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Abstract—In this paper, we have investigated the free convection 

MHD flow due to heat and mass transfer through porous medium 
bounded by an infinite vertical non-conducting porous plate with 
time dependent suction under the influence of uniform transverse 
magnetic field of strength H0. When Temperature (T) and 
Concentration (C) at the plate is oscillatory with time about a 
constant non-zero mean. The velocity distribution, the temperature 
distribution, co-efficient of skin friction and role of heat transfer is 
investigated. Here the partial differential equations are involved. 
Exact solution is not possible so approximate solution is obtained and 
various graphs are plotted. 
 

Keywords—Time Dependent Suction, Convection, MHD, 
Porous. 

I. INTRODUCTION 
LOW of fluid past an oscillating plate is of great 
importance owing to its application in aerodynamics and 

automobile industries, etc. The problem of heat transfer from 
an oscillating plate has been discussed by several authors as 
Stuart [6], Rao et al. [4], etc. Free convection flow especially 
in porous medium is one of the most interesting subject 
matter's because of importance in petroleum, chemical and 
nuclear industries.  

The magnetic effect can also be used in power generator. 
Lin and Wu [3] analyzed the problem of simultaneous heat 
and mass transfer with entire range of buoyancy ratio for most 
practical chemical especially in dilute solution and aqueous 
solution. 

Yan et al. [7] have investigated numerically the laminar 
mixed convective flow in a channel and simultaneous 
influence of the combined buoyancy effects and the thermal 
and mass diffusion for a water system. Chitti Babu and Rao 
[1] analyzed the free convective flow of heat and mass transfer 
past a vertical porous plate taking Viscous and Darcy 
resistance terms into account constant permeability. Sharma 
and Sharma [5] studied unsteady flow of incompressible 
viscous fluid and heat transfer along hot infinite, porous 
vertical surface bounded by porous medium in presence of 
oscillating free stream and cross flow velocity. Here we are 
investigating the case dealt by Gupta et al. [2]. Here we are 
dealing with unsteady free convective MHD flow due to heat 
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and mass transfer through porous medium bounded by an 
infinite vertical oscillatory porous plate in presence of 
transverse magnetic filed H0 along with time dependent 
suction. 

II. MATHEMATICAL ANALYSIS 
Consider the unsteady free convection flow of an 

electrically conducting incompressible viscous fluid in 
presence of transverse magnetic field of strength H0 through a 
porous medium (assume highly porous of permeability K) 
bounded by an infinite vertical porous plate with heat 
source/sink. 

Let x-axis be taken in-vertically upward direction along the 
infinite vertical plate and y-axis normal to it. Neglecting the 
induced magnetic field and applying Boussinesq Equations: 
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where u and v are velocities along x- and y-axes respectively, 
T and T∞  are temperatures of fluid near and away from the 

plate respectively, C and C∞  are the boundary layer species 
concentration in the boundary layer near and away from the 
plate respectively, ρ  the density, σ  is the co-efficient of 

electric conductivity. 0µ  is the magnetic permeability, g is the 

acceleration due to gravity, t is the time and β  and *β  are the 
co-efficient of volume expression and volume expression with 
concentration respectively, υ  is the kinematic viscosity of 
fluid, α  is thermal conductivity, Q is the heat source, D is 
chemical molecular deficiency. Here, effect of induced 
magnetic field is neglected Reynolds theory number is 
assumed for suction velocity is here taken as such: 
 

0– (1 )i tv v e ω= + ∈               (5) 
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The negative sign indicates that the suction is towards the 
plate. The boundary conditions are: 
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where the mean temperature of plate isT∞ , Cω   is the species 
concentration near the plate and ω  is the frequency. 

Introducing the following non dimensional quantities we 
have 

 

* * *

0

– –, ,
( – ) ( – )

T T C Cuu T C
v FG T T F C C Fω ω

∞ ∞

∞ ∞

= = =  

2 2
* * * *0 0

2
0

, , ,v t kvvy wy t w kυ
υ υ υ υ

= = = = . 

 
Substituting the above values in (1) and (2) we obtain, 
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Dropping * and using the following parameters, we have 
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We obtain 
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and boundary conditions are reduced as 
 

0, 1 i tu C e Fω= = + ∈ =  at y = 0, 

0, 0, 0T C u→ → →  as y → ∞  

III. SOLUTION OF THE PROBLEM 
In solving (7), (8) and (9) and using of boundary conditions, 

we here assume: 
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Here (7) becomes: 
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Using Harmonic and non–Harmonic term and neglecting 

higher power terms, the above equation gives: 
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Similarly (8) and (9) give: 
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On account of (10), (11), (12), the boundary conditions are 
reduced to: 
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1 0 1 0 10, 0, 1, 1, 1, 1u u C C T T= = = = = = , at y = 0 

0 1 0 1 0 10, 0, 0, 0, 0, 0T T u u C C= = = = = = , as y → ∞  
 

The various parameters used in the problem are calculated 
as follows: 
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Where we have used 
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IV. NUMERICAL COMPUTATION 
Let us take the value of the following k, m, Sc, S, t, ω , N 

respectively k = .5; m = 0, 1, 2, 3;  Sc = .1, .16, .32; S = .1 .2, 
.5; N = 1, p = .5, ∈ = .2, ω  =.2. 

