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 
Abstract—Stochastic User Equilibrium (SUE) model is a widely 

used traffic assignment model in transportation planning, which is 
regarded more advanced than Deterministic User Equilibrium (DUE) 
model. However, a problem exists that the performance of the SUE 
model depends on its error term parameter. The objective of this 
paper is to propose a systematic method of determining the 
appropriate error term parameter value for the SUE model. First, the 
significance of the parameter is explored through a numerical 
example. Second, the parameter calibration method is developed 
based on the Logit-based route choice model. The calibration process 
is realized through multiple nonlinear regression, using sequential 
quadratic programming combined with least square method. Finally, 
case analysis is conducted to demonstrate the application of the 
calibration process and validate the better performance of the SUE 
model calibrated by the proposed method compared to the SUE 
models under other parameter values and the DUE model. 
 

Keywords—Parameter calibration, sequential quadratic 
programming, Stochastic User Equilibrium, traffic assignment, 
transportation planning. 

I. INTRODUCTION 

N transportation planning, in order to support current 
network evaluation and potential network modification, 

analysis and estimation of the traffic system performance 
should be conducted through determining travel decisions [1], 
[2]. For travel decisions, the Four-step model is adopted in 
most cases. The four steps refer to trip generation, trip 
distribution, mode choice and traffic assignment, which 
correspond to the decisions of whether to travel, where to go, 
by which mode and which path to select. Among all the four 
steps, traffic assignment is acknowledged to be the most 
mathematically complex step as it aims to determine how to 
assign origin-destination (OD) travel demands onto a network 
[3]. In the traffic assignment process, it is assumed that every 
traveler seeks the path with the minimum travel time. As a 
result, the travel demand can be loaded onto the network until 
it reaches an equilibrium state, known as User-Equilibrium 
(UE) [4]. In other words, the objective of traffic assignment is 
to find the UE flow pattern, given a transportation network 
and travel demand. 

UE conditions for traffic assignment can be categorized into 
Deterministic User Equilibrium (DUE) and Stochastic User 
Equilibrium (SUE) [5], [6]. Under DUE conditions, no 
traveler can improve his or her travel time by unilaterally 
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changing routes since it is assumed that every traveler has 
perfect knowledge of network performance and selects the 
minimum travel time route. However, in real world, travelers 
may not consistently make the correct decisions concerning 
route choices and can be assumed to make errors. In 
particular, the perceived travel time by a traveler is not 
necessarily the same as the real travel time. Thus, every 
traveler will only select the route with minimum perceived 
travel time. If so, under the equilibrium condition, no one 
believes that he can shorten this travel time by unilaterally 
changing routes, which is stated by SUE principle [7]. By 
comparison, SUE has been found to better represent users 
travel behavior [8]. 

DUE and SUE conditions can be formulated into two 
mathematical models. The SUE model requires that a random 
variable representing the error term be determined, i.e. the 
difference between perceived travel time and actual one [9], 
[10]. For the distribution of the random variable, the Gumbel 
Distribution and Multivariate Normal Distribution have been 
tested, corresponding to Logit and Probit route choice model 
respectively [11], [12]. Logit-based SUE has been more 
widely used by researchers due to its relatively low 
computational cost [13], [14]. The variance of the random 
variable is indicated by the parameter  of the error term in the 
SUE model. It is quite an essential parameter for SUE model 
since it scales the error term and describes the accuracy of the 
perceived travel time. Therefore, this parameter of the error 
term can have a significant impact on the SUE-derived flow 
results. A proper parameter value can lead to high-quality flow 
results which approach closely realistic flow patterns. On the 
other hand, an inappropriate parameter value may result in 
poor performance of the SUE model [15]. The value of this 
parameter is typically determined empirically, according to the 
extent to which travelers’ perceptions disperse [16]. To the 
best of our knowledge, no systematic method has been 
focused to quantify the value of this parameter. 

