
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:7, 2018

535

Meta-Learning for Hierarchical Classification and
Applications in Bioinformatics

Fabio Fabris, Alex A. Freitas

Abstract—Hierarchical classification is a special type of
classification task where the class labels are organised into a
hierarchy, with more generic class labels being ancestors of more
specific ones. Meta-learning for classification-algorithm
recommendation consists of recommending to the user a classification
algorithm, from a pool of candidate algorithms, for a dataset, based on
the past performance of the candidate algorithms in other datasets.
Meta-learning is normally used in conventional, non-hierarchical
classification. By contrast, this paper proposes a meta-learning
approach for more challenging task of hierarchical classification, and
evaluates it in a large number of bioinformatics datasets. Hierarchical
classification is especially relevant for bioinformatics problems, as
protein and gene functions tend to be organised into a hierarchy of
class labels.

This work proposes meta-learning approach for
recommending the best hierarchical classification algorithm to a
hierarchical classification dataset. This work’s contributions are: 1)
proposing an algorithm for splitting hierarchical datasets into
new datasets to increase the number of meta-instances, 2) proposing
meta-features for hierarchical classification, and 3) interpreting
decision-tree meta-models for hierarchical classification algorithm
recommendation.

Keywords—Algorithm recommendation, meta-learning,
bioinformatics, hierarchical classification.

I. INTRODUCTION

THE cost of performing high-throughput biological assays

has been constantly decreasing throughout the years. This

increases the amount of freely available biological data and

thus, the need for computational methods to help biologists

extract useful knowledge from this data.

One of the types of computational methods available

for biologists are classification algorithms. These algorithms

take as input a dataset containing instances described by

features and some class labels that annotate the instances, and

learn a model that can be used to label previously unseen

instances. Classification algorithms can be used, for instance,

to predict the probable function of proteins [1] or to predict

the survivability of cancer patients [2].

In this paper we focus on the problem of predicting protein

functions given features that describe the protein. Protein

functions are commonly organised into ontologies structured

as a tree or a Directed Acyclic Graph (DAG), where each node

is a class label and each edge represents a “IS-A” relationship

between labels. This means that if an instance is annotated

with one class label, it is implicitly annotated with all of that

class label’s ancestor labels. This type of problem, where class

labels are organized into a hierarchy, is called hierarchical

classification [3].

Fabio Fabris and Alex A. Freitas are with the School of Computing,
University of Kent, Canterbury, Kent, CT2 7NF, UK (e-mail: ff79@kent.ac.uk,
A.A.Freitas@kent.ac.uk).

Meta-learning for classification algorithm recommendation

is the computational task of recommending to the user

a classification algorithm (or a ranking of classification

algorithms) from a pool of algorithms, for any new

classification dataset (meta-instance), given the past

performance of the algorithms in other datasets [4]. To

make this recommendation, a meta-classifier is induced using

meta-features describing characteristics of datasets in the

meta-training set (where each meta-instance represents a

dataset), and using as meta-class labels the best classification

algorithm for each dataset in the meta-training set. Then, when

a new dataset becomes available, the meta-classifier is used to

recommend the best algorithm for that dataset. Meta-learning

is useful in two main ways: 1) Since it automates the choice

of the best algorithm to a new dataset, it avoids the need for

running many classification algorithms on the new dataset,

which is an ad hoc but very popular approach to choose the

best classification algorithm in practice. 2) If interpretable

meta-classification models are induced, they can be used to

explain why a classification algorithm is recommended for a

new dataset.

Meta-learning approaches can be of great use in hierarchical

classification, where it is typically difficult to choose the

best hierarchical classification algorithm for a new dataset.

The high problem complexity and the usually very long run

times associated with applying many hierarchical classification

algorithms to a new dataset make the use of exploratory

experiments more difficult.

In this work we have experimented with the following
commonly used hierarchical classification algorithms:
Predictive Clustering Tree (PCT) [5], Predictive Clustering
Trees Ensemble (PCTEN) [1], and Local Hierarchical
Classifiers (LHC) [6]. This work proposes meta-learning
for automatically recommending a hierarchical classification
algorithm. This work’s contribution are: 1) an algorithm
for generating new datasets from existing ones, to increase
the number of meta-instances. 2) proposing meta-features
for meta-learning in hierarchical classification, and also 3)
we interpret decision tree-based meta-classification models for
algorithm recommendation; getting some insight about
which dataset properties are good predictors of the best
hierarchical classification algorithm for a new dataset.

This paper is organised as follows: Section II presents

background on hierarchical classification and meta-learning.

Section III defines the meta-features used to describe the

hierarchical classification datasets. Section IV presents the

hierarchical datasets. Section V describes the algorithm

proposed to split existing hierarchical classification datasets

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:7, 2018

536

into new datasets (using different parts of the class hierarchy).

Section VI presents the experimental setup used in our

meta-learning framework. Section VII presents the results

of our meta-learning approach, including an analysis of the

predictive accuracy of our meta-classification system and an

interpretation of the meta-models generated to choose between

the three above mentioned candidate hierarchical classification

algorithms. Finally, Section VIII draws conclusions.

II. BACKGROUND ON HIERARCHICAL CLASSIFICATION

AND META-LEARNING

A. Hierarchical Classification

In bioinformatics applications, it is common to use

hierarchical classification algorithms to predict gene or protein

functions. This type of algorithm is used due to the fact

that gene and protein functions are usually categorized by

a hierarchical scheme like the Gene Ontology [7]. In other

words, in hierarchical classification problems, the instances’

class labels are organized in a tree or DAG (Directed

Acyclic Graph), where each node represents a class label and

the edges represent generalization-specialization (or “IS-A”)

relationships among class labels.

There are two major types of hierarchical classification

algorithms [3]: global or local. Local Hierarchical

Classification (LHC) algorithms train several classification

models considering only a (typically small) part of the class

hierarchy. Then, in the testing phase, the predictions of the

local models are combined using some strategy that takes the

structure of the class hierarchy into account, so the predictions

are consistent with the underlying structure of the classes. On

the other hand, global hierarchical classification algorithms

follow the approach of building a single specialized global

classification model predicting classes in the whole class

hierarchy.

One of the most popular families of global hierarchical

classification algorithms is the PCT (Predictive Clustering

Tree) family. PCTs are the hierarchical classification

equivalent of traditional Decision Trees for ‘flat’ classification.

PCT algorithms build a decision tree by sub-dividing the

dataset into two disjoint clusters of instances that increase the

similarity of classes within each cluster and the dissimilarity of

the classes across the two clusters. These clusters are formed

by finding a value for a predictive feature that splits the

current set of instances. Then, the algorithm recursively applies

this same strategy in each new cluster, eventually stopping

if the cluster is not good (based on some quality measure)

or its size falls bellow a pre-established threshold [8]. In the

testing phase, to classify a new instance x, the PCT algorithm

first identifies the cluster of training instances associated with

the testing instance and then assigns to instance x class

probabilities. These probabilities are calculated using the class

labels of the training instances in the cluster associated with

instance x.

Note that, for a given testing instance, the PCT model

outputs a class probability vector, with one probability value

for each term in the class hierarchy. These probability

values are guaranteed to be consistent with the underlying

class hierarchy, that is, for every class label, its class

label probability is always bigger or equal than the class

label probability of its children. Therefore, it is the user’s

responsibility to choose a threshold to get a list of ‘crisp’

predictions. This work avoids the necessity of choosing a

subjective threshold by using, as predictive measure, the area

under the precision-recall curve (AUPRC) predictive measure,

which considers all threshold values for its calculation.

The Clus-HMC algorithm is the most popular version of the

PCT algorithm [9]. There is also a corresponding ensemble

version using the PCT algorithm as the ‘base’ hierarchical

classifier, called Clus-HMC-Ens [1], which can be considered

the state-of-the-art for hierarchical classification, consistently

achieving high predictive performance.

