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Method of Parameter Calibration for Error Term iIn

Stochastic User Equilibrium Traffic Assignment Model
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Abstract—Stochastic User Equilibrium (SUE) model is a widely
used traffic assignment model in transportation planning, which is
regarded more advanced than Deterministic User Equilibrium (DUE)
model. However, a problem exists that the performance of the SUE
model depends on its error term parameter. The objective of this
paper is to propose a systematic method of determining the
appropriate error term parameter value for the SUE model. First, the
significance of the parameter is explored through a numerical
example. Second, the parameter calibration method is developed
based on the Logit-based route choice model. The calibration process
is realized through multiple nonlinear regression, using sequential
quadratic programming combined with least square method. Finally,
case analysis is conducted to demonstrate the application of the
calibration process and validate the better performance of the SUE
model calibrated by the proposed method compared to the SUE
models under other parameter values and the DUE model.

Keywords—Parameter ~ calibration,  sequential  quadratic
programming, Stochastic User Equilibrium, traffic assignment,
transportation planning.

|. INTRODUCTION

N transportation planning, in order to support current

network evaluation and potential network modification,
analysis and estimation of the traffic system performance
should be conducted through determining travel decisions [1],
[2]. For travel decisions, the Four-step model is adopted in
most cases. The four steps refer to trip generation, trip
distribution, mode choice and traffic assignment, which
correspond to the decisions of whether to travel, where to go,
by which mode and which path to select. Among all the four
steps, traffic assignment is acknowledged to be the most
mathematically complex step as it aims to determine how to
assign origin-destination (OD) travel demands onto a network
[3]. In the traffic assignment process, it is assumed that every
traveler seeks the path with the minimum travel time. As a
result, the travel demand can be loaded onto the network until
it reaches an equilibrium state, known as User-Equilibrium
(UE) [4]. In other words, the objective of traffic assignment is
to find the UE flow pattern, given a transportation network
and travel demand.

UE conditions for traffic assignment can be categorized into
Deterministic User Equilibrium (DUE) and Stochastic User
Equilibrium (SUE) [5], [6]. Under DUE conditions, no
traveler can improve his or her travel time by unilaterally
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changing routes since it is assumed that every traveler has
perfect knowledge of network performance and selects the
minimum travel time route. However, in real world, travelers
may not consistently make the correct decisions concerning
route choices and can be assumed to make errors. In
particular, the perceived travel time by a traveler is not
necessarily the same as the real travel time. Thus, every
traveler will only select the route with minimum perceived
travel time. If so, under the equilibrium condition, no one
believes that he can shorten this travel time by unilaterally
changing routes, which is stated by SUE principle [7]. By
comparison, SUE has been found to better represent users
travel behavior [8].

DUE and SUE conditions can be formulated into two
mathematical models. The SUE model requires that a random
variable representing the error term be determined, i.e. the
difference between perceived travel time and actual one [9],
[10]. For the distribution of the random variable, the Gumbel
Distribution and Multivariate Normal Distribution have been
tested, corresponding to Logit and Probit route choice model
respectively [11], [12]. Logit-based SUE has been more
widely used by researchers due to its relatively low
computational cost [13], [14]. The variance of the random
variable is indicated by the parameter g of the error term in the
SUE model. It is quite an essential parameter for SUE model
since it scales the error term and describes the accuracy of the
perceived travel time. Therefore, this parameter of the error
term can have a significant impact on the SUE-derived flow
results. A proper parameter value can lead to high-quality flow
results which approach closely realistic flow patterns. On the
other hand, an inappropriate parameter value may result in
poor performance of the SUE model [15]. The value of this
parameter is typically determined empirically, according to the
extent to which travelers’ perceptions disperse [16]. To the
best of our knowledge, no systematic method has been
focused to quantify the value of this parameter.