This study is intended to develop a dedicated method to 
calibrate the parameter of the error term in the SUE traffic 
assignment model. The rest of this paper is organized as 
follows. Section II gives a brief review of the SUE model as 
well as a motivating example to demonstrate the significance 
of parameter calibration for the SUE model. In Section III, we 
use a Logit-based route choice model and develop a 
calibration method for the parameters of the error term in the 
SUE model. Section IV demonstrates the validity of the 
proposed calibration method based on a network and 
compares the performance of the calibrated SUE model with 
other SUE models and the DUE model. Finally, outcomes of 
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this research are discussed and some directions for future work 
are presented in Section V. 

II. MOTIVATION 

In this section, general background of the SUE traffic 
assignment model and its mathematical representation are 
analyzed. Then a numerical example is presented to 
demonstrate the significance of parameter calibration for SUE 
model. 

A. Notations 

Notations used throughout the paper are listed in Table I 
unless otherwise specified. 

 
TABLE I 

NOTATIONS 

ሺ݅. ݆ሻ Link with upstream node ݅ and downstream node ݆ 

ܿ௜௝ Capacity of link ሺ݅, ݆ሻ  

,௜௝ Flow on link ሺ݅ݔ ݆ሻ 

,௜௝ Travel time on link ሺ݅ݐ ݆ሻ 

௜௝ݐ
଴  Free flow travel time on link ሺ݅, ݆ሻ 

 Origin (O) node index ݎ

 Destination (D) node index ݏ

݀௥௦ Travel Demand from origin ݎ to destination ݏ 

 Path index ߨ

݄గ Flow on path ߨ 

 ߨ గ Travel time on pathݐ

௜௝ߜ
గ  Link-path incidence coefficient, whose value is equal to one if 

link ሺ݅, ݆ሻ belongs to path ߨ, zero otherwise 
 Link set ܣ

ܼଶ OD pair set 

 Set of all the paths among a network ߎ

 ௥௦ߎ Set of paths connecting origin ݎ and destination ݏ 

B. Stochastic User Equilibrium Model 

For the traffic assignment under SUE condition, Fisk 
proposed the first mathematical programming model, which is 
formulated as follows [17]: 

Model (I) – SUE model: 
 

ࢎ,࢞݊݅݉ ∑ ׬ ሻݔ௜௝ሺݐ ݔ݀
௫೔ೕ

଴
൅

ଵ

ఏ
∑ ∑ ݄గ · ሺ݈݄݊గሻగఢ࢙࢘ࢰሺ௥,௦ሻࢆא૛ሺ௜,௝ሻ࡭א     (1) 

 
subject to 

௜௝ݔ ൌ ∑ ௜௝ߜ
గ · ݄గ

గא௽ ,ሺ݅׊         ݆ሻ א  ۯ
݀௥௦ ൌ ∑ ݄గ

గא௽ೝೞ ,ݎሺ׊             ሻݏ א  ૛ࢆ
݄గ ൒ π׊                         0 א મ 

 
The SUE model relaxes the assumption of the DUE model 

that all travelers have full knowledge of travel conditions and 
choose the path with minimum travel time. Mathematically, it 
can be described as follows: 

 
ܶగ ൌ  గ                                   (2)ݐ

 
where T஠ is the perceived travel time. 

In contrast, the SUE model accounts for the difference 
between perceived and actual travel time by adding an error 
term: 

 

ቊ
ܶగ ൌ గݐ ൅ గߝ

గߝ ൌ െ
ଵ

ఏ
· గߦ                                            (3) 

 
In (3), ߝగ is the error term in the SUE model. ξ஠ is an 

independent and identical random variable for a specified 
network. When ߦగ adheres to Gumbel distribution with zero 
mean and a unit standard deviation, the Logit-based SUE 
condition can be reached. ߠ is the parameter of the error term 
in the SUE model. In this paper, we focus on parameter ߠ, 
which can be seen as a scaling parameter ranging from zero to 
infinite. In the next section we present the motivation for the 
proposed calibration method. 