LHC algorithms have the advantage of algorithmic

simplicity, since they transform the original hierarchical

classification problem into a set of simpler flat classification

problems in the training phase, but they produce a large

number of local (flat) classifiers, one for each class node or one

for each parent node in the class hierarchy, depending on the

approach used. In this work, LHC learns one local classifier

for each class node, a simpler and more popular approach.

Conversely, global hierarchical classification algorithms have

the advantage of producing a single classification model,

which tends to be more easily interpreted than a large number

of local classifiers.

Our meta-learning experiments, described later, have the

objective of predicting the predictive accuracy rank of the three

previously defined hierarchical classification algorithms (LHC,

PCT and PCTEN) when they are applied to our hierarchical

classification datasets (the meta-instances).

These 3 algorithms were selected based first on their

popularity, being commonly used in hierarchical classification

problems, and second by their empirical performances in the

full version of the datasets used in this paper. Arguably,

adding more than 3 hierarchical classification algorithms to

our study would have two drawbacks. First, it would lead

to some meta-class labels to be associated with a relatively

small number of meta-instances – since in general, the higher

the number of meta-class-labels, the smaller the number of

meta-instances per meta-class-label. Second, it would result

in meta-models that are too complex for a careful manual

analysis of the results, like the one being done in this paper.

We have tested 8 hierarchical classification algorithms:

PCT [5], PCTEN [1], HDN-PCT [10], HDN [10],

PCT-LHC [11], LHC [6], HDN-nHPC [12] and ELHNB [13].

The PCTEN and LHC algorithms were the best algorithms

in terms of mean average rank across the three measures of

predictive performance (variations of the AUPRC measure)

used in this paper. Table I shows the average mean rank

across predictive measures.

The PCT algorithm also performed well and was added due

to its popularity and because its ensemble version, the PCTEN,

was included: it is interesting to investigate when the PCT

algorithm is recommended instead of its ensemble version

(PCTEN), since ensemble versions of classification algorithms

tend to have better predictive performance than their standard

counterparts. In addition, the PCT algorithm has, by far, the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:7, 2018

537

best interpretability potential among the 8 tested hierarchical

classification algorithms. Although the PCT models were not

interpreted in this paper, it is useful to investigate when the

PCT model performs better, given that model interpretability

is important in many application domains [14], [15].

B. Predictive Accuracy Measures

Special measures of predictive accuracy have been

developed for hierarchical classification; we have used three of

them: AU(PRC), AUPRCw, and AUPRC [9]. These three

measures are inspired by the measure AUPRC (Area Under

the Precision Recall Curve), created for ‘flat’ classification

with probabilistic outputs. The AUPRC measure works by

creating, for each class, a PR curve (a plot of the classifier’s

precision as a function of its recall). This curve is created

by thresholding the output (class probability) of the classifier

using values in the interval [0, 1]. Each threshold defines a set

of predictions, which in turn have a value of precision and

recall. Each precision and recall pair are coordinates in the

PR space, so if one connects the PR points created by varying

the threshold, one can create a curve, which corresponds

to how the classifier’s precision varies as a function of its

recall. Finally, we calculate the area under this curve using a

trapezoidal approximation [16]. The bigger the area the better

the classifier. A perfect classifier would have an AUPRC of

1.0.

The AU(PRC) is calculated by using hierarchical forms

of the precision and recall measures for a pre-established

threshold, defined by the following formulas:

hP ≡
∑

j |Pj∩Tj |
∑

j |Pj | and hR ≡
∑

j |Pj∩Tj |
∑

j |Tj | .

Where Pj and Tj denote respectively the sets containing

the predicted and true classes of the current j-th instance.

To calculate AUPRC we average all the class-wise

AUPRC values. Similarly, to calculate AUPRCw, we

calculate the AUPRC of each class and then average over

all classes weighted by the number of instances in each class,

that is, AUPRCw ≡
∑

i AUPRCi×Si∑
i Si

; where Si is the number

of instances in the i-th class.

C. Meta-Learning

Meta-learning for algorithm recommendation, in the

classification setting, is the computational task of predicting

the performance of classification algorithms (representing

meta-classes) given their past performance and meta-features

that describe the characteristics of datasets (meta-instances).

Broadly speaking, there are three types of meta-features:

1) dataset-derived meta-features [17], 2) landmarking

meta-features [17] and 3) sampling meta-features [18].

The first type of meta-features characterise some aspect of

the dataset, such as the number of instances, the number of

classes, the class distribution, and so on, which can be directly

extracted from the dataset, without inducing a classification

model. Landmarking meta-features are defined as features

characterising some classification model induced using the

dataset. Typically, this classification model must be relatively

computationally fast to induce and should provide insights

about the classification problem at hand. The last type of

meta-feature, sampling meta-features, consists of applying

the classification algorithms whose performance are being

predicted in a sample of the testing dataset and using the

predictive accuracy results as meta-features.

Both landmarking and sampling approaches aim to extract

meta-features from classification models that can be induced

fast. Note, however, that landmarking approaches usually

use a fast classification algorithm and extract meta-features

from the model that was induced using the full base dataset

(meta-instance). For instance, if the model is a decision

tree, structural descriptors of the tree can be used as

meta-features. By contrast, sampling approaches can use

slower classification algorithms trained on a small sample

of each base dataset (meta-instance). Usually, sampling

approaches use as meta-features the predictive accuracy

of the classification models on dataset samples, instead

of characteristics of the model. Commonly, the set of

classification algorithms used in the sampling approach is the

same set as the set of algorithms that can be recommended.

The principle is that the accuracy on a dataset sample is a

good predictor of the accuracy on the full dataset.

There are more refined meta-features. For instance, in [19]

the authors induce a decision tree at the meta-level and use

the boolean value of each rule (each path from the root

node to a leaf node) as a meta-feature. In this work the

authors also propose the Approximate Ranking Trees (ART)

ensemble method, which is an adaptation of decision tree

algorithms to predict algorithms’ ranks. In [20] the authors

build a learning curve by plotting predictive performance

against sampling successively larger samples from the datasets

(meta-instances). Next they analyse the behaviour of this

learning curve to recommend the best classification algorithm

for a new meta-instance.

In [21] authors propose an active testing framework to

choose the best algorithm to be applied to a new meta-instance.

Their algorithm works by doing several tournament-style

comparisons between the current best classifier and a

promising competitor. Their objective is to minimize the

number of models that must be trained to get a reasonably

good algorithm recommendation.

Note that all these previous works addressed only the

conventional classification task. By contrast, this work

addresses the more challenging hierarchical classification task.

The meta-learning approach proposed in this work has

two goals. First, we want to build meta-classification models

with a high predictive accuracy, in order to provide reliable

algorithm recommendations to the user. Hence, we do

not employ predictive accuracy measures that combine

runtime and predictive performance, such as the ones

presented in [17], [20], [22], as optimizing runtime often

reduces classification performance. Second, we want to

discover general (and meaningful) relationships between the

meta-features representing characteristics of the hierarchical

classification datasets and the hierarchical classification

algorithms (meta-classes) used in our experiments. These

relationships could be used as explanations for the algorithm

recommendations output by the meta-learning system.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:7, 2018

538

TABLE I
MEAN RANK OF HIERARCHICAL CLASSIFICATION ALGORITHMS FOR EACH PREDICTIVE MEASURE USED IN THIS PAPER USING THE FULL DATASETS

(THE TOP PART OF THE TABLE) AND THE AVERAGE MEAN RANK ACROSS PREDICTIVE MEASURES (THE BOTTOM PART OF THE TABLE). THE MEAN

RANK IS CALCULATED FOR EACH PREDICTIVE MEASURE BY FIRST RANKING THE HIERARCHICAL CLASSIFICATION ALGORITHMS FROM BEST (RANK

OF 1) TO WORST (RANK OF 8) FOR A GIVEN DATASET; NEXT, WE AVERAGE THE RANKS ACROSS DATASETS TO CALCULATE THE MEAN RANK FOR

