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Abstract—The problem of N cracks interaction in an isotropic 

elastic solid is decomposed into a subproblem of a homogeneous solid 
without crack and N subproblems with each having a single crack 
subjected to unknown tractions on the two crack faces. The unknown 
tractions, namely pseudo tractions on each crack are expanded into 
polynomials with unknown coefficients, which have to be determined 
by the consistency condition, i.e. by the equivalence of the original 
multiple cracks interaction problem and the superposition of the N+1 
subproblems. In this paper, Kachanov’s approach of average tractions 
is extended into the method of moments to approximately impose the 
consistence condition. Hence Kachanov’s method can be viewed as 
the zero-order method of moments. Numerical results of the stress 
intensity factors are presented for interactions of two collinear cracks, 
three collinear cracks, two parallel cracks, and three parallel cracks. 
As the order of moment increases, the accuracy of the method of 
moments improves. 
 

Keywords—Crack interaction, stress intensity factor, multiple 
cracks, method of moments. 

I.  INTRODUCTION 
HE study of multiple crack interaction has attracted 
consideration attention in both the mechanics and the 

materials science communities. The solution to the problem of 
multiple crack interaction is key to the evaluation of the 
effective elastic properties of brittle solids damaged by micro 
cracks, a review of this topic was presented by Kachanov [1]. 
The solution to multiple crack interaction is also important for 
the understanding of maincrack-microcrack interaction in 
elastic solids [2]. Due to the interaction of maincrack- 
microcrack, microcracks around the tip of a maincrack can 
change the elastic field around the maincrack and consequently 
affect the propagation of the main crack [3]. A variety of 
analytical methods have been proposed for the solution of an 
elastic solid with multiple cracks, majority of these analytical 
method can be classified into the group of the singular integral 
equation method with different kernel functions. A thorough 
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review of the singular integral equation method for analysis of 
multiple cracks was given by Chen [4]. 

In the singular integral equation method, one approach is to 
replace each crack by distributed dislocations with unknown 
densities [5], another approach is to assume the normal and 
shear tractions on each crack as the primary unknowns [6]. The 
latter approach is more appealing for engineers for its clear 
physical meanings.  In the literature, the second approach is 
referred as the method of pseudo tractions [6]. These pseudo 
tractions can be expanded into Chebyshev polynomial [7], 
simple polynomial [6], or Legendre polynomial [8]. Different 
methods can be applied to obtain the coefficients in these 
polynomials. A popular method to determine the zero-th order 
of polynomial of the pseudo traction is the Kachanov’s method 
[9]. The key assumption in the Kachnov’s method is that the 
pseudo traction is assumed to be the summation of a uniform 
component (i.e. zero-th order polynomial) and a non-uniform 
component. In evaluation the interaction between a crack and 
the rest of cracks in an elastic solid, only the contributions of 
the uniform components of the pseudo-tractions on these 
cracks to that particular crack is considered, with the 
contribution of non-uniform components of the 
pseudo-tractions neglected. 

The accuracy of the Kachanov method deteriorates when the 
crack tips approach each other very closely, or the cracks are 
stacked together parallel to the direction of applied load. To 
overcome the deficiencies of the Kachanov method, Li et al. 
[10] extended the Kachanov method by decomposing the 
pseudo traction into a linear component and a non-linear part. 
In evaluation the interaction between a crack and other cracks 
in an elastic solid, only the contribution of the uniform 
component of the pseudo-traction on other cracks to that 
particular crack is considered, with the non-uniform 
components of the pseudo-tractions ignored. It is also assumed 
that the resultant of the linear components be in equilibrium 
with the corresponding Kachanov traction.  

In this study, Kachanov idea of average traction is further 
extended to the method of moments. The idea of the method of 
moments is to decompose the pseudo traction into a m-th 
polynomial and a high order term. In determine the interaction 
between a crack and other cracks, only the contributions of the 
m-th order polynomial of the pseudo-traction on those cracks to 
that particular crack is considered, with the high-order term 
component of the pseudo-traction ignored. A method of 
moments is used to determine the coefficients of the m-th order 
polynomial for each crack in the solid. Therefore, the 
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Kachanov method is essentially the zero-th order method of 
moments. The proposed method of moments is used to 
calculate the stress intensity factors of some typical multiple 
crack interaction problems, e.g. two collinear cracks, three 
collinear cracks, two parallel cracks and three parallel cracks. 
The numerical results are compared with available analytical 
results in the literature to study the effect of the order of 
moment on the accuracy of solution. 