This study is intended to develop a dedicated method to
calibrate the parameter of the error term in the SUE traffic
assignment model. The rest of this paper is organized as
follows. Section Il gives a brief review of the SUE model as
well as a motivating example to demonstrate the significance
of parameter calibration for the SUE model. In Section 11, we
use a Logit-based route choice model and develop a
calibration method for the parameters of the error term in the
SUE model. Section IV demonstrates the validity of the
proposed calibration method based on a network and
compares the performance of the calibrated SUE model with
other SUE models and the DUE model. Finally, outcomes of
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this research are discussed and some directions for future work
are presented in Section V.

I1.MOTIVATION

In this section, general background of the SUE traffic
assignment model and its mathematical representation are
analyzed. Then a numerical example is presented to
demonstrate the significance of parameter calibration for SUE
model.

A. Notations

Notations used throughout the paper are listed in Table |
unless otherwise specified.

TABLE|
NOTATIONS

(i.j)  Link with upstream node i and downstream node j
Cij Capacity of link (i, j)

Flow on link (i, j)

Travel time on link (i, )

o Free flow travel time on link (i, j)

r Origin (O) node index

s Destination (D) node index
dars Travel Demand from origin r to destination s
T Path index

h™ Flow on path ©
t” Travel time on path
n Link-path incidence coefficient, whose value is equal to one if
Y link (i, j) belongs to path 7, zero otherwise
A Link set
zZ? OD pair set
n Set of all the paths among a network
s Set of paths connecting origin r and destination s

B. Stochastic User Equilibrium Model

For the traffic assignment under SUE condition, Fisk
proposed the first mathematical programming model, which is
formulated as follows [17]:

Model (I) — SUE model:

MiNyp X0 j)ea fOXU t;;(x) dx + %Z(r,s)elz Yrenrs K - (Inh™) 1)
subject to
Xij = Xmen 675 - W™ V(i,j)EA
d™s = Zneﬂ"s h™ V(T, S) € ZZ
h"™ >0 vnell

The SUE model relaxes the assumption of the DUE model
that all travelers have full knowledge of travel conditions and
choose the path with minimum travel time. Mathematically, it
can be described as follows:

T" =t" )

where T™ is the perceived travel time.

In contrast, the SUE model accounts for the difference
between perceived and actual travel time by adding an error
term:

T™ = t™ 4 "
(2t ®)

In (3), €™ is the error term in the SUE model. €™ is an
independent and identical random variable for a specified
network. When &7 adheres to Gumbel distribution with zero
mean and a unit standard deviation, the Logit-based SUE
condition can be reached. @ is the parameter of the error term
in the SUE model. In this paper, we focus on parameter 6,
which can be seen as a scaling parameter ranging from zero to
infinite. In the next section we present the motivation for the
proposed calibration method.

C. Motivating Analysis

In terms of (3), the greater the value of 6 is, the smaller
perception error in terms of travel time is expected to made by
travelers. Thus, as 6 tends to infinity, travelers are assumed to
choose the shortest path, as in the DUE traffic assignment. On
the other hand, small 6 indicates large perception variance
among all network users. Therefore, error term parameter 6 in
the SUE model represents the accuracy level of users’
perception with regards to the actual travel time. For the two
extreme circumstances:

1) When 8 approaches infinite, it means that every traveler
in the network is capable of choosing the shortest path on
a trip. In this case, the error term €™ can be discarded and
the SUE model is equivalent to the DUE model.

2) When 6 is close to zero, it signifies that information of
network performance is hardly accessible to the public
and traveler’s route choice decision process is literally no
better than guessing. In this case, any path linking the
same OD pair has the same probability to be selected
regardless of travel costs.

This shows that the flow pattern resulting from the SUE
traffic assignment model are highly dependent to the value of
0. Consider the following numerical example depicted in Fig.
1. The network performance under conditions of SUE with
different 6 values is summarized in Table I1.