EACH ALGORITHM. THE AVERAGE MEAN RANK IS CALCULATED BY SIMPLY AVERAGING THE PREVIOUSLY DESCRIBED PER-MEASURE MEAN

RANKS. THE BOLD NUMBERS HIGHLIGHT THE BEST HIERARCHICAL CLASSIFICATION ALGORITHMS ACCORDING TO THEIR AVERAGE MEAN RANK

Predictive Measure PCT PCTEN HDN-PCT HDN PCT-LHC LHC HDN-nHPC ELHNB

AU(PRC) 4.7 2.6 5.3 6.5 4.1 3.0 2.5 7.3

AUPRCw 4.5 3.5 5.0 5.6 4.1 3.9 3.7 5.7

AUPRC 3.7 4.4 4.2 5.3 3.6 3.6 5.8 5.5

Avg. Mean Rank 4.3 3.5 4.8 5.8 3.9 3.5 4.0 6.2

To the best of our knowledge, there is only one related

work on meta-learning for algorithm recommendation in

hierarchical classification. This work is based on the local

hierarchical classification approach, using meta-learning for

recommending the best local ‘flat’ classification algorithm for

predicting each class in the hierarchy, using meta-features to

describe each local ‘flat’ classification problem [23]. More

precisely, the authors use meta-features to select between

the SVM or Naive Bayes algorithms for predicting each

class label in the hierarchy using a C4.5 meta-learner.

Note the previouly cited work is very different from our

work, which performs meta-learning using meta-features that

describe hierarchical classification datasets and recommends

hierarchical classification algorithms.

III. DEFINITION OF THE PROPOSED META-FEATURES

The proposed meta-features for describing properties of

hierarchical classification datasets are divided into three

broad types: simple multi-label dataset-derived meta-features,

hierarchical dataset-specific meta-features, and meta-features
extracted from the landmarking PCT classification model.

The meta-feature type describes properties of a
multi-label classification dataset [24], without referring to
hierarchical classification aspects. However, since every
hierarchical classification dataset is implicitly a multi-label
dataset [3] (an instance is assigned class labels at multiple
levels of the class hierarchy), such meta-features are
still potentially useful to describe hierarchical classification
datasets.

The motivation behind these meta-features is to capture

high-level dataset characteristics such as the number of classes,

instances and features. These meta-features are the easiest to

interpret but lack preciseness since they are unaware of the

class hierarchy.

The second meta-feature type is generated by inducing

a PCT hierarchical classification model using the base

dataset and extracting meta-features directly from the induced

decision tree. These meta-features are broadly based on the

meta-features proposed in [17] for standard (flat) classification.

The intuition behind these meta-features is that the

characteristics of the PCT model induced using the dataset

(meta-instance) will reflect characteristics of the underlying

classification problem. For instance, an ‘easy’ meta-instance

will tend to have a ‘simple’ hierarchical classification model,

whereas a ‘hard’ meta-instance will tend to generate ‘complex’

hierarchical classification models. The main advantage of

using this feature type is that it can measure the ‘complexity’

of the meta-instance. The main downside is that it is hard to

interpret. It is not always clear what is a ‘simple’ or ‘complex’

model.

These first two types of meta-feature have been used before
in flat classification, but they are used here in the more
complex task of hierarchical classification.

The third meta-feature type describes the characteristics of
the graph that represents the class hierarchy [3]. This is a meta-

feature type proposed specifically for meta-learning in
hierarchical classification, with no equivalent in meta-learning
for flat classification.

The motivation of this meta-feature is to characterize the

class hierarchy, so its topology can be taken into account when

choosing which hierarchical classification algorithm to use.

The description of the class hierarchy can provide important

information about the meta-instance (dataset), as different

hierarchical classification algorithms can perform better when

the characteristics of the class hierarchy change.

1) Multi-label dataset-derived meta-features

a) NumClasses: Number of class labels.

b) LabCard (label cardinality): Average number of class

labels per instance.

c) DistLabSetSize: Number of distinct label sets that occur

in at least one instance.

d) NumFeats: Number of features.

e) NumInsts: Number of instances.

f) InstFeatRatio: Number of instances divided by the

number of features.

2) Meta-features extracted from the landmarking PCT

hierarchical classification model

a) NumNodesPCT: Number of nodes in the decision tree.

b) NumLeavesPCT: Number of leaves in the decision tree.

c) MaxLevelSizePCT: Maximum number of internal nodes

in a level of the decision tree, across all tree levels.

d) MeanLevelSizePCT: Mean number of internal nodes in

a level of the decision tree across all levels of the tree.

e) LongBranchPCT: Longest path among all possible paths

from the root to a leaf node of the decision tree.

f) ShortBranchPCT: Shortest path among all possible paths

from the root to a leaf node of the decision tree.

g) MeanBranchPCT: Mean path length among all possible

paths from the root to a leaf node of the decision tree.

h) PercSelPCT: % of input features selected for inclusion

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:7, 2018

539

in the decision tree induced by PCT.

i) BalancednessPCT: This measures how distant the PCT

tree (T) is from a balanced tree, defined as:

balancedness(T) = (unbAvgDepth(|T |)−actualAvgDepth(T))
(unbAvgDepth(|T |)−balAvgDepth(|T |)) .

where: unbAvgDepth(|T |) is the average depth of a

completely unbalanced tree (worst case scenario)

containing |T | nodes, balAvgDepth(|T |) is the average

depth of the most balanced binary tree possible (best case

scenario) containing |T | nodes, and actualAvgDepth(T)
is the actual average depth of the tree T . This meta-feature

has value 1 (0) if T is the most balanced (unbalanced)

tree possible.

3) Hierarchical dataset-specific meta-features

a) AvgDepth: The average length of all possible paths from

the root to all the leaf classes.

b) ClassImbal: Average class imbalance, defined as the

average proportion of positive class instances across all

class nodes in the hierarchy. Recall that a hierarchical

classification problem can be viewed as a collection of

binary classification problems, with restrictions defined by

the class hierarchy.

c) NumLeaves: Number of leaf class labels.

d) HierType: Class hierarchy’s structure type (tree or DAG).

e) AvgDegree: Average degree (# of edges) per class node.

f) MaxDegree: Maximum degree across all class nodes.

g) MaxLevelSize: Maximum number of nodes in a class

level, across all levels. A class label is in the i-th level

if there is a path of length “i” from the root to that class

label’s node. Note: for DAGs the same node may be in

multiple levels.

h) MinLevelSize: Minimum number of class nodes in a

level across all levels.

i) MeanLevelSize: Mean number of class nodes in a level

across all levels.

j) LongBranch: Longest path among all possible paths from

the root to a leaf class.

k) ShortBranch: Shortest path among all possible paths from

the root to a leaf class.

l) MeanBranch: Mean path length among all possible paths

from the root to a leaf class.

IV. HIERARCHICAL DATASETS USED IN THIS WORK

The first requirement to apply meta-learning for hierarchical

classification algorithm recommendation is to collect a

reasonable number of datasets (meta-instances) to learn

associations between dataset characteristics (the meta-features)

and the choice of the best hierarchical classification algorithms

(meta-classes) for the datasets.

To this end, we have collected 42 hierarchical classification

datasets from 3 different sources. The first source is the

work of Vens [9], from where we collected 22 of the

24 available datasets. We discarded the datasets pheno GO

and pheno FUN, since they contain many (more than 50%)

missing values, and adding them would require a non-trivial

adaptation of the hierarchical classifiers we used.

These datasets contain features extracted from the genes

of the widely used model organism Saccharomyces cerevisiae

(yeast). There are two types of predictive features: 1) statistics

extracted from the amino acid sequences (seq features) and

2) several types of microarray expression data (all the other

features). There are also two types of class hierarchies: “FUN”

(the tree-structured hierarchy in the FunCat scheme [25]) and

“GO” (the DAG-structured Gene Ontology [7]).

The second hierarchical classification dataset source is a

work of Fabris [11], from where we collected 15 datasets

containing features extracted from the proteins encoded by the

genes in the Ageing Gene Database (GenAge) [26]. GenAge

is a catalogue of ageing-related genes coming from several

species, including human and model organisms such as S.
cerevisiae (baker’s yeast) and M. musculus (the house mouse).