II. METHOD OF MOMENTS FOR MULTIPLE CRACKS IN AN 

ELASTIC SOLID 

Consider the deformation of an infinite isotropic elastic 
plane containing N cracks subjected to remote loading 

∞
xσ and ∞

yσ  (Fig. 1).  This problem is equivalent to the 

superposition of N+1 subproblems with: (1) a homogeneous 
infinite plane without crack subjected to remote 
loading ∞

xσ and ∞
yσ ; (2) an infinite plane containing the i-th 

(i=1, 2, …, N) crack with zero stress at infinity, but the crack 
faces are subjected to unknown normal and shear tractions, 
namely pseudo tractions, 

)()()( tittp ntnni σσ −=                      (1) 
                                

 
Fig. 1 An elastic solid with multiple cracks subjected to remote 

loading. 
 

The equivalence of the summation of the N+1 subproblems 
and the original crack interaction problem requires that the 
remote loading conditions are satisfied and the traction-free 
boundary condition on each of the N cracks are also satisfied. 
This leads to the consistency condition such that the 
pseudo-traction on the i-th crack  can be expressed as, 
 

                                                (2) 
where in is unit normal of the i-th crack line and jipΔ is the 

traction on the line of the i-th crack due to the action of  the 
pseudo-traction jp on the j-th crack in the corresponding 

subproblem.  
   In the present study, the pseudo-traction on each crack is 
expanded into a polynomial as, 

( ) 2
0 1 2 ...i i i ip t p p t p t= + ⋅ + ⋅ +               (3) 

 where the coefficients in the polynomial have to be determined 
by the consistence condition (2). The substitution of eqn. (3) 
into eqn. (2) leads to, 
 

                                                                            (4) 

                                                                             
where 0

0 )( σ⋅−= intp , )(0 tG ji , )(1 tG ji , and )(2 tG ji  are 

influence functions which can be determined analytically by 
the complex potential functions in the following section. 
 
2.1 Complex potential functions for a center crack with its faces 
subjected to tractions 

The problem of a center crack located at [-a, a] on the x-axis 
with its upper and lower surfaces subjected to normal and shear 
tractions can be solved by Muskhelishvili’s complex potential 

functions φ andψ [11], 

2( )x yσ σ+ = Φ + Φ                          (5) 

2 2( )y x xyi zσ σ τ ′− + = Φ + Ψ                   (6) 
where iyxz += and 1−=i  . Assuming the tractions 

( ) xyy ixp τσ −= acting on the upper and lower crack 

surfaces, the stress potential functionsφ andψ are obtained as 
[11],  

 

 (7) 

(8) 
 

If the tractions on the crack faces are polynomials in the form 
of (3), the explicit solution of eqn. (7) can be derived by the 
theorem of residue as (e.g.  second order), 

(9) 
 
   Therefore the analytical solution to the subproblem 
containing the i-th crack is readily available, and the influence 
functions appearing in eqn. (4) can be determined accordingly. 
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2.2 Method of moments to impose the consistency condition 
To impose the consistence equation (4) exactly, one has to 

expand the pseudo-traction into a polynomial of infinite orders. 
However, in the present study, the pseudo-traction is expanded 
into a polynomial up to the m-th order and the method of 
moments is used to impose the consistence equation (4) 
approximately, namely by equating the k-th (k=0, 1, 2, …, m) 
moment of the left and the right sides of eqn. (4), when m=2 
and a crack extending from –a to +a on its local x-axis, 

                                                                                  (10) 

                                                                                   (11) 

                                                                                   (12) 

   

The right sides of the above equations have to be evaluate by 

numerical quadrature, while the left rights can be evaluated 

analytically, 

                                                                      (13) 

                                                                                      (14) 

                                                                                       (15) 

 
   This leads to a linear equations system with ip0 , ip1 and 

ip2 (i=1, 2, …, N) as unknowns. After solving the system of 
linear simultaneous equations, the pseudo tractions on each 
crack can be obtained and the mode I and mode II stress 
intensities on the left and the right tips of the i-th crack are 
determined by, 
 

                                                                                                 
(16) 

 
   The above equation can be integrated approximately by the 
Chebyshev integration as [4], 
 
 

                                                                                                 
(17) 

 

III. NUMERICAL RESULTS FOR TWO AND THREE COLLINEAR 
CRACKS 

In the ensuing sections, the method of moments is applied to 
study a variety of multiple crack interaction problems. Fig. 2 
shows the interaction of two collinear cracks on the x-axis 
subjected to remote tension. The coordinates for the points A, B, 
C and D are (-1, 0), (-k, 0), (k, 0) and (1, 0) respectively. 