From the above values we have: 
 

(.319 .197 ),(.219 .144 ),(.439 .229 )i i iα = + + + ,when Sc = .1, .16, .32 
.3618, (.25 .19 ), (.25 .433 )i iβ = + + , when S = .1, .2, .5. 

(.237 .197 ), (.372 .53 ), (.22 .909 )i l iγ = + + + , when S = .1, .2, .5 

– .468, – .319, – .16, – .089φ =  at m = 0, 1, 2, 3, 

2, 2.302, 3, 3.85ψ =  at m =0, 1, 2, 3, 
– 3.618 , (.19 – .25 ), (4.33 – 2.5 )i i iδ = ,when S = .1, .2, .5 

2 .2 , 3 .2 , 6 .2 , 11 .2i i i iθ = + + + +  at m = 0, 1, 2, 3, 

– .44, – .301, – .16, – .089ξ =  at m = 0, 1, 2, 3, 
–.1 –.16 –.32

0 , ,y y yC e e e=  when Sc = .1, .16, .32, 
–(.319 .197 ) –.1
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–.3618 –(.25 .19 ) –(.25 .433 )
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–(.237 .197 ) –.3618

1 (1– 3.618 ) 3.618i y yT i e i e+= + ,at S = .1, 
–(.372 .53 ) –(.25 .19 )

1 (2.9–2.5 ) – (.19–.25 )i y i yT i e i e+ += , at S = .2, 
–(.22 .909 ) –(.25 433 )

1 (5.33–2.5 ) – (4.33–2.5 )i y i yT i e i e+ += , at S = .5, 
–2 –.3618 –.16
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Putting the values of u0 and u1 at m = 0 in (10) we obtain, 
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Taking / 2tω π= , the real part equation becomes of (19) 
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Similarly we have found the values of ( , )y tu  at m = 1,2 and 3. 

Also putting the values of 0T  and 1T  in (11) at S =.1 
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Putting / 2tω π=  and taking real part, we have: 
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Similarly we have found the values of ( , )y tT  at m = .2 and .5. 

 
Putting the different values of C0 and C1 in (12), we have the 
real part of ( , )y tC  at Sc = .1 is 
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Similarly we have found the values of ( , )y tC  at Sc = .16 and 

.32. 

V. SKIN FRICTION 
Co-efficient of Skin Friction is given by 
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where u is the real part of (25) for m = 0 
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Taking real part and then partial differentiation w.r.t. 'y' 
and taking y = 0, at m = 0, from (21), we obtain: 
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In the same manner we obtain: at m = 1. 
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Similarly, at m=2, we obtain: 
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Similarly, at m=3 we obtain: 
 

0

.0218 – 7.30 –17.54
y

u Cos t Sin t
y

ω ω
=

⎛ ⎞∂
=⎜ ⎟⎝ ∂ ⎠

  (29) 

VI. RESULTS AND DISCUSSION 
The effect of material parameter on velocity distribution has 

been shown in Fig. 1. We observe that increase in magnetic 
field causes a rapid decrease in velocity but after a certain 
distance it is reversed; in the case of no magnetic field, it 
increases first and then decrease.  

Fig. 2 exhibits the fact that increases in cS  number, causes 
a decrease in concentration of fluid mass. It is also seen that 
concentration is more near the plate; as we move further, it 
deceases rapidly but gradual decrease is less. 

Fig. 3 shows that the presence of heat source causes a 
decrease in temperature but far from plate it becomes 
stationary, if heat source is of high intensity then it first 
decreases and then gradually increases. 

In Fig. 4, skin friction is plotted for a fix value of ω  = .2. It 
is seen that increase in magnetic field shows a gradual 
decrease in skin friction but after a certain time, this skin 
friction shows a very-very low change. 

Fig. 5 shows that if time value is constant, ω t = 1, then 
skin friction decrease, increases in magnetic field and increase 
in frequency values also create a decrease in skin friction. 