Each species is associated with three datasets

containing three broad types of features, namely numeric

alignment independent features, protein motif features and

protein-protein interaction features, leaving us with 15

ageing-related datasets. The hierarchical classes were created

for each model organism by retrieving the over-expressed GO

terms associated with the genes (instances) in each one of the

15 datasets.

The last hierarchical classification dataset source is also

from a work of Fabris [27], where the authors built

5 hierarchical classification datasets containing features

extracted from the proteins encoded by the genes in the

Phenotypes and Mutant Alleles section of the Mouse Genome
Informatics (MGI) database. The hierarchical classes of these

datasets are classes of the Mammalian Phenotype Ontology
(MPO). The datasets vary in terms of feature type, namely:

numeric features, protein motifs features, Protein-Protein

Interaction (PPI) features, and two types of KEGG pathway

features.

Tables II and III show the main characteristics of the 42

datasets used in this work. We encourage readers interested in

the details of the constructions of these datasets to refer to the

original papers. The original hierarchical datasets used in this

work are available at [28] and [29].

TABLE II
NUMBER OF INSTANCES, PREDICTIVE FEATURES AND CLASSES IN THE

VENS’ DATASETS USED IN THIS WORK. NOTE THAT ALTHOUGH THE

TABLE HAS 11 ENTRIES, THE TOTAL NUMBER OF HIERARCHICAL

DATASETS IS 22, 11 FOR EACH TYPE OF CLASS HIERARCHY (GO AND

FUNCAT)

Predictive Features Number of
FunCat
Classes

Number of
GO
classes

Number of
Instances

Number
of
Features

seq 476 3704 3932 478
cellcycle 476 3695 3766 77
church 476 3696 3764 27
derisi 476 3691 3733 63
eisen 447 3176 2425 79
gasch1 476 3698 3773 173
gasch2 476 3698 3788 52
spo 476 3691 3711 80
expr 476 3698 3788 551
struc 476 3703 3851 19628
hom 476 3695 3867 47034

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:7, 2018

540

TABLE III
NUMBER CLASSES, INSTANCES, AND PREDICTIVE FEATURES IN THE

FABRIS’ DATASETS

Hier. Feature Type Number of
Classes

Number of
Instances

Number of
Features

Ageing GO

worm Numeric
350 263

59
PPI 162

Motifs 112
fly Numeric

385 79
59

PPI 105
Motifs 55

human Numeric
1713 301

60
PPI 2425

Motifs 284
mouse Numeric

683 107
59

PPI 29
Motifs 40

yeast Numeric
583 762

59
PPI 4397

Motifs 296

Ageing MPO

KEGG

84 3886

221
KEGGI 618
Motifs 372
Numeric 59
PPI 123

V. AN ALGORITHM FOR SPLITTING HIERARCHICAL
DATASETS FOR META-LEARNING

One of the main challenges of applying meta-learning to

data mining tasks is collecting a reasonable number of datasets

to be used as meta-instances to train the meta-classifiers.

This problem is exacerbated when dealing with hierarchical

classification problems, as there are substantially fewer freely

available datasets for this specific task than for standard

(‘flat’) classification tasks. Actually, there is no systematic

repository of hierarchical classification datasets, unlike the

case for standard classification, where there are well-known

dataset repositories like the UCI one [30].

Hence, we propose an approach for creating a larger number
of hierarchical classification datasets from an existing set of
available hierarchical classification datasets. The created
datasets preserve part of the data contained in the original
datasets, i.e., they still contain real-world data, rather than
being synthetic, randomly generated datasets. We have applied
this approach (formalized by Algorithm 1) to divide the
original 42 hierarchical classification datasets into 863 new
hierarchical classification datasets. Broadly speaking, for each
original dataset, Algorithm 1 divides the existing class label
hierarchy into sub-hierarchies and creates a hierarchical
classification dataset (a meta-instance) for each sub-hierarchy.
Each instance in the full original dataset is present in a
hierarchical classification dataset if that instance is annotated
with at least one class label from the sub-hierarchy
corresponding to that new dataset.

Algorithm 1 requires a user-defined “spanning set”. A

“spanning set” is a set of class labels that Algorithm 1 uses to

decide how to “break down” the class hierarchy: the children

of the class labels in this set define the unique classes of the

new sub-hierarchies, i.e., these children will not be shared

between the new sub-hierarchies. The classes in the spanning

set must be chosen based on the structure of the hierarchy:

a good spanning set contains class labels with a reasonable

number of child class labels (so that a considerable number of

sub-hierarchies can be generated) and close to the hierarchy’s

root node (so that each generated sub-hierarchy can have a

reasonable number of instances). In this work, the class labels

in the spanning set have the characteristic that they cover a

reasonable number of instances (more than 10) and yet are not

so shallow as to generate few datasets (meta-instances). The

full list of class labels forming the spanning set will be made

available when the paper is published.

Algorithm 1 works by iterating over the children of the class

labels in the “spanning set” (line 5) and checking if the current

child node has less than minDesSize (minimum Desirable

Size) instances (line 6) – a user-defined parameter. If this is the

case, the instances in the current child node are added to the

temporary set toGenerate (line 7). Notice that if an instance

belongs to multiple classes, it cannot appear multiple times in

this set; this is guaranteed by the append operator (line 7). If

toGenerate has accumulated minDesSize or more instances

(line 8), a new hierarchical classification dataset containing the

instances in toGenerate is created (line 9) and the algorithm

proceeds to iterate over the next child node of a class node in

the spanning set.

If the current child class node has minDesSize instances

or more (i.e., the if test in line 6 fails), a new hierarchical

classification dataset is created using that child node and

its descendants (line 13). Finally, when the for loop ends,

the algorithm checks if the current number of instances

in toGenerate is greater than or equal to minAccSize
(minimum Acceptable Size) – another user-defined parameter.

If that is the case, a new hierarchical classification dataset

is created (line 17); otherwise the instances are discarded,

as we consider that a dataset with less than minAccSize
instances does not contain enough information to be used in

our experiments.

Algorithm 1 Split a hierarchical classification dataset into

many smaller ones

1: procedure SPLIT(span (The spanning set))
2: minDesSize = 200
3: minAccSize = 20
4: toGenerate = {}
5: for each child ∈ span.children do
6: if |child.instances| < minDesSize then
7: toGenerate.append(child.instances)
8: if |toGenerate| ≥ minDesSize then
9: generateDS(toGenerate)

10: toGenerate = {}
11: end if
12: else
13: generateDS({child.instances})
14: end if
15: end for
16: if |toGenerate| ≥ minAccSize then
17: generateDS(toGenerate)
18: end if
19: end procedure

In our experiments we have set the value of MinDesSize
to 200 and MinAccSize to 20. Thus, the algorithm will

first generate hierarchical datasets with at least 200 instances

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:7, 2018

541

when executing the for loop. At the end of the algorithm, it

will generate at most one dataset with at least 20 instances

with class labels that did not pass the MinDesSize criterion,

in order to avoid discarding instances unnecessarily. The

meta-datasets created and used in our experiments will be

freely available on the web when the paper is published.

VI. EXPERIMENTAL SETUP

Our approach consists of inducing a multi-class

meta-classifier using the meta-features presented in Section III

and using the name of the best hierarchical classifier for

a particular meta-instance (hierarchical dataset) as the

meta-classes. We use 10-fold cross validation to estimate

the accuracy of hierarchical classification algorithms. This

multi-class meta-classifier must be capable of outputting

a score that represents the likelihood of a meta-instance

belonging to each of the meta-classes. The scores are used to

determine the recommended algorithm ranking, i.e., for each

meta-instance, the hierarchical classification algorithm with

the highest score is ranked first, and so on.

In order to induce the meta-classifier, we use two multi-class

classification algorithms: a Support Vector Machine

(SVM) [31] and the C4.5 decision tree algorithm [32].