C. Motivating Analysis 

In terms of (3), the greater the value of ߠ is, the smaller 
perception error in terms of travel time is expected to made by 
travelers. Thus, as ߠ tends to infinity, travelers are assumed to 
choose the shortest path, as in the DUE traffic assignment. On 
the other hand, small ߠ indicates large perception variance 
among all network users. Therefore, error term parameter ߠ in 
the SUE model represents the accuracy level of users’ 
perception with regards to the actual travel time. For the two 
extreme circumstances: 
1) When ߠ approaches infinite, it means that every traveler 

in the network is capable of choosing the shortest path on 
a trip. In this case, the error term ߝగ can be discarded and 
the SUE model is equivalent to the DUE model. 

2) When ߠ is close to zero, it signifies that information of 
network performance is hardly accessible to the public 
and traveler’s route choice decision process is literally no 
better than guessing. In this case, any path linking the 
same OD pair has the same probability to be selected 
regardless of travel costs. 

This shows that the flow pattern resulting from the SUE 
traffic assignment model are highly dependent to the value of 
 .Consider the following numerical example depicted in Fig .ߠ
1. The network performance under conditions of SUE with 
different ߠ values is summarized in Table II. 

 

 

Fig. 1 Numerical Network Example  
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TABLE II 
TRAFFIC FLOWS UNDER SUE 

Link 
No. 

Link 
Cost 

Link Flow 

Values of ߠ 

0.05 0.10 0.25 0.50 1.00 2.00 3.00 Infinitea

1 1 12 14 20 27 35 44 48 50 

2 2 11 13 15 16 13 6 2 0 

3 4 10 10 9 6 2 0 0 0 

4 8 9 7 4 1 0 0 0 0 

5 10 8 6 2 0 0 0 0 0 

O-D Demand 50 

a. i.e. DUE condition 

 
Table II shows that travel demand is widely spread among 

the existing paths for smaller values of ߠ; hence link flows 
change significantly with ߠ. Thus, SUE-originated traffic 
assignment results are highly correlated to the parameter ߠ. On 
the other hand, in the real world, the traffic performance will 
be approaching the traffic assignment result derived from SUE 
with certain 2.00 ,ߠ for example. Now assume that we conduct 
a SUE traffic assignment working with a parameter ߠ valued 
at 0.25. If so, in terms of link flows shown in Table II, the 
difference between flow patterns derived from our adopted 
SUE model (with parameter 0.25 ߠ) and the SUE model 
representing the reality (with parameter 2.00 ߠ) is bigger than 
that between flow patterns derived from the DUE model and 
the SUE model representing the reality. Consequently, the 
estimation accuracy of the adopted SUE is worse than that of 
DUE. By contrast, if we choose an appropriate ߠ around 2.00, 
such as 3.0, the SUE model might perform better than the 
DUE model with regards to the reality. 

In theory, the SUE model is a more developed traffic 
assignment model than DUE since it accounts for the 
difference between the actual travel time and perceived travel 
time by travelers. However, SUE requires that its error term 
parameter be accurately calibrated, as illustrated in the above 
motivating example; where if the value of ߠ is misestimated, 
the SUE model may provide less precise and less reliable 
results compared to the DUE model. 

III. METHODOLOGY 

In this section, a Logit-based route choice model is explored 
and a method for parameter calibration for the error term in 
the SUE model is proposed. 

A. Logit-Based Route Choice Model 

The objective function of the SUE model is a strictly 
convex function, which implies uniqueness of its optimal 
solution. Although the formulation itself does not have explicit 
physical meaning, it is determined by working backward from 
the optimality conditions of the Logit-based SUE condition. 
The Logit-based route choice model is formulated as follows: 

Model (II) – Logit-based Route Choice Model 
 

ቊ
ܲగ ൌ

௘௫௣ሺିఏ·௧ഏሻ

∑ ௘௫௣ሺିఏ·௧ഏሻഏא೵ೝೞ
           

݄గ ൌ ݀௥௦ · ܲగ                         
                         (4) 

 
where ܲగ is the probability that the perceived travel time of 

path  for OD ݎ െ  is minimal, indicating the probability that ݏ
the path  is chosen by a traveler. 