@

Fig. 1 Numerical Network Example
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TABLE Il
TRAFFIC FLOWS UNDER SUE
) ) Link Flow
Link  Link Values of 6
No. Cost —
0.05 010 025 050 1.00 200 3.00 Infinite®
1 1 12 14 20 27 35 44 48 50
2 2 11 13 15 16 13 6 2 0
3 4 10 10 9 6 2 0 0 0
4 8 9 7 4 1 0 0 0
5 10 8 6 2 0 0 0 0 0

O-D Demand 50

a. i.e. DUE condition

Table Il shows that travel demand is widely spread among
the existing paths for smaller values of 8; hence link flows
change significantly with 6. Thus, SUE-originated traffic
assignment results are highly correlated to the parameter 6. On
the other hand, in the real world, the traffic performance will
be approaching the traffic assignment result derived from SUE
with certain 6, 2.00 for example. Now assume that we conduct
a SUE traffic assignment working with a parameter 6 valued
at 0.25. If so, in terms of link flows shown in Table II, the
difference between flow patterns derived from our adopted
SUE model (with parameter 6 0.25) and the SUE model
representing the reality (with parameter 6 2.00) is bigger than
that between flow patterns derived from the DUE model and
the SUE model representing the reality. Consequently, the
estimation accuracy of the adopted SUE is worse than that of
DUE. By contrast, if we choose an appropriate 8 around 2.00,
such as 3.0, the SUE model might perform better than the
DUE model with regards to the reality.

In theory, the SUE model is a more developed traffic
assignment model than DUE since it accounts for the
difference between the actual travel time and perceived travel
time by travelers. However, SUE requires that its error term
parameter be accurately calibrated, as illustrated in the above
motivating example; where if the value of 6 is misestimated,
the SUE model may provide less precise and less reliable
results compared to the DUE model.

Ill. METHODOLOGY

In this section, a Logit-based route choice model is explored
and a method for parameter calibration for the error term in
the SUE model is proposed.

A. Logit-Based Route Choice Model

The objective function of the SUE model is a strictly
convex function, which implies uniqueness of its optimal
solution. Although the formulation itself does not have explicit
physical meaning, it is determined by working backward from
the optimality conditions of the Logit-based SUE condition.
The Logit-based route choice model is formulated as follows:

Model (I1) — Logit-based Route Choice Model

pr — exp(—0-t™)
{ S enrs exp(=6-t™) 4)

hT = s . pT

where PT is the probability that the perceived travel time of

path « for OD r — s is minimal, indicating the probability that
the path m is chosen by a traveler.

By combining the two equations of (4), a formula with
respect to path flow can be achieved:

exp(—6-t™) (5)

T _ TS,
h d Zrenrs exp(=0-t™)

It seems plausible that paths flow can be gained directly
from (5). However, it is not the fact since in most cases the
variables of path travel costs on the right-band side of (5)
depend on the flows:

1) First, path travel costs can be calculated as link travel
costs based on path and link travel cost relationships:

t" = Z(i,j)EA 51‘"1‘11']' (6)

2) Second, link travel costs are closely related to link flows,
which can be calculated trough link performance
functions. Among all these functions, the BPR function is
widely used and can be stated in (7):

ty=td- (1 ta (j_:j)ﬁ> @)

where a and g are parameters of the BPR function.

Therefore, (5) is actually an implicit function of flow
solutions under SUE condition, which is derived from Model
(I1). In other words, SUE-derived flow results cannot be
obtained straightforwardly only through Logit-based route
choice model described as (4) or (5). Despite this, Logit-based
route choice model can help with the calibration of parameter
0 in the SUE model, as illustrated in the next section.

B. Parameter Calibration Method for SUE Model

Given a specified transportation network, the parameter 6
can be determined using the method summarized as the
following five steps:

1. Data Collection

e Collect the flow pattern [x;], i.e. for traffic flow on every
link (i,/) among the network;

e Estimate the path flow proportion, [P™], of trips from the
origin » to the destination s assigned to each acyclic path
z, for the k th selected OD pair (r,s), € Z2, where
k=1.2,....K+J (K>=1, J>=1).