These algorithms have complementary characteristics: SVM

models usually have high predictive accuracy, but are difficult

to interpret; while the C4.5 algorithm often produces models

that are associated with good interpretability but with inferior

predictive accuracy when compared with SVM – although of

course the issue of which algorithm is more accurate depends

on the underlying dataset. Actually, in our experiments J48

performed slightly better than SVM, as reported later. We

have used the J48 implementation of C4.5 from the Weka

data-mining framework [33] and the SVM from LibSVM [34].

We have used the default parameters for the J48 algorithm

and the Gaussian kernel for the SVM algorithm, using Weka’s

Grid Search implementation to select the best values for the

parameters γ and C, using the intervals suggested in [34].

In summary, the SVM algorithm implicitly maps the original

problem to a high-dimensional space using kernel functions

and finds a meta-class-separation hyperplane on this space

that minimizes classification error. The J48 algorithm builds

a decision tree that recursively divides the data using the

feature-based condition that best separates the meta-classes

of the meta-instances. We call our meta-learner using the J48

algorithm the Decision Tree Meta-Ranker (DTMR) and our

meta-learner using the SVM algorithm the SVM Meta-Ranker

(SVMMR).

We have used the three predictive accuracy measures

defined in Section II-B to define our meta-classes. Because the

measures have different biases, each one leads to a different

ranking for the hierarchical classifiers. Therefore we created

three meta-datasets, one for each predictive accuracy measure.

That is, the meta-features present in the three meta-datasets are

the same, but the meta-classes are different: The meta-class

of each meta-instance in each of the three meta-datasets is

the hierarchical classifier with the highest predictive accuracy

for the particular measure we are considering (AU(PRC),

AUPRCw, and AUPRC). Recall that the three hierarchical

classifiers used as meta-classes are PCT, PCTEN and LHC

(see Section II-A).

In addition to the DTMR and SVMMR rankers, we also test

two simple baselines: the first is a simple naive classification

algorithm called the Prior Ranker (PR). This algorithm outputs

as the predicted classifier ranking the ranking observed in the

meta-training set as a whole; i.e., the hierarchical classifier

with most wins across all training meta-instances is assigned

rank 1, with the second and third best classifiers being assigned

ranks 2 and 3. The second baseline is the Random Ranker

(RR), which randomly assigns the rankings of the hierarchical

classifiers to each meta-instance.

VII. EXPERIMENTAL RESULTS

This section presents the meta-learning results of applying

the approach for inducing our meta-classifiers (as described in

Section VI) to our meta-instances generated using Algorithm 1

(described in Section V). Subsection VII-A presents the

predictive accuracy results, using 10-fold cross-validation

and the Spearman’s rank correlation coefficient measure of

predictive accuracy [35]. This measure is often used in

meta-learning research. In Subsection VII-B we interpret the

meta-models induced by J48 using the whole meta-dataset to

try to extract useful information from those meta-models.

A. Meta-Learning Performance Evaluation

The measure of predictive performance we are using is the

mean Spearman’s rank correlation coefficient (R̄) across all

the datasets. R̄ measures the agreement between the ranking

of the base hierarchical classification algorithms predicted by

the meta-classifier and their corresponding actual ranking, and

it is defined as [35]:

R̄ =
1

J

J∑
j=1

[
1− 6

∑A
a=1(prj,a − arj,a)

2

A3 −A

]
. (1)

Where J is the number of meta-instances (hierarchical

classification datasets), A is the number of base hierarchical

classification algorithms, prj,a is the predicted rank for the

a-th base hierarchical classification algorithm in the j-th

meta-instance, and arj,a is the actual rank for the a-th base

hierarchical classification algorithm in the j-th meta-instance.

The multi-class meta-classification models we are using do not

output meta-class ranks, however they output scores, which

can be simply transformed to ranks by ordering the scores

from the largest (most probable meta-class) to the smallest

(least probable meta-class).

The R̄ correlation measure lies in the interval [−1, 1]. R̄ = 1
means that there is a perfect agreement between the predicted

and actual ranks, R̄ = 0 means that there is no correlation

between the predicted and actual ranks, and R̄ = −1 means

that there is a perfect disagreement between the predicted

and actual ranks. This ranking correlation coefficient has been

used in several works dealing with ranking-based meta-learner

evaluation, e.g.: [17], [19], [36].

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:7, 2018

542

Table IV shows the results of applying our meta-rankers

(DTMR and SVMMR), the Prior Ranker (PR), and the

Random Ranker (RR) to our three meta-datasets.

TABLE IV
RANK CORRELATION COEFFICIENT RESULTS OF APPLYING THE DTMR,
SVMMR, PR, AND RR META-RANKERS TO OUR META-DATASETS, ONE

META-DATASET FOR EACH HIERARCHICAL CLASSIFICATION VERSION OF

THE AUPRC MEASURE, USING 10-FOLD CROSS-VALIDATION

R rank correlation
DTMR SVMMR PR RR

AU(PRC) 0.600 0.546 0.386 -0.013

AUPRCw 0.446 0.411 0.246 -0.013

AUPRC 0.437 0.442 0.122 -0.008

Table IV shows that the DTMR meta-ranker is superior to

every other meta-ranker we tested in two out of three predictive

accuracy measures. The only exception is when using the

AUPRC measure, when the SVM classifier performed

marginally better.

We have applied pairwise paired t-tests to the results of

the 10 folds of the cross-validation procedure, as suggested

in [37], to compare the results of DTMR against each of the

other baseline approaches. The test rejected the null hypothesis

of classifier equivalence in respect with PR and RR, with α =
0.05, with all p-values < 10−4.

When comparing DTMR and SVMR, the test has

detected a statistical difference when considering the

AU(PRC) measure (p = 0.03) but did not detect statistically

significant differences when considering the AUPRCw and

AUPRC measures (p = 0.18 and p = 0.86, respectively).

In addition, to confirm the usefulness of Algorithm 1, the

ranking results when using the 42 original datasets (without

using Algorithm 1) were, as expected, much worse: both the

DTMR and SVMMR were statistically equivalent to the rather

simple PR algorithm in every occasion.

B. Interpreting the Meta-Models

The meta-classification models induced by J48 to predict
which hierarchical classification algorithm (meta-class) is
more accurate in each dataset (meta-instance) are shown in
Figs. 1, 2, and 3, for the 3 accuracy measures we have
used, respectively: AU(PRC), AUPRCw and AUPRC.
These meta-models were induced by J48 using the whole
meta-dataset, maximizing J48’s potential to find interesting
meta-classification rules. We interpret the J48 model instead
of the SVM model because the J48 model is much easier to
interpret and it has achieved at least statistically equivalent
predictive performance for all three measures. In addition
to showing each meta-model, we select some interesting
meta-rules, interpret their meaning and, when possible,
compare them with similar meta-rules found when using
different accuracy measures, to reach conclusions across the
3 measures.

In Figs. 1-3, each line of the meta-model represents a
decision split, i.e., a condition that must be satisfied by
the meta-feature of a meta-instance in order for it to be
passed to the next decision split, eventually reaching a leaf
node, when a meta-classification is made. On the leaf nodes

InstFeatRatio ≤ 0.02: PCT (43.0/4.0)
InstFeatRatio > 0.02
| NumFeats ≤ 551
| | HierType = Tree
| | | AvgDepth ≤ 2.19: PCTEN (29.0/9.0)
| | | AvgDepth > 2.19: LHC (228.0/59.0)
| | HierType = DAG
| | | NumNodesPCT ≤ 44
| | | | LabCard ≤ 10.11
| | | | | AvgDegree ≤ 2.21: PCTEN (20.0/4.0)
| | | | | AvgDegree > 2.21: PCT (44.0/21.0)
| | | | LabCard > 10.11
| | | | | AvgDepth ≤ 6.76
| | | | | | NumInst ≤ 353
| | | | | | | MeanLevelSize ≤ 20.1
| | | | | | | | AvgDegree ≤ 3.39: PCTEN (130.0/45.0)
| | | | | | | | AvgDegree > 3.39: LHC (42.0/12.0)
| | | | | | | MeanLevelSize > 20.1: PCTEN (138.0/42.0)
| | | | | | NumInst > 353: LHC (21.0/6.0)
| | | | | AvgDepth > 6.76: LHC (32.0/9.0)
| | | NumNodesPCT > 44
| | | | NumInst ≤ 1077
| | | | | MaxDegree ≤ 13: LHC (20.0/5.0)
| | | | | MaxDegree > 13: PCTEN (12.0/2.0)
| | | | NumInst > 1077: LHC (50.0)
| NumFeats > 551: PCTEN (53.0/8.0)

Fig. 1 Meta-model generated to classify the meta-instances into meta-classes
PCTEN, PCT, and LHC, when considering the AU(PRC) measure

of the meta-model we show in general two values, the first is
the total number of meta-instances classified by the leaf node,
the second is the number of meta-instances misclassified by
that leaf node. If there is no second value, it means there is
no misclassified meta-instance in that node.