By combining the two equations of (4), a formula with 
respect to path flow can be achieved: 

 

݄గ ൌ ݀௥௦ ·
ୣ୶୮ሺିఏ·௧ഏሻ

∑ ୣ୶୮ሺିఏ·௧ഏሻഏא೵ೝೞ
                         (5) 

 
It seems plausible that paths flow can be gained directly 

from (5). However, it is not the fact since in most cases the 
variables of path travel costs on the right-band side of (5) 
depend on the flows: 
1) First, path travel costs can be calculated as link travel 

costs based on path and link travel cost relationships: 
 

గݐ ൌ ∑ ·௜௝ߜ
గ ஺א௜௝ሺ௜,௝ሻݐ                                (6) 

 
2) Second, link travel costs are closely related to link flows, 

which can be calculated trough link performance 
functions. Among all these functions, the BPR function is 
widely used and can be stated in (7): 
 

௜௝ݐ ൌ ௜௝ݐ
଴ · ቆ1 ൅ ߙ ൬

௫೔ೕ

௖೔ೕ
൰

ఉ

ቇ                        (7) 

 
where ߙ and ߚ are parameters of the BPR function. 

Therefore, (5) is actually an implicit function of flow 
solutions under SUE condition, which is derived from Model 
(II). In other words, SUE-derived flow results cannot be 
obtained straightforwardly only through Logit-based route 
choice model described as (4) or (5). Despite this, Logit-based 
route choice model can help with the calibration of parameter 
 .in the SUE model, as illustrated in the next section ߠ

B. Parameter Calibration Method for SUE Model 

Given a specified transportation network, the parameter ߠ 
can be determined using the method summarized as the 
following five steps: 

1. Data Collection 

 Collect the flow pattern [xij], i.e. for traffic flow on every 
link (i.j) among the network; 

 Estimate the path flow proportion, [Pπ,k], of trips from the 
origin r to the destination s assigned to each acyclic path 
π, for the k th selected OD pair ሺݎ, ሻ௞ݏ א ܼଶ, where 
k=1,2,…,K+J (K>=1, J>=1). 

Both link flows and path flow proportions can be obtained 
by traffic field investigations [18], [19]. Regarding path flow 
proportions, ሺܭ ൅  ሻ OD pairs are selected in total, amongܬ
which the first K OD pairs are used for parameter calibration 
while the second J OD pairs for parameter evaluation. Every 
path flow proportion [Pπ,k] represents the probability in the 
Logit-based route choice model that path  is selected among 
all the alternative paths connecting the k th OD pair. 

2. Path Travel Time Calculation 

 Calculate a travel cost on each link by a link performance 
function using (7); 
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 Determine each path travel cost ݐగ,௞ using (6). 

3. Determination of the Dependent Variable and 
Explanatory Variable Set 

 [Pπ,k] serves as a dependent variable. 
 Every dependent variable [Pπ,k] corresponds to a set of 

explanatory variables, denoted as {Xπ, k}.  
The size s of the set {Xπ, k} is determined as follows: 

 If there is only one OD pair selected, the size s is equal to 
|Πrs|, the number of acyclic paths connecting the OD pair. 

 If there exist more than one OD pair, the size s is equal to 
max{|Πrs, k|}, the maximum number of acyclic paths 
linking an OD pair among all the K selected pairs. 

The component values of the set {Xπ, k} are determined as 
follows: 
 If there is only one OD pair selected, the component 

values are derived from (8). 
 

ܺగ,௞ ൌ ݇ గ,௞ሻݐሺെ݌ݔ݁ ൌ 1; ߨ  ൌ 1,2, … ,  ௥௦|         (8)ߎ|
 

 If there are more than one OD pairs selected, the 
component values are derived from (9). 
 