Both link flows and path flow proportions can be obtained
by traffic field investigations [18], [19]. Regarding path flow
proportions, (K +J) OD pairs are selected in total, among
which the first K OD pairs are used for parameter calibration
while the second J OD pairs for parameter evaluation. Every
path flow proportion [P™] represents the probability in the
Logit-based route choice model that path = is selected among
all the alternative paths connecting the & th OD pair.

2. Path Travel Time Calculation

e Calculate a travel cost on each link by a link performance
function using (7);
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o Determine each path travel cost t™* using (6).

3. Determination of the Dependent Variable and
Explanatory Variable Set

[P™¥] serves as a dependent variable.
Every dependent variable [P™*] corresponds to a set of
explanatory variables, denoted as {X™ /3.

The size s of the set {X™*} is determined as follows:

e If there is only one OD pair selected, the size s is equal to
|77, the number of acyclic paths connecting the OD pair.
If there exist more than one OD pair, the size s is equal to
max{J[T* "}, the maximum number of acyclic paths
linking an OD pair among all the K selected pairs.

The component values of the set {X™ *} are determined as

follows:

e |If there is only one OD pair selected, the component

values are derived from (8).

XK = exp(—t™) k=1, m =1,2,.., |T™| (8)

e If there are more than one OD pairs selected, the
component values are derived from (9).

{Xn,k = exp(—t™) for the first |[I"*| components 9
0 otherwise

4, Parameter Calibration

Use sequential quadratic programming combined with least
square method to conduct parameter calibration [20], [21],
based on the variables for the first K OD pairs, (r,s), € Z?,
where k = 1,2, ..., K. The model to be calibrated is shown as
follows:

Model (111):

(x4
T renrsk(X™k)0

[P"4] = (10)

Indeed, Model (IIl) is a multiple nonlinear regression
(MNR) model equivalent to (1) of Logit-based route model
(1.

Through sequential quadratic programming, a quadratic
program is established at every iteration in order to determine
the direction of optimization. Then for each direction, the
estimated parameter is inserted into the loss function to
calculate the loss. The procedure will terminate when the loss
function reaches its minimum.

The loss function can be formulated as the sum of squared
residuals. In this case, the objective of the sequential quadratic
program is to minimize the sum of squared residuals, which is
similar to the least square method. A residual is the difference
between an actual value and the corresponding estimated one.
Each proportion [P™*] collected from traffic field
investigations serves as an actual value while its
corresponding estimated value P can be calculated with the
explanatory variable set {X™ “} and the estimated parameter 8
using the following formula derived from (1):

(xmi”

prk = 2
3 menrsic(X™HF)0

(1)

Accordingly, the sum of squared residuals (SSR) can be
calculated as follows:

SSR = Y§_1 Yrenrsk(P™F — [PTK])? (12)

5. Parameter Evaluation

The calibrated parameter should be verified through
estimation error based on the data not used in the calibration
process, i.e. the variables for the OD pair (r,s), € Z%, where
k=K+1,K+2,..,K+]. The estimation error is used to
compare the difference between the estimated dependent
variables and those in the real world. It can be indicated by the
average gap described in (13):

€ = S Sn k1 Dok PP = [PTF]|(13)

Zg:}{’ﬂlnrs'kl

If the relative gap does not exceed the permissible
maximum one, the parameter @ derived from the previous step
is acceptable. Otherwise, adjust the arguments in the
sequential quadratic programming algorithm (i.e. maximum
iterations, step limit, optimality tolerance, function precise and
infinite step size), and return to Step 4 to conduct parameter
calibration once again until the termination criteria are
satisfied.

IV. CASE ANALYSIS

This section demonstrates how to implement the parameter
calibration for the SUE model using the proposed method. The
proposed method is evaluated throughout the following case
study; the network to be considered is shown in Fig. 2.