In the next section we evaluate some meta-classification

rules in terms of their precision and recall. Precision is the

number of correct predictions (true positives predictions) made

by the rule divided by the number of meta-instances covered

by the rule. Recall is the number of correct predictions made

by the rule divided by the total number of meta-instances with

the meta-class predicted by the rule.

1) Interpreting the AU(PRC)-Based Meta-Model: Fig. 1

shows the meta-model induced when considering the

AU(PRC) measure. The first line of the model encodes the

meta-rule: “If the instance to feature ratio (InstFeatRatio)

is smaller than or equal to 0.02, i.e., the base dataset has one

instance for every 50 or more features, use the PCT classifier”.

This meta-rule has high precision (0.91), much higher than

the a priori probability for the ‘PCT’ meta-class (0.13). This

meta-rule’s recall is also reasonably good, covering 35%

(43 out of 122) of all meta-instances annotated with the

‘PCT’ meta-class. This meta-rule indicates that the decision

tree-based PCT algorithm deals well with datasets with

relatively few instances and many features, which seems due to

its implicit class hierarchy-aware feature selection procedure.

That is, by finding successive conditions that divide the set

of meta-instances based on their different hierarchical classes

well, the PCT performs feature selection by analysing each

feature’s predictive power across a large set of hierarchical

classes, instead of analysing just one class at a time, like the

LHC algorithm does.

Although the advantage of the PCT classifier over the

LHC classifier is clear when the instance to feature ratio

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:7, 2018

543

is so small, it is not clear why the PCTEN classifier did

not perform so well on the datasets with InstFeatRatio
≤ 0.02. Upon further analysis, we have concluded that

such a low InstFeatRatio is correlated with a simpler

classification problem, that is, hierarchical classification

datasets (meta-instances) with low InstFeatRatio also tend

to have much lower average values for NumClasses,

NumInst, NumLeaves, and DistLabSetSize. This justifies

why PCTEN was not the best performing algorithm for these

datasets, i.e., given the relative simplicity of these datasets,

the power of the PCTEN ensemble is not needed to maximize

accuracy. To show this point, Table V shows the average values

of the above meta-features considering the full meta-dataset

and the subset of meta-instances with InstFeatRatio ≤ 0.02.

TABLE V
MEAN VALUE OF SOME META-FEATURES (FIRST COLUMN) IN THE

WHOLE META-DATASET (SECOND COLUMN) AND IN THE LEAF NODE IN

THE FIRST LINE OF THE META-MODEL SHOWN IN

FIG. MOD:ALLmodel,WhereAllMeta−
InstancesHaveINSTFEATRATIO 0.02(ThirdColumn)

Feature Name Mean in meta-dataset Mean in leaf
InstFeatRatio 5.63 0.01
NumClasses 152.27 85.95
NumInst 530.52 217.57

NumLeaves 47.08 23.95
DistLabSetSize 72.52 31.24

The last line of the decision tree shown in Fig. 1 contains

another interesting meta-rule: ‘if the instance to feature ratio

(InstFeatRatio) is greater than 0.02, and the number of

features (NumFeats) is greater than 551, use PCTEN’. This

points to the advantage of using PCTEN when the problem is

more complex (higher number of features), but with enough

instances to learn from (with a not too small InstFeatRatio).

This meta-rule also has a high precision of 0.85, much higher

than the a priori meta-class probability of 0.40. It also has a

reasonable recall of 13% of all meta-instances annotated with

the ‘PCTEN’ meta-class.
The last meta-rule from Fig. 1 that we would like to

highlight is as follows.

IF (InstFeatRatio > 0.02) AND (NumFeats ≤ 551)
AND (HierType = DAG) AND (numNodesPCT > 44)
AND (NumInst > 1077) THEN LHC (50.0)

Overall, this meta-rule seems to suggest that the LHC

classifier is clearly recommended when the problem is

moderately difficult (relatively many instances, not very many

features, a DAG class hierarchy) and the number of tree

nodes in the landmark PCT model (used as a meta-feature)

is relatively large, suggesting that the PCT model may be

overfitting to this problem. Note that this meta-rule has a

precision of 100% on the meta-dataset and a reasonable recall,

capturing 12% (50) of all meta-instances annotated with the

’LHC’ meta-class label.
2) Interpreting the AUPRCw-Based Meta-Model:

Analysing the meta-model shown in Fig. 2 we observe

that the same condition that the J48 algorithm selected to

predict the ‘PCT’ meta-class using the AU(PRC) measure

was selected again to predict the ‘PCT’ meta-class for the

AUPRCw measure. It is interesting that both models chose

this condition as the root of the decision tree, highlighting the

InstFeatRatio ≤ 0.02: PCT (43.0/2.0)
InstFeatRatio > 0.02
| MeanLevelSizePCT ≤ 2.5
| | ClassImbal ≤ 0.60
| | | ShortBranchPCT ≤ 1: PCT (144.0/58.0)
| | | ShortBranchPCT > 1
| | | | NumLeaves ≤ 82
| | | | | NumLeaves ≤ 8: LHC (31.0/10.0)
| | | | | NumLeaves > 8
| | | | | | AvgDegree ≤ 3.60: PCT (171.0/93.0)
| | | | | | AvgDegree > 3.60: LHC (13.0/6.0)
| | | | NumLeaves > 82: LHC (15.0/3.0)
| | ClassImbal > 0.60: PCTEN (16.0/2.0)
| meanLevelSizePCT > 2.5
| | NumFeats ≤ 2425: LHC (412.0/137.0)
| | NumFeats > 2425: PCTEN (17.0/3.0)

Fig. 2 Meta-model generated to classify the meta-instances into meta-classes
PCTEN, PCT, and LHC, when considering the AUPRCw measure

importance of the meta-feature InstFeatRatio. Note also

that the same threshold of 0.02 was consistently chosen for

the InstFeatRatio meta-feature in both Figs. 1 and 2. This

meta-rule has a precision 0.95, much higher than the a priori
meta-class probability of 0.31. In addition, this meta-rule

covers the same reasonably good number of 41 meta-instances

as the meta-rule for the AU(PRC) measure (Section VII-B1).

One difference is that, for the current meta-rule (for the

AUPRCw measure), this coverage represents a recall of

only 15% of the meta-instances annotated with the ‘PCT’

meta-class label, rather than 35% as in the corresponding

meta-rule for the AU(PRC) measure. This is because

the PCT algorithm performed better when considering the

AU(PRC) measure, being ranked first in more occasions.