൜ܺగ,௞ ൌ గ,௞ሻݐሺെ݌ݔ݁ ݏݐ݊݁݊݋݌݉݋ܿ ห࢑,࢙࢘ࢰห ݐݏݎ݂݅ ݄݁ݐ ݎ݋݂   
݁ݏ݅ݓݎ݄݁ݐ݋                                                                                  0

     (9) 

4. Parameter Calibration 

Use sequential quadratic programming combined with least 
square method to conduct parameter calibration [20], [21], 
based on the variables for the first K OD pairs, ሺݎ, ሻ௞ݏ א ܼଶ, 
where ݇ ൌ 1,2, … ,  The model to be calibrated is shown as .ܭ
follows: 

Model (III): 
 

ሾܲగ,௞ሿ ൌ
൫௑ഏ,ೖ൯

ഇ

∑ ሺ௑ഏ,ೖሻഇ
ഏא೵ೝೞ,ೖ

                                  (10) 

 
Indeed, Model (III) is a multiple nonlinear regression 

(MNR) model equivalent to (1) of Logit-based route model 
(II).  

Through sequential quadratic programming, a quadratic 
program is established at every iteration in order to determine 
the direction of optimization. Then for each direction, the 
estimated parameter is inserted into the loss function to 
calculate the loss. The procedure will terminate when the loss 
function reaches its minimum. 

The loss function can be formulated as the sum of squared 
residuals. In this case, the objective of the sequential quadratic 
program is to minimize the sum of squared residuals, which is 
similar to the least square method. A residual is the difference 
between an actual value and the corresponding estimated one. 
Each proportion [Pπ,k] collected from traffic field 
investigations serves as an actual value while its 
corresponding estimated value Pπ,k can be calculated with the 
explanatory variable set {Xπ, k} and the estimated parameter ߠ෠ 
using the following formula derived from (1): 

 

ܲగ,௞ ൌ
൫௑ഏ,ೖ൯

ഇ෡

∑ ሺ௑ഏ,ೖሻഇ෡
ഏא೵ೝೞ,ೖ

                                  (11) 

 
Accordingly, the sum of squared residuals (SSR) can be 
calculated as follows: 
 

ܴܵܵ ൌ ∑ ∑ ሺܲగ,௞ െ ሾܲగ,௞ሿሻଶ
గא௽ೝೞ,ೖ

௄
௞ୀଵ    (12) 

5. Parameter Evaluation 

The calibrated parameter should be verified through 
estimation error based on the data not used in the calibration 
process, i.e. the variables for the OD pair ሺݎ, ሻ௞ݏ א ܼଶ, where 
݇ ൌ ܭ ൅ 1, ܭ ൅ 2, … , ܭ ൅  The estimation error is used to .ܬ
compare the difference between the estimated dependent 
variables and those in the real world. It can be indicated by the 
average gap described in (13): 

 
ߝ ൌ

ଵ

∑ ห௽ೝೞ,ೖห಼శ಻
ೖస಼శభ

∑ ∑ หܲగ,௞ െ ሾܲగ,௞ሿหగא௽ೝೞ,ೖ
௄ା௃
௞ୀ௄ାଵ   (13) 

 
If the relative gap does not exceed the permissible 

maximum one, the parameter ߠ෠ derived from the previous step 
is acceptable. Otherwise, adjust the arguments in the 
sequential quadratic programming algorithm (i.e. maximum 
iterations, step limit, optimality tolerance, function precise and 
infinite step size), and return to Step 4 to conduct parameter 
calibration once again until the termination criteria are 
satisfied. 

IV. CASE ANALYSIS 

This section demonstrates how to implement the parameter 
calibration for the SUE model using the proposed method. The 
proposed method is evaluated throughout the following case 
study; the network to be considered is shown in Fig. 2. 