TABLE 111
LINK INFORMATION
D I__in'ka Flow Capacity tg\?zl 'fl!?r\]’jve a P
@5N Xij Cij tin

1 1,2) 316 450 5 0.15 4.0
2 (2,3) 155 450 15 0.15 4.0
3 1,4) 334 400 5 0.15 4.0
4 (4,5) 92 450 5 0.15 4.0
5 (5,3) 156 450 10 0.15 4.0
6 (2,5) 161 400 5 0.15 4.0
7 (4,6) 242 300 7 0.15 4.0
8 (5,7) 96 200 7 0.15 4.0
9 (3,8) 161 300 7 0.15 4.0
10 (6,7) 9 380 5 0.15 4.0
11 (7,8) 102 380 10 0.15 4.0
12 (7,9) 4 200 6 0.15 4.0
13 (8,10) 63 200 6 0.15 4.0
14 (9,10) 237 380 10 0.15 4.0
15 (6,9) 233 250 8.5 0.15 4.0

a. Origin node No.11 and destination nodes No.12, 13 and 14 are
connected to nodes No.1, 8, 10 and 3 respectively, by links of free travel time.
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TABLE IV
PATH INFORMATION
ID Path =* Path Cost t™  OD pair (7, 5) [P*]
1 {12} 20.21 0.340
2 {1,6,5} 20.22 (11,14) 0.500
3 {3.4,5} 20.39 0.160
4 {1,2,9,13} 3331 0.051
5 {1,6,5,9,13} 33.32 0.039
6 {3,4,5,9,13} 33.48 0.030
7 {1,6,8,11,13} 33.27 0.040
8 {3.4,8,11,13} 33.44 0.010
(11,13)
9 {3,7,10,11,13} 33.83 0.006
10 {1,6,8,12,14} 33.48 0.012
11 {3,4,8,12,14} 33.65 0.007
12 {3,7,10,12,14} 34.04 0.005
13 {3,7,15,14} 32.50 0.800
14 {1,2,9} 27.30 0.250
15 {1,6,5,9} 2731 0.160
16 {3,4,5,9} 27.47 (11.12) 0.190
17 {1,6,8,11} 21.27 0.210
18 {3,4,8,11} 27.43 0.130
19 {3,7,10,11} 27.82 0.060
a. Written by specifying link IDs
11
® 2 2
4 . 5 5 314
6 0 7 " s©12
o e 10,13

Fig. 2 Network for the Case Study

The calibration process is conducted step by step according
to the proposed method in Section IIl. Additionally, the
permissible average gap in terms of path choice probability is
set to be 10%.

For the first two steps, the collected data and calculated
path travel time are summarized in Tables 11l and IV. Data for
OD pairs (11,14) and (11,13) are used for parameter
calibration, and (11,12) for evaluation. In order to represent
the real world, the data used in this example are generated by
the macroscopic traffic simulation software TransCAD (4.5
Version). Alternatively, these sorts of data can be collected
through traffic field investigation in a project.

For step 3, the dependent variables has been listed in the
very right column in Table IV and the sets of explanatory

variables can be obtained using (9) with the path costs
calculated in Table IV.

For step 4, the nonlinear regression is conducted using
sequential quadratic programming with least square method
incorporated, based on the data for OD pairs (11,14) and
(11,13). This process is performed using SPSS 19.0 (Statistical
Product and Service Solutions, 19.0Version) [22]. The
analysis results are summarized in Table V:

TABLEV
NONLINEAR REGRESSION ANALYSIS SUMMARY

Iteration History

; a Residual Sum of Parameter
Iteration Number Squares 0
0.1 0.399 1.000
11 0.102 2.411
21 0.027 4561
3.1 0.024 4.336
4.1 0.019 3.814
5.1 0.019 3.827
6.1 0.019 3.822
7.1° 0.019 3.822

Parameter Estimates

95% Confidence Interval

Parameter Estimate ~ Std. Error Lower Bound  Upper Bound
0 3.82 0.266 3.242 4.402
ANOVA
Source Sum of Squares df Mean Squares
Regression 1.019 1 1.019
Residual 0.019 12 0.002
Uncorrected Total 1.038 13
Corrected Total 0.730 12
Adjusted R 0.973
squared®

a. Major iteration number is displayed to the left of the decimal, and minor
iteration number is to the right of the decimal.