For predicting the PCTEN meta-class, we highlight the

following meta-rule in Fig. 2:

IF (InstFeatRatio > 0.02) AND (MeanLevelSizePCT > 2.5)
AND (NumFeats > 2425) THEN PCTEN (17.0/3.0)

This meta-rule is broadly similar to the one we highlighted

for PCTEN in the previous section. The differences are

that the current meta-rule has a much larger threshold for

NumFeats (2425, vs. 551 for the previous meta-rule), as well

as having the additional condition involving the meta-feature

MeanLevelSizePCT , which measures the mean number of

nodes across the levels of the PCT decision tree. Taken all

together, this meta-rule’s conditions recommend to use the

PCTEN algorithm when the problem has more available data

to induce a meta-model (the instances to feature ratio is not

too small and the number of features is relatively high) and

the landmark PCT model (decision tree) used to classify the

data has more than 2.5 nodes on average, across the levels

of the PCT tree. That is, when the landmark PCT model

used to classify the instances is more complex and there is

enough data, using an ensemble of PCT classifiers tends to be

better than a single PCT classifier. This meta-rule has a high

precision (0.82) compared to the a priori probability of the

‘PCTEN’ meta-class (0.22), but low recall, capturing only 7%

of all meta-instances annotated with the ‘PCTEN’ meta-class.

Lastly, we analyse an interesting meta-rule for

recommending the LHC algorithm in Fig. 2:

IF (InstFeatRatio > 0.02) AND (MeanLevelSizePCT > 2.5)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:7, 2018

544

AND (NumFeats ≤ 2425) THEN LHC (412.0/137.0)

This meta-rule is similar to the meta-rule for recommending

the PCTEN algorithm, only differing in the last condition,

which points out that when there are not so many features

(2425 or less), it is recommended using LHC instead of

PCTEN. This is consistent with the meta-rule for LHC in the

previous section, which also recommends using LHC when

the number of features is smaller than 551, InstFeatRatio >
0.02 (as in the current rule), and other conditions are satisfied.

This meta-rule has a very high recall, capturing 70% of the

meta-instances annotated with the meta-class label ‘LHC’, and

has a reasonable precision: 0.66, substantially higher than the

a priori probability for the meta-class LHC, which is 0.47.

3) Interpreting the AUPRC-Based Meta-Model:
Analysing the meta-classification model for the AUPRC
measure as shown in Fig. 3, we can drawn similar conclusions

to the conclusions derived for measures AU(PRC) and

AUPRCw, at a high level of abstraction.

Namely, when the problem has characteristics that are

commonly recognized to harm classification performance (e.g.

the class distribution is very imbalanced), PCTEN is more

suited to solve the problem than PCT. The following two

meta-rules (in decision tree format) show this behaviour.

PercSelPCT ≤ 0.0004
| ClassImbal ≤ 0.60: PCT (195.0/43.0)
| ClassImbal > 0.60: PCTEN (16.0/2.0)

In particular, the previous meta-rule leading to the prediction

of the ‘PCTEN’ meta-class has the precision of 0.88, much

higher than the a priori meta-class label probability of 0.30;

but a low recall, only capturing 5% of the meta-instances

annotated with the ‘PCTEN’ meta-class.

Conversely, the previous meta-rule predicting the ‘PCT’

meta-class has opposite characteristics: high recall (covering

44% of all meta-instances annotated with the meta-class

‘PCT’) and lower precision (0.78), although that value is still

relatively high, compared to the a priori meta-class probability

(0.40).

Also, once again, the LHC classifier seems to work better

when the number of features in the dataset is smaller than some

PercSelPCT ≤ 0.0004
| ClassImbal ≤ 0.60: PCT (195.0/43.0)
| ClassImbal > 0.60: PCTEN (16.0/2.0)
PercSelPCT > 0.0004
| NumInst ≤ 378
| | AvgDegree ≤ 1.94
| | | ClassImbal ≤ 0.19: PCT (33.0/5.0)
| | | ClassImbal > 0.19
| | | | InstFeatRatio ≤ 2.83
| | | | | NumFeats ≤ 296: PCT (14.0/2.0)
| | | | | NumFeats > 296: LHC (13.0/3.0)
| | | | InstFeatRatio > 2.83: LHC (14.0/5.0)
| | AvgDegree > 1.94
| | | MeanLevelSizePCT ≤ 2.5: PCT (150.0/75.0)
| | | MeanLevelSizePCT > 2.5: PCTEN (181.0/68.0)
| NumInst > 378
| | NumFeats ≤ 1216: LHC (235.0/93.0)
| | NumFeats > 1216: PCTEN (11.0/2.0)

Fig. 3 Meta-model generated to classify the meta-instances into meta-classes
PCTEN, PCT, and LHC, when considering the AUPRC measure

threshold. The next meta-rule (which predicts the meta-class

LHC) exemplify this and has very good recall (covering 92%

of all meta-instances annotated with meta-class ‘LHC’) and

reasonable precision, 0.60, compared to the a priori probability

of the meta-class ‘LHC’, 0.30.

IF (PercSelPCT > 0.0004) AND (NumInst > 378)
AND (NumFeats ≤ 1216) THEN LHC (235.0/93.0)

Note, however, that the following meta-rules (shown in

decision tree format) seem to contradict this finding:

PercSelPCT > 0.0004
| NumInst ≤ 378
| | AvgDegree ≤ 1.94
| | | ClassImbal > 0.19
| | | | InstFeatRatio ≤ 2.83
| | | | | NumFeats ≤ 296: PCT (14.0/2.0)
| | | | | NumFeats > 296: LHC (13.0/3.0)

In fact, when analysing these meta-rules’ sequence of

conditions in more detail, the meta-instances (datasets) that

satisfy all conditions until (and including) the condition

“InstFeatRatio ≤ 2.83” have, on average, fewer (base level)

features than all the meta-instances in the whole meta-dataset

(344.70 vs. 640.18, respectively). So, it appears that LHC also

does not work well when the number of instances is too small

(less than 296 in our datasets).

VIII. CONCLUSIONS AND FUTURE WORK

This work has proposed the meta-learning approach for
automatically recommending the hierarchical
classification algorithm for a new dataset. The three main
contributions of this work are as follows. First, we have
proposed meta-features (Hierarchical dataset-specific
meta-features) for performing meta-learning in the hierarchical
classification task. Second, we have proposed an algorithm for
splitting a hierarchical classification dataset into many
hierarchical datasets, each used as a meta-instance. We
then used this algorithm to greatly increase the number of
meta-instances (from 42 original meta-instances to 862
meta-instances) for our meta-learning experiments. Third,
we have interpreted the induced meta-classification models,
identifying for the correlations between hierarchical dataset
characteristics (meta-features) and the choice of the best
hierarchical classification algorithm (meta-classes) for a
dataset (meta-instance).

In our experiments, the Decision Tree Meta Ranker

(DTMR) was overall the best meta ranker. In addition,

the DTMR method provided useful meta-knowledge about

the effectiveness of three different hierarchical classification

algorithms (meta-classes), as discussed in Section VII.

The meta-feature type presented in this paper, the
hierarchical dataset-specific meta-features, was useful to
predict the meta-classes, being the most selected meta-feature
type in the meta-models shown in Section VII-B. The
DTMR meta-learner selected a meta-feature from the proposed
meta-feature type a total of 14 times, out of 30 selected
meta-features.

Our approach has some limitations that will be explored

in future work, namely: testing more algorithms besides

J48 and SVM as meta-learners, and using more hierarchical

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:7, 2018

545

classification algorithms to generate the meta-classes to be

predicted. We also plan to evaluate the effectiveness of each

individual meta-feature in a more systematic way to identify

which meta-feature has the highest predictive power using

measures of feature importance for decision trees.

ACKNOWLEDGMENT

The first author is financially supported by CAPES,

a Brazilian research-support agency (process number

0653/13-6).

REFERENCES

[1] L. Schietgat, C. Vens, J. Struyf, H. Blockeel, D. Kocev, and S. Dzeroski,
“Predicting gene function using hierarchical multi-label decision tree
ensembles.” BMC Bioinformatics, vol. 11, no. 2, pp. 1–14, Jan. 2010.

[2] D. Delen, G. Walker, and A. Kadam, “Predicting breast cancer
survivability: a comparison of three data mining methods,” Artificial
Intelligence in Medicine, vol. 34, no. 2, pp. 113–127, 2005.

[3] C. N. Silla Jr. and A. A. Freitas, “A Survey of Hierarchical Classification
Across Different Application Domains,” Data Mining and Knowledge
Discovery, vol. 44, no. 1-2, pp. 31–72, 2011.