 
TABLE III 

LINK INFORMATION 

ID 
Link 
ሺ݅, ݆ሻa 

Flow 
 ௜௝ݔ

Capacity 
ܿ௜௝ 

Free Flow 
travel Time 

௜௝ݐ
଴  

 ߚ ߙ

1 (1,2) 316 450 5 0.15 4.0 

2 (2,3) 155 450 15 0.15 4.0 

3 (1,4) 334 400 5 0.15 4.0 

4 (4,5) 92 450 5 0.15 4.0 

5 (5,3) 156 450 10 0.15 4.0 

6 (2,5) 161 400 5 0.15 4.0 

7 (4,6) 242 300 7 0.15 4.0 

8 (5,7) 96 200 7 0.15 4.0 

9 (3,8) 161 300 7 0.15 4.0 

10 (6,7) 9 380 5 0.15 4.0 

11 (7,8) 102 380 10 0.15 4.0 

12 (7,9) 4 200 6 0.15 4.0 

13 (8,10) 63 200 6 0.15 4.0 

14 (9,10) 237 380 10 0.15 4.0 

15 (6,9) 233 250 8.5 0.15 4.0 
a. Origin node No.11 and destination nodes No.12, 13 and 14 are 

connected to nodes No.1, 8, 10 and 3 respectively, by links of free travel time. 
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has the least estimation error. Meanwhile, when the value of ߠ 
is approaching 3.82, the estimation error tends to decline. 

As a result, this case study shows that the proposed method 

to calibrate the parameters of the SUE model is valid in both 
theory and practice. 

 
TABLE VI 

RESULTS FROM DUE AND SUE WITH DIFFERENT PARAMETERS 

Path 
ID 

Estimated Probability ܲగ,௞ 

Actual Probability 
[Pπ,k] 

SUE Model 
DUE 

Model 
Value of ߠ 

0.50 1.00 2.00 3.82 5.00 10.00 

1 0.343 0.353 0.372 0.403 0.421 0.480 1.00 0.340 

2 0.342 0.350 0.365 0.389 0.402 0.436 0.00 0.500 

3 0.315 0.297 0.263 0.208 0.177 0.085 0.00 0.160 

4 0.104 0.104 0.088 0.036 0.016 0.000 0.00 0.051 

5 0.104 0.103 0.086 0.035 0.015 0.000 0.00 0.039 

6 0.096 0.087 0.062 0.019 0.007 0.000 0.00 0.030 

7 0.106 0.108 0.094 0.042 0.019 0.000 0.00 0.040 

8 0.098 0.091 0.068 0.022 0.008 0.000 0.00 0.010 

9 0.081 0.062 0.031 0.005 0.001 0.000 0.00 0.006 

10 0.095 0.087 0.062 0.019 0.007 0.000 0.00 0.012 

11 0.088 0.074 0.045 0.010 0.003 0.000 0.00 0.007 

12 0.072 0.050 0.021 0.002 0.000 0.000 0.00 0.005 

13 0.156 0.234 0.444 0.810 0.924 0.999 1.00 0.800 

14 0.177 0.187 0.204 0.228 0.240 0.264 0.00 0.250 

15 0.176 0.185 0.201 0.220 0.228 0.239 0.00 0.160 

16 0.163 0.157 0.144 0.118 0.101 0.046 0.00 0.190 

17 0.180 0.194 0.220 0.262 0.286 0.376 1.00 0.210 

18 0.166 0.165 0.158 0.140 0.126 0.073 0.00 0.130 

19 0.137 0.112 0.073 0.032 0.018 0.002 0.00 0.060 

 
V. CONCLUSION AND FUTURE STUDIES 

This study proposes a method to calibrate the parameter in 
the error term of the SUE model. The main contributions of 
this study include: 
1) It demonstrates the significance of the parameter in the 

SUE model through a numerical example. 
2) It develops the parameter calibration method for SUE 

model, based on a Logit-based route choice model, using 
sequential quadratic programming with least square 
method. 

3) It validates the efficacy of the proposed calibration 
method as well as the advantages of calibrated SUE 
models. 

In perspective of application, the appropriately calibrated 
SUE model can be used for transportation systems analysis 
and planning. 

Additionally, the methodology and outcome presented in 
this paper stress the need to carry out traffic field 
investigations. For future studies, the SUE condition 
accounting for demand volatility and incident interference will 
be investigated. Accordingly, parameter calibration methods 
for these corresponding traffic assignment models deserve 
further exploring. 
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