 
Fig. 2 Two collinear cracks with equal length. 

 

 
Fig. 3 Variation of stress intensity factors of inner tips with k 

 

 
Fig. 4 Variation of stress intensity factors of outer tips with k 

 
Table 1 and Table 2 show the stress intensity factors at the 

inner and outer crack tips, respectively. The variation of the 
stress intensity factors with the parameter k are shown in Fig. 3 
and Fig. 4 graphically. The exact solutions to this problem are 
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obtained from [12].  In the results, 0
IK denotes the SIF of a 

center crack subjected to the same loading condition. As the 
two inner crack tips increasingly approach each other, the SIFs 
at the inner crack tips increase quickly, however they increases 
gradually at the two outer crack tips. As the order of the method 
of moments increases, the accuracy of SIF improves, e.g. when 
k=0.001, the relative error of SIF at the inner tips is 37.0% by 
the zero-th order method (i.e. the Kachanov method), 12.2% by 
the first order method and 4.4% by the second order method, 
respectively. 

TABLE I STRESS INTENSITY FACTORS OF INNER CARCK TIPS 
 

k 

0/I IK K  

Exact Zero-th order First order Second order 

0.2 1.1127 1.1120 1.1128 1.1125 

0.1 1.2551 1.2509 1.2573 1.2555 

0.05 1.4726 1.4524 1.4811 1.4756 

0.02 1.9044 1.8084 1.9268 1.9188 

0.01 2.3715 2.1335 2.3953 2.4020 

0.005 2.2992 2.4933 2.9825 3.0399 

0.002 4.1645 3.0020 3.9245 4.1407 

0.001 5.3947 3.3996 4.7350 5.1586 

TABLE II STRESS INTENSITY FACTORS OF OUTER CRACK TIPS 
 

k 

0/I IK K  

Exact Zero-th order First order Second order 

0.2 1.0520 1.0516 1.0518 1.0517 

0.1 1.0870 1.0858 1.0872 1.0864 

0.05 1.1215 1.1180 1.1228 1.1204 

0.02 1.1628 1.1538 1.1677 1.1617 

0.01 1.1895 1.1748 1.1996 1.1904 

0.005 1.2057 1.1910 1.2292 1.2172 

0.002 1.2294 1.2063 1.2639 1.2499 

0.001 1.2443 1.2142 1.2860 1.2722 

 
Fig.5 Three collinear cracks with equal length. 

Fig. 5 shows the interaction of three collinear cracks. The 

analytical solution to this problem was presented by Sih GC 
[13]. Tables 3, 4 and 5 show the SIFs of the center and the side 
cracks. The numerical results by the second-order method of 
moments agree well with the analytical solution. 
 

TABLE III STRESS INTENSITY FACTOR (CENTER CRACK) 
 

d/a 

0/I IK K  

Exact Zero-th order First order Second order 

1.0 1.1674 1.1669 1.1680 1.1675 

0.5 1.3214 1.3179 1.3244 1.3218 

0.2 1.6542 1.6308 1.6706 1.6581 

0.1 2.0325 1.9601 2.0723 2.0474 

0.05 2.5537 2.3656 2.6229 2.5935 

 

TABLE IV STRESS INTENSITY FACTOR (SIDE CRACK, INNER TIP) 

d/a 
0/I IK K  

Exact Zero-th order First order Second order 

1.0 1.1387 1.1393 1.1394 1.1388 

0.5 1.2836 1.2857 1.2870 1.2837 

0.2 1.6119 1.6176 1.6291 1.6148 

0.1 1.9923 1.9903 2.0305 2.0064 

0.05 2.5185 2.4684 2.5767 2.5619 

 

TABLE V STRESS INTENSITY FACTOR (SIDE CRACK, OUTER TIP) 

d/a 
0/I IK K  

Exact Zero-th order First order Second order 

1.0 1.0687 1.0689 1.0686 1.0686 

0.5 1.1103 1.1114 1.1119 1.1104 

0.2 1.1714 1.1755 1.1787 1.1722 

0.1 1.2167 1.2244 1.2334 1.2196 

0.05 1.2587 1.2587 1.2896 1.2662 

 

IV. NUMERICAL RESULTS FOR TWO AND THREE PARALLEL 
CRACKS 

Fig. 6 shows the interaction of two parallel cracks stacked 
along the direction of applied load. Table 6 and Table 7 show 
the mode I and mode II SIFs respectively. Remote tension can 
induce both mode I and mode II stress intensity factors. The 
interaction between the two parallel cracks is strong. The 
differences between the numerical solutions corresponding to 
different orders of moment are distinct. 
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    Fig. 6 Two parallel cracks with equal length. 