[4] P. Brazdil, C. G. Carrier, C. Soares, and R. Vilalta, Metalearning:
Applications to data mining. Springer, 2008.

[5] C. Vens, L. Schietgat, J. Struyf, H. Blockeel, and D. Kocev, “Predicting
Gene Function using Predictive Clustering Trees,” BMC Bioinformatics,
vol. 11, no. 2, pp. 1–25, 2010.

[6] D. Koller and M. Sahami, “Hierarchically Classifying Documents Using
Very Few Words,” in Proceedings of the 14th International Conference
on Machine Learning, ser. ICML ’97. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1997, pp. 170—-178.

[7] M. A. Harris, J. Clark, A. Ireland, J. Lomax et al., “The Gene Ontology
(GO) database and informatics resource.” Nucleic Acids Research,
vol. 32, pp. D258–61, Jan. 2004.

[8] H. Blockeel, M. Bruynooghe, S. Dzeroski, J. Ramon, and J. Struyf,
“Hierarchical Multi-Classification,” in Proceedings of the ACM SIGKDD
2002 workshop on multi-relational data mining (MRDM 2002), 2002,
pp. 21–35.

[9] C. Vens, J. Struyf, L. Schietgat, S. Dzeroski, and H. Blockeel, “Decision
Trees for Hierarchical Multi-label Classification,” Machine Learning,
vol. 73, no. 2, pp. 185–214, Aug. 2008.

[10] F. Fabris and A. A. Freitas, “Dependency Network Methods
for Hierarchical Multi-label Classification of Gene Functions,”
in Proceedings of the 2014 IEEE International Conference on
Computational Intelligence and Data Mining, Orlando, Florida, Dec.
2014, pp. 241–248.

[11] F. Fabris, A. Freitas, and J. Tullet, “An Extensive Empirical
Comparison of Probabilistic Hierarchical Classifiers in Datasets of
Ageing-Related Genes,” IEEE/ACM transactions on computational
biology and bioinformatics/IEEE, ACM, pp. 1–14, dec 2015. [Online].
Available: http://europepmc.org/abstract/MED/26661786

[12] F. Fabris and A. A. Freitas, “A Novel Extended Hierarchical Dependence
Network Method Based on non-Hierarchical Predictive Classes and
Applications to Ageing-Related Data,” in Proceedings of the 2015
IEEE 27th International Conference on Tools with Artificial Intelligence
(ICTAI). IEEE, 2015, pp. 294–301.

[13] L. d. C. Merschmann and A. A. Freitas, “An Extended Local
Hierarchical Classifier for Prediction of Protein and Gene Functions,”
in Data Warehousing and Knowledge Discovery, ser. Lecture Notes in
Computer Science. Springer, 2013, vol. 8057, pp. 159–171.

[14] A. A. Freitas, “Comprehensible Classification Models - a position
paper,” ACM SIGKDD Explor. Newsl., vol. 15, no. 1, pp. 1–10, 2014.

[15] A. Vellido, J. D. Martı́n-Guerrero, and P. J. Lisboa, “Making machine
learning models interpretable,” in In Proc. European Symposium on
Artificial Neural Networks, Computational Intelligence and Machine
Learning, vol. 12, 2012, pp. 163–172.

[16] K. Boyd, K. H. Eng, and C. D. Page, “Area Under the Precision-Recall
Curve: Point Estimates and Confidence Intervals,” in Machine Learning
and Knowledge Discovery in Databases, ser. Lecture Notes in Computer
Science. Springer, 2013, vol. 8190, pp. 451–466.

[17] Y. Peng, P. A. Flach, C. Soares, and P. B. Brazdil, “Improved dataset
characterisation for meta-learning,” ser. Lecture Notes in Computer
Science. Springer, 2002, vol. 2534, pp. 141–152.

[18] R. Leite and Pavel Brazdil, “Active Testing Strategy to Predict the
Best Classification Algorithm via Sampling and Meta-Learning,” in
Proceedings of the 2010 conference on ECAI 2010: 19th European
Conference on Artificial Intelligence. IOS Press, 2010, pp. 309–314.

[19] Q. Sun and B. Pfahringer, “Pairwise meta-rules for better
meta-learning-based algorithm ranking,” Machine Learning, vol. 93,
no. 1, pp. 141–161, jul 2013.

[20] J. N. van Rijn, S. M. Abdulrahman, P. Brazdil, and J. Vanschoren, “Fast
algorithm selection using learning curves,” in International Symposium
on Intelligent Data Analysis. Springer, 2015, pp. 298–309.

[21] R. Leite, P. Brazdil, and J. Vanschoren, “Selecting classification
algorithms with active testing,” in Machine Learning and Data Mining
in Pattern Recognition, ser. Lecture Notes in Computer Science, 2012,
vol. 7376, pp. 117–131.

[22] S. M. Abdulrahman and P. Brazdil, “Measures for combining accuracy
and time for meta-learning,” in Proceedings of the 2014 International
Conference on Meta-learning and Algorithm Selection (MLAS’14), vol.
1201, 2014, pp. 49–50.

[23] I. Partalas, R. Babbar, E. Gaussier, and C. Amblard, “Adaptive classifier
selection in large-scale hierarchical classification,” in Lecture Notes in
Computer Science, vol. 7665, no. 3, 2012, pp. 612–619.

[24] G. Tsoumakas, I. Katakis, and I. Vlahavas, “Mining Multi-label Data,”
in Data Mining and Knowledge Discovery Handbook, O. Maimon and
L. Rokach, Eds., 2010, pp. 667–685.

[25] A. Ruepp, A. Zollner, D. Maier, K. Albermann, J. Hani et al., “The
FunCat, a functional annotation scheme for systematic classification of
proteins from whole genomes,” Nucleic Acids Research, vol. 32, no. 18,
pp. 5539–5545, 2004.

[26] R. Tacutu, T. Craig, A. Budovsky, D. Wuttke, G. Lehmann,
D. Taranukha, J. Costa, V. E. Fraifeld, and J. a. P. de Magalhães,
“Human Ageing Genomic Resources: integrated databases and tools for
the biology and genetics of ageing.” Nucleic Acids Research, vol. 41,
no. Database issue, pp. D1027–D1033, Jan. 2013.

[27] F. Fabris and A. A. Freitas, “New KEGG pathway-based interpretable
features for classifying ageing-related mouse proteins,” Bioinformatics,
vol. 32, no. 19, pp. 2988–2995, jun 2016.

[28] “HMC Software and Datasets,” https://dtai.cs.kuleuven.be/clus/
hmcdatasets/, accessed: 2016-09-23.

[29] “Other Bioinformatics Datasets, including ageing-related datasets with
GO and FunCat classes,” https://www.cs.kent.ac.uk/people/rpg/ff79/
Fabris Datasets.tar.gz, accessed: 2016-09-23.

[30] M. Lichman, “UCI machine learning repository
http://archive.ics.uci.edu/ml,” 2013. [Online]. Available: http:
//archive.ics.uci.edu/ml

[31] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for
optimal margin classifiers,” in Proceedings of the Fifth Annual Workshop
on Computational Learning Theory, ser. COLT ’92. New York, NY,
USA: ACM, 1992, pp. 144–152.

[32] J. R. Quinlan, C4.5: Programs for Machine Learning. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1993.

[33] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques with Java Implementations. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2000.

[34] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology,
vol. 2, no. 3, pp. 1–27, 2011.

[35] T. D. Gautheir, “Detecting Trends Using Spearman’s Rank Correlation
Coefficient,” Environmental Forensics, vol. 2, no. 4, pp. 359–362, 2001.

[36] P. B. Brazdil, C. Soares, and J. P. Da Costa, “Ranking learning
algorithms: Using IBL and meta-learning on accuracy and time results,”
Machine Learning, vol. 50, no. 3, pp. 251–277, 2003.

[37] J. Demsar, “Statistical Comparisons of Classifiers over Multiple Data
Sets,” Journal of Machine Learning Research, vol. 7, pp. 1–30, 2006.