b. Run stopped after 7 iterations. Optimal solution is found.

c. R squared = 1 - (Residual Sum of Squares) / (Corrected Sum of Squares)

Table V shows that after 7 major iterations, the sum of
squared residuals for the MNR Model (I1l) reach the
minimum. As a result, the estimated parameter value along
with the standard error and 95% confidence interval is given
in Table V. It shows that the standard error is only
approximate 7% of the estimated parameter and the 95%
confidence interval is relatively small. Meanwhile, the
adjusted R squared reaches 0.973, which indicates a
significant goodness of fit. Thus, the estimated parameter
value 3.82 is statistically significant.

For step 5, the estimated probability P™¢ for OD pair
(11,12) is calculated using (11). Then via (13), the average
gap between estimated probability P™* and investigated
[P™*] in the real world for the OD pair (11, 12) is achieved.
The error turns out to be 4.48%, which is lower than the
permissible one, 10%. Thus, the calibration process can be
terminated and the result is acceptable.

Furthermore, the estimated path choice probabilities derived
from the DUE model and the SUE models with other values of
parameter 8 are summarized in Table VI.

It shows in Table VI that SUE Model with value of 6 3.82
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has the least estimation error. Meanwhile, when the value of
is approaching 3.82, the estimation error tends to decline.
As a result, this case study shows that the proposed method

to calibrate the parameters of the SUE model is valid in both
theory and practice.

TABLE VI
RESULTS FROM DUE AND SUE WITH DIFFERENT PARAMETERS

Estimated Probability P™*

Path SUE Model Actual Prcibability
ID Value of 8 I\I/DIéJdEI L
0.50 100 200 382 500 10.00
1 0343 0353 0372 0403 0421 0480 1.00 0.340
2 0.342 0350 0.365 0389 0402 0436 0.00 0.500
3 0315 0297 0263 0208 0177 0085 0.00 0.160
4 0.104 0104 0088 0036 0016 0000 0.00 0.051
5 0.104 0103 0086 0035 0015 0000 0.00 0.039
6 0.096 0087 0062 0019 0007 0000 0.00 0.030
7 0.106 0108 0.094 0042 0019 0000 000 0.040
8 0.098 0091 0068 0022 0008 0000 000 0.010
9 0.081 0062 0031 0005 0001 0000 0.00 0.006
10 0.095 0087 0062 0019 0007 0000 0.00 0.012
11 0088 0074 0045 0010 0003 0000 0.00 0.007
12 0.072 0050 0021 0002 0000 0000 0.00 0.005
13 0.156 0234 0444 0810 0924 0999 100 0.800
14 0177 0187 0204 0228 0240 0264 0.00 0.250
15 0176 0185 0201 0220 0228 0239 0.00 0.160
16 0.163 0157 0.144 0118 0101 0046 0.00 0.190
17 0.180 0194 0220 0262 0286 0376 100 0.210
18 0166 0165 0158 0140 0126 0073 0.00 0.130
19 0.37 0412 0073 0032 0018 0002 0.00 0.060
V.CONCLUSION AND FUTURE STUDIES REFERENCES

This study proposes a method to calibrate the parameter in
the error term of the SUE model. The main contributions of
this study include:

1) It demonstrates the significance of the parameter in the
SUE model through a numerical example.

2) It develops the parameter calibration method for SUE
model, based on a Logit-based route choice model, using
sequential quadratic programming with least square
method.

3) It validates the efficacy of the proposed calibration
method as well as the advantages of calibrated SUE
models.

In perspective of application, the appropriately calibrated
SUE model can be used for transportation systems analysis
and planning.

Additionally, the methodology and outcome presented in
this paper stress the need to carry out traffic field
investigations. For future studies, the SUE condition
accounting for demand volatility and incident interference will
be investigated. Accordingly, parameter calibration methods
for these corresponding traffic assignment models deserve
further exploring.
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