 
TABLE VI MODE I STRESS INTENSITY FACTOR 

 

 

 

 

 

 

 

 

 

TABLE VII MODE II STRESS INTENSITY FACTOR 

 

 

 

 

 

 

 

 

 
Fig. 7 shows the interaction of three parallel cracks stacked 

along the direction of applied load. The remote tension induced 
only mode I SIFs at the middle crack, where it induces both 
mode I and mode II SIFs at the outer cracks. In this 
configuration, the interactions between the three parallel cracks 
are strong. The differences between the numerical solutions 
with different orders of moment are clear. 

 

 

 

 

 
 
 
 
 
 
 
 
 

 
 
 

            Fig. 7 Three parallel cracks with equal length. 
 

TABLE VIII MODE I STRESS INTENSITY FACTOR (MIDDLE CRACK) 

 

 

 

 

 

 

 

 

                               TABLE IX MODE I STRESS INTENSITY FACTOR (OUTER CRACKS) 

 

 

 

 

 

 

 

 

 

               TABLE X MODE II STRESS INTENSITY FACTOR (OUTER CRACKS) 

 

 
 
 
 
 

 

d/a 

0/I IK K  

Zero-th order First order Second order 

1.0 0.7679 0.7671 0.7737 

0.5 0.7410 0.7599 0.7537 

0.2 0.7351 0.8047 0.7686 

0.1 0.7367 0.8421 0.8006 

0.05 0.7392 0.8693 0.8351 

 

d/a 

0/II IK K  

Zero-th order First order Second order 

1.0 0.1272 0.1512 0.1416 

0.5 0.1626 0.2399 0.2170 

0.2 0.1726 0.3345 0.3150 

0.1 0.1709 0.3803 0.3753 

0.05 0.1680 0.4052 0.4133 

 

d/a 

0/I IK K  

Zero-th order First order Second order 

1.0 0.5560 0.5467 0.5333 

0.5 0.5251 0.5443 0.4264 

0.2 0.5476 0.7010 0.3425 

0.1 0.5662 0.8512 0.3198 

0.05 0.5799 0.9723 0.3167 

 

d/a 

0/I IK K  

Zero-th order First order Second order 

1.0 0.7282 0.7320 0.7549 

0.5 0.6841 0.6938 0.7259 

0.2 0.6687 0.6979 0.7094 

0.1 0.6699 0.7239 0.7141 

0.05 0.6739 0.7523 0.7251 

 

d/a 

0/II IK K  

Zero-th order First order Second order 

1.0 0.1288 0.1304 0.1074 

0.5 0.1831 0.2088 0.1328 

0.2 0.2133 0.3376 0.1679 

0.1 0.2147 0.4307 0.1912 

0.05 0.2111 0.4979 0.2070 
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V. CONCLUSIONS 
The Kachanov method for multiple crack interaction is 

generalized into the method of moments. The basic idea of the 
method of moments is to decompose the pseudo traction into a 
m-th order polynomial and a high order term. In determine the 
interaction between multiple cracks, only the contribution of 
the m-th order polynomial of the pseudo-traction is considered, 
with the high-order term component of the pseudo-traction 
neglected. The method of moments is used to obtain a system of 
linear simultaneous equation involving the coefficients of the 
m-th order polynomial for each crack in a solid. The moments 
of the pseudo-traction usually have to be evaluated by 
numerical quadrature. The Kachanov method is identical to the 
method of moments with zero-th order. The proposed method 
of moments is used to obtain the stress intensity factors of some 
typical configurations of multiple crack interaction, e.g. elastic 
solids with two collinear cracks, three collinear cracks, two 
parallel cracks and three parallel cracks. Numerical results are 
compared with available analytical results in the literature to 
study the effect of the order of moment on the accuracy of the 
proposed method for analysis of many cracks. 
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