 
TABLE I 

VELOCITY (U) PROFILES WITH RESPECT TO MAGNETIC FIELD (M) 
VELOCITY (U) 

y u at M = 0 u at M = 1 u at M = 2 u at m = 3 

0 -0.0918 0.682209 0.91694 0.38846 
1 0.255042 -0.86762 -0.23371 -0.19527 
2 0.117913 -0.82391 -0.15093 -0.15691 
3 0.01851 -0.66619 -0.11333 -0.11793 
4 -0.03749 -0.5334 -0.08783 -0.08832 
5 -0.06931 -0.43184 -0.06924 -0.06604 
6 -0.08597 -0.35589 -0.05502 -0.04936 
7 -0.09231 -0.29984 -0.04363 -0.03693 
8 -0.09173 -0.25894 -0.03411 -0.02773 
9 -0.08679 -0.22937 -0.02593 -0.02097 

10 -0.07932 -0.20812 -0.01877 0.01602 
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Fig. 1 Velocity (u) profiles at different values of M=0, 1, 2, 3 and 

other parameters are fixed at k=.5, N=1, P=.5, ε=.2, ω=.2 
 

TABLE II 
CONCENTRATION (C) PROFILES WITH RESPECT TO SCHMIDT NO (SC) 

CONCENTRATION (C) 
y C at Sc = .1 C at Sc = .15 C at Sc = .32 

0 1.09 1 1 
1 0.995525 0.866058 0.723963 
2 0.899895 0.745624 0.514601 
3 0.808098 0.638513 0.360644 
4 0.722885 0.544171 0.250129 
5 0.645499 0.461796 0.172291 
6 0.576211 0.390426 0.118266 
7 0.514711 0.329023 0.081167 
8 0.46038 0.276523 0.055867 
9 0.412464 0.231886 0.038668 
10 0.370187 0.194121 0.02697 

 
TABLE III 

Temperature (T) PROFILES WITH RESPECT TO HEAT SOURCE PARAMETER (S) 
TEMPERATURE (T) 

y T at S = .1 T at S = .2 T at S = .5 

0 1 1.45 1 
1 0.783248 1.243464 0.991941 
2 0.597793 0.916732 0.383246 
3 0.443209 0.581938 -0.34524 
4 0.317723 0.306872 -0.73634 
5 0.218548 0.116907 -0.6634 
6 0.142348 0.007447 -0.31518 
7 0.085581 -0.04141 0.022105 
8 0.044762 -0.05299 0.173446 
9 0.016647 -0.04686 0.141419 
10 -0.00165 -0.03597 0.037119 

 
 
 

 
Fig. 2 Concentration (C) profiles at different values of Sc=.1, .16, .32 

and other parameters are fixed at k=.5, N=1, P=.5,ε=.2, ω=.2 
 

 

Fig. 3 Temperature (T) profiles at different values of S=.1, .2, .5 and 
other parameters are fixed at k=.5, N=1, P=.5,  ε=.2, 
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TABLE IV 

Skin Friction (τ) PROFILES WITH RESPECT TO TIME (t) 
SKIN FRICTION (τ) for fixed value ω=.2 

τ S.F. at M=0 S.F. at M=1 S.F. at  M=2 S.F. at  M=3 

0 0.30351 3.31206 -1.65351 -7.2782 
1 0.174117 3.256764 -1.9128 -8.99281 
2 0.039989 3.134855 -2.13114 -10.6173 
3 -0.09353 2.951195 -2.29982 -12.1356 
4 -0.22111 2.713104 -2.24121 -13.5523 
5 -0.33767 2.430076 -2.46355 -14.7937 
6 -0.43856 2.113393 -2.45207 -15.907 
7 -0.51976 1.77568 -2.37814 -16.8611 
8 -0.57803 1.430402 -2.2447 -17.6466 
9 -0.61105 1.091322 -2.05707 -18.2555 
10 -0.6175 0.77196 -1.82274 -18.6818 

 

 

Fig. 4 Skin Friction (τ) profiles at k=.5, N=1, P=.5,  ε=.2, ω=.2 with 
respect to Time(t) 

 
TABLE V 

SKIN FRICTION (τ) PROFILES WITH RESPECT TO FREQUENCY (ω) 
SKIN FRICTION (τ) for fixed value ωt= 1 

τ S.F. at M=0 S.F. at M=1 S.F. at  M=2 S.F. at  M=3 

0 0.30351 3.31206 -1.65351 -7.2782 
1 0.239735 3.29294 -1.78766 -8.99281 
2 0.174117 3.256764 -1.9128 -10.6173 
3 0.107312 3.203893 -2.02768 -12.1356 
4 0.039989 3.134855 -2.13114 -13.5323 
5 -0.02718 3.050341 -2.22216 -14.7937 
6 -0.09353 2.951195 -2.29982 -15.907 
7 -0.15838 2.838407 -2.36335 -16.8611 
8 -0.22111 2.713104 -2.41211 -17.6466 
9 -0.28107 2.576539 -2.44562 -18.2555 
10 -0.33767 2.430076 -2.46355 -18.6818 

 

 

Fig. 5 Skin Friction (τ) profiles at k=.5, N=1, P=.5,  ε=.2, t=1 with 
respect to Frequency(ω) 
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