinforced 
ceramic composites are unique because they combine low 
density with high modulus, toughness and strength retention at 
high temperatures when compared with monolithic ceramics. 
Their intrinsic ability to be tailored as composites make them 
to be highly attractive in a vast array of applications, most 
notably internal engine components, exhaust systems and 
other “hot-zone” structures, where they are envisioned as 
lightweight replacements for metallic super alloys. Their 
application in brake disc demonstrates their effectiveness 
under extreme thermal shock conditions. They also have better 
corrosion and erosion characteristics for high temperature 
applications with lower cost of production. These unique 
characteristics provide the engineer with design opportunities 
not possible with monolithic ceramics.